Modelování vývoje výnosů zahraničního aktiva pro českého investora

Rozměr: px
Začít zobrazení ze stránky:

Download "Modelování vývoje výnosů zahraničního aktiva pro českého investora"

Transkript

1 Modelování vývoje výnosů zahraničního aktiva pro českého investora Aleš Kresta 1 Abstrakt Příspěvek je zaměřen na modelování výnosů závisejících na vývoji dvou rizikových faktorů, konkrétně je v příspěvku modelováno pravděpodobnostní rozdělení výnosů indexu Nikkei 5 v české měně pro jeden den. Pro modelování marginálních rozdělení pravděpodobnosti je použit normální inversní Gaussův model, závislost mezi oběma rizikovými faktory je modelována eliptickými kopula funkcemi Gaussovou a studentovou kopula funkcí. V příspěvku je porovnávána vhodnost použití těchto dvou kopula funkcí, přičemž srovnávacím kritériem jsou základní charakteristiky pravděpodobnostního rozdělení a hodnoty Value at Risk na v praxi nejpoužívanějších hladinách spolehlivosti. Z výsledků vyplývá, že v tomto konkrétním případě je pro modelování závislostí vhodnější zvolit Gaussovu kopula funkci. Klíčová slova Kopula funkce, normální inversní Gaussův model, modelování výnosů, Value at Risk. 1. Úvod Investuje-li investor do zahraničního aktiva, je nutné při modelování vývoje výnosů tohoto aktiva zohlednit i výnosy zahraniční měny. Tímto vzniká potřeba modelovat vývoj dvou rizikových faktorů, které jsou mezi sebou do určité míry závislé. V případě modelování bez zohlednění této závislosti mezi jednotlivými rizikovými faktory může dojít k nadhodnocení (v případě záporné závislosti) nebo podhodnoceni rizika (v případě kladné závislosti). Z tohoto důvodu je potřeba s touto závislostí v modelu uvažovat. Elegantním řešením je použití kopula funkcí neboť umožňují uvažovaný model rozdělit na dvě části: (i) část zachycující závislost pomocí kopula funkce a (ii) pravděpodobnostní rozdělení jednotlivých rizikových faktorů - marginální rozdělení. Nejvíce využívané jsou eliptické kopula funkce, které vycházejí z příslušného sdruženého rozdělení pravděpodobnosti. Jedná se konkrétně o Gaussovu kopula funkci a studentovu kopula funkci. Zatímco Gaussova kopula funkce vychází ze sdruženého normálního rozdělení pravděpodobnosti a nelze s ní modelovat těžké konce, studentova kopula funkce těžké konce umožňuje zachytit a měla by proto být pro modelování finančních časových řad vhodnější. Cílem příspěvku je srovnat vhodnost použití eliptických kopula funkcí (Gaussovy a studentovy kopula funkce) při modelování výnosů indexu Nikkei 5 v české měně. Příspěvek je členěn následovně. V druhé kapitole je uveden popis teorie kopula funkcí, ve třetí kapitole je charakterizován normální inversní Gaussův model použitý pro modelování marginálních rozdělení a ve čtvrté kapitole je popsána metodologie Value at Risk. Použitá teoretická východiska jsou následně v páté kapitole aplikována při modelování výnosů indexu Nikkei 5 v české měně. 1 Ing. Aleš Kresta, katedra financí, Ekf VŠB-TU Ostrava, Sokolská tř. 33, Ostrava, ales.kresta@vsb.cz. Tento příspěvek vznikl v rámci projektu GAČR 40/08/137 a SGS VŠB-TUO SP/0104.

2 . Charakteristika kopula funkcí Kopula funkce byly poprvé představeny Sklarem [9], přehled teorie spolu s praktickou aplikací pak lze nalézt v [5; 6; 7]. Pro jednoduchost budeme dále uvažovat dvourozměrnou kopula funkci. Kopula funkce jsou v podstatě reálné funkce, které zachycují závislost jednotlivých 0,1, distribučních funkcí v [ ] přičemž musí platit: [ 0,1] [ 0,1] v R, C : (1) ( u, 0) = C( 0, v) = 0, C ( u, 1) u, C( 1, v) = v, ( u, v ) C( u, v1 ) C( u1, v ) + C( u1, v1 ) 0, u1 u, v1 v C () = (3) C. (4) Na kteroukoliv kopula funkci může být pohlíženo jako na vícerozměrnou distribuční funkci s marginálními distribučními funkcemi ve formě standardizovaného rovnoměrného rozdělení. Předpokládejme dvě potencionálně závislé náhodné proměnné a s marginálními distribučními funkcemi dle Sklarova teorému platí: F F a F a sdruženou distribuční funkcí ( x, y) C( F ( x) F ( y) ) F,. Potom, =,. (5) Pokud jsou marginální distribuční funkce F a F spojité, kopula funkce C je jedinečná. Sklarův teorém naznačuje také inversní vztah, C u, v = F F u F v. (6) ( ) ( ) ( ) ( ),, Z formulace (6) je patrné, že sdružená pravděpodobnost obsahuje dvě rozdílné informace: (i) marginální distribuční funkce náhodných proměnných, (ii) funkci závislosti těchto distribučních funkcí. Zatímco marginální distribuční funkce jsou dány pomocí F a F, kopula funkce popisuje pouze závislost těchto distribučních funkcí. Za předpokladu znalosti marginálních distribučních funkcí náhodných proměnných je pro potřeby modelování nezbytné zvolit vhodnou kopula funkci. S trochou zjednodušení lze rozlišit eliptické a Archimedovy kopula funkce. Hlavní rozdíl mezi těmito dvěma typy spočívá ve způsobu jejich konstrukce a odhadu. Zatímco pro Archimedovy kopula funkce je potřeba definovat generující funkci, pro eliptické kopula funkce je dostatečná znalost související sdružené distribuční funkce (např. Gaussova, Studentova, atd.). 1.1 Definice Gaussovy kopula funkce Gaussova kopula funkce patří mezi eliptické kopula funkce. Za předpokladu korelace mezi náhodnými proměnnými R může být definována následovně: Ga C u, v = Φ Φ u, Φ v, (7) R ( ) ( ) ( ) R ( ) kde Φ je inversní funkce k distribuční funkci normovaného normálního rozdělení Φ, Φ R značí dvou-rozměrnou sdruženou distribuční funkcí normovaného normálního rozdělení při korelaci R. 1. Definice studentovy kopula funkce Studentova kopula funkce vychází ze studentova rozdělení, lze ji tedy definovat následovně: St CR, υ ( u, v) = tr, υ ( tυ ( u), tυ ( v) ), (8)

3 kde R opět značí korelaci mezi náhodnými proměnnými, funkci studentova rozdělení s υ stupni volnosti a t υ je inversní funkcí k distribuční t je dvou-rozměrnou sdruženou distribuční funkcí normovaného studentova rozdělení s korelací R a υ stupni volnosti. Pomocí parametru υ lze u studentovy kopula funkce ovlivnit konce rozdělení. Pro nižší hodnoty tohoto parametru je pravděpodobnost extrémního scénáře vyšší (lze tedy takto modelovat těžké konce), naopak čím je parametr υ vyšší tím více se studentova kopule blíží Gaussově kopuli. 1.3 Popis metod odhadu parametrů při modelování pomocí kopula funkcí Existují tři hlavní přístupy k odhadu parametrů při modelování pomocí kopula funkcí: EMLM (exact maximum likelihood method), IFM (inference function for margins) a CML (canonical maximum likelihood). Zatímco při použití EMLM jsou odhadovány všechny parametry najednou, což může být výpočetně velmi náročné (obzvláště při odhadu vysoce dimensionálních dat, nebo při použití složitějších marginálních funkcí), při IFM a CML jsou odhadnuty zvlášť parametry marginálních rozdělení a kopula funkce. Při IFM jsou odhadnuty nejprve parametry marginálních distribučních funkcí a na jejich základě pak parametry kopula funkce. U CML jsou parametry kopula funkce odhadnuty na základě empirických distribučních funkcí. Detaily těchto metod lze nalézt např. v [5]. V tomto příspěvku bude využito IFM přístupu. 3. Popis normálního inversního Gaussova modelu Normální inversní Gaussův model (NIG) byl ve finanční literatuře představen v []. Jedná se o model z rodiny Lévyho modelů, jejichž bližší charakteristiku lze nalézt například v [1; 3; 8]. Předpokládejme parametry α > 0, α < β < α and δ > 0, NIG ( α, β, δ ) rozdělení pravděpodobnosti, jímž se NIG model řídí, má charakteristickou funkci: ( ) = ( ) + φ NIG u, α, β, δ exp δ α β δ α β iu, (9) a související funkci hustoty pravděpodobnosti: αδ K1 ( ) ( ) ( α δ + x ) x,, β, δ = exp δ α β + βx f NIG α. (10) π δ + x Parametry rozdělení pravděpodobnosti tohoto modelu mohou být v podstatě odhadnuty dvěma metodami: (i) metodou maximální věrohodnosti a (ii) metodou momentů. Při odhadu metodou maximální věrohodnosti maximalizujeme sdruženou pravděpodobnost pozorovaných hodnot, při metodě momentů předpokládáme rovnost populačních a výběrových momentů (tzn. momenty námi pozorovaného výběru). Detaily těchto metod lze nalézt v [4]. V tomto příspěvku bude využito metody maximální věrohodnosti. 4. Charakteristika metodologie Value at Risk Value at Risk () je metoda hodnocení rizika, která se dnes používá hlavně v oblasti finančních institucí. v podstatě vyjadřuje maximální možnou ztrátu na určité hladině spolehlivosti α. Formálně lze tedy definovat následovně: Pr ( Π t+ t α, t ) = α, (5) kde Π vyjadřuje náhodnou veličinu zde konkrétně změnu ceny portfolia za čas t, α, t maximální ztrátu na dané hladině spolehlivosti α pro časový horizont t a Pr značí pravděpodobnost. Nejčastěji používané hladiny spolehlivosti (zakotvené v legislativou daných R, υ

4 metodologiích) jsou 15 %, 1 %, 0,5 % a 0,03 %. Rovněž časový horizont, pro který je hodnota počítána může být pro jednotlivé instituce různý pro banky dle metodologie Basel II je to 10 dní, pro pojišťovny dle metodologie Solvency II pak jeden rok. Obecně je však hodnota počítána spíše pro kratší časové intervaly. 5. Modelování vývoje indexu Nikkei 5 v české měně V aplikační části bude proveden odhad parametrů kopula funkcí pro index Nikkei 5 a měnový kurz JP/CZK pomocí metody IFM. Jako marginální distribuční rozdělení bude uvažováno normální inversní Gaussovo rozdělení. Pomocí takto odhadnutých modelů bude modelováno pravděpodobností rozdělení výnosů indexu v české měně. Pro odhad modelů byly použity denní výnosy za období až Základní charakteristiky časových řad použitých pro odhad parametrů a následné ověření kvality modelování jsou shrnuty v tabulce č. 1. Časová Směrodatná 0,03 Špičatost Šikmost řada odchylka 15 % 1 % 0,5 % % N5 (v 0,016 13,77-0,40 1,34 % 5,0 % 6,6 % 1,1 % JP) JP/CZK 0,010 13,83-0,313 0,7 %,7 % 3,1 % 10, % N5 (v 0,015 7,5807-0,485 1,3 % 3,38 % 3,87 % 8,33 % CZK) Tab.č.1: Charakteristiky použitých časových řad Pro všechny časové řady je střední hodnota blízká nule, a proto není v tabulce zachycena. Srovnáním směrodatné odchylky zjistíme, že více volatilním a tedy i více rizikovým faktorem je vývoj indexu Nikkei 5, jehož směrodatná odchylka je 0,016 % zatímco směrodatná odchylka měnového kurzu je pouze 0,010 %. Směrodatná odchylka výnosů indexu Nikkei 5 v českých korunách (0,015 %) je nižší než v japonských jenech (0,016), což je způsobeno zápornou korelací uvažovaných rizikových faktorů. Vysoká hodnota špičatosti a nenulová šikmost indikuje u obou rizikových faktorů vhodnost použití Lévyho modelu, který umožňuje modelovat i tyto vyšší momenty. Ze vstupních časových řad byly odhadnuty marginální distribuční funkce, které byly modelovány normálním inversním Gaussovým modelem. Tento model byl zvolen s ohledem na vyšší špičatost a nenulovou šikmost vstupních dat, a tedy nemožnost použití normálního rozdělení. Využitím marginálních distribučních funkcí byly dle (5) normalizovány pozorované hodnoty výnosů a tím byla získána struktura závislosti, která bude modelována pomocí kopula funkcí. Tato struktura je zachycena na obrázku č. 1.

5 Obr.č. 1: Normalizované hodnoty výnosů Z obr. č. 1 je zřejmá záporná korelace mezi oběma rizikovými faktory, neboť nejvíce pozorování leží poblíž úsečky [0;1] [1;0]. Rovněž lze vidět, že pouze velmi málo pozorování leží v levém dolním a pravém horním rohu. Lze tedy říci, že případy, kdy obě aktiva současně dosahovaly extrémního kladného výnosu (pravý horní roh) respektive záporného (levý dolní roh) jsou ojedinělé. Případy kdy jedno aktivum dosahovalo vysokého kladného a druhé vysokého záporného výnosu (levý horní a pravý dolní roh) jsou však poměrně časté. Z takto normalizovaných hodnot byly metodou maximální věrohodnosti odhadnuty parametry Gaussovy a studentovy kopula funkce. Pro Gaussovu kopula funkci je odhadnut parametr korelace -0,313 a pro studentovu kopula funkci parametr korelace -0,619 a stupně volnosti 3,8551. Funkce hustoty obou odhadnutých kopula funkcí zachycuje obrázek č.. Při porovnání obou grafů s pozorovanými hodnotami na obr. č. 1 lze vidět, že studentova kopula funkce hůře modeluje již zmiňovaný levý dolní a pravý horní roh, které jsou lépe modelovány Gaussovou kopula funkcí. Obr.č. : Funkce hustoty pravděpodobnosti Gaussovy (vlevo) a studentovy (vpravo) kopula funkce Posledním krokem je následná simulace výnosů dle obou uvažovaných modelů metodou Monte Carlo. Pro obě kopula funkce bylo simulováno scénářů, z nichž byla následně spočtena funkce hustoty rozdělení pravděpodobnosti, která je srovnána graficky na obr. č. 3. Srovnání základních charakteristik pravděpodobnostních rozdělení udává tab. č..

6 Obr.č. 3: Funkce hustoty pravděpodobnosti výnosů indexu Nikkei 5 v CZK Na obr. č. 3 lze vidět, že při nezohlednění vzájemné závislosti jsou konce pravděpodobnostního rozdělení těžší než empirické. Toto je způsobeno nezohledněním záporné korelace mezi jednotlivými faktory, kdy vysoký výnos (respektive ztráta) jednoho aktiva je kompenzován ztrátou (respektive výnosem) druhého aktiva. Pravděpodobnostní rozdělení modelována s pomocí kopula funkcí se již velmi blíží empirickému. Lze pozorovat, že rozdělení modelované studentovou kopula funkcí je špičatější než rozdělení modelované Gaussovou kopula funkcí. Toto je zapříčiněno relativně nízkým počtem stupňů volnosti. Model N5 (v CZK) Bez závislostí Gaussova kopule Studentova kopule Směrodatná odchylka Špičatost Šikmos t 15 % 1 % 0,5 % 0,03 % 0,015 7,580-0,485 1,3 % 4,39 % 5,73 % 10,4 % 0,019 7,143-0,34 1,57 % 5,31 % 6,43 % 11,51 % 0,016 8,43-0,343 1,34 % 4,61 % 5,71 % 11,00 % 0,016 10,411-0,14 1,30 % 4,79 % 6,01 % 11,14 % Tab.č.: Charakteristika výnosů indexu Nikkei 5 dle jednotlivých modelů ve srovnání s empirickými Srovnáním momentů rozdělení pravděpodobnosti a hodnot obou modelů s empirickými lze pozorovat, že Gaussova kopula funkce se empirickému rozdělení pravděpodobnosti blíží více. Studentova kopula funkce se liší hlavně ve špičatosti a šikmosti, ale i hodnoty na sledovaných hladinách pravděpodobnosti jsou více vzdáleny empirickým než u Gaussovy kopula funkce. Ale i přes to modeluje studentova kopula funkce vývoj indexu lépe, než pokud bychom závislosti nezohlednili. 6. Závěr V příspěvku byla diskutována a aplikována problematika kvantifikace rizika vycházejícího ze dvou vzájemně závislých rizikových faktorů. Teoreticky byly vysvětleny problematika modelování pomocí kopula funkcí, normální inversní Gaussův model použitý pro modelování marginálních distribučních funkcí a kvantifikace rizika pomocí metodologie. Tyto teoreticko-metodologické poznatky byly poté aplikovány při simulaci výnosů indexu Nikkei 5 v české měně.

7 Z výsledků prezentovaných v příspěvku vyplynuly následující závěry. Při nezohlednění závislostí je riziko v podobě hodnoty nadhodnoceno oproti empirickému rozdělení pravděpodobnosti. Toto je způsobeno negativní korelací rizikových faktorů. Srovnáním výsledků obou kopula funkcí se jako vhodnější jeví použití Gaussovy kopula funkce. Tato oproti studentově kopula funkci lépe modeluje jak šikmost a špičatost tak i riziko v podobě hodnoty na sledovaných hladinách pravděpodobnosti. Literatura [1] Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge, 004. [] Barndorff-Nielsen, O. E. Normal inverse Gaussian distributions and the modeling of stock returns. Aarhus University, [3] Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge, [4] Green, H. W.: Econometric analysis. 6. Prentice Hall, Upper Saddle River, 008. [5] Cherubini, G.; Luciano, E.; Vecchiato, W.: Copula Methods in Finance. Wiley, 004. [6] Nelsen, R. B.: An Introduction to Copulas. Springer, 006. [7] Rank, J.: Copulas: From Theory to Application in Finance. Risk Books, 006. [8] Shoutents, W.: Lévy processes in Finance. Wiley, Chichester, 003. [9] Sklar, A.: Fonctions de repartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), Summary Modelling of foreign asset returns for a Czech investor This paper is focused on the modelling of returns which are dependent on the two risk factors, to be specific there are returns of the index Nikkei 5 denominated in the Czech currency modelled in the paper. Marginal distributions are modelled by normal inverse Gaussian model; the dependency between both risk factors is modelled by elliptic copula functions the Gaussian and the student copula function. In the paper, the comparison of a suitability of these two copula functions is made. The criteria of comparison are basic descriptive characteristics and Value at Risk at the commonly used probability levels. From the results it is apparent that in this particular case the Gaussian copula function is more suitable for dependency modelling.

POROVNÁNÍ PŘESNOSTI MODELOVÁNÍ VÝNOSŮ PORTFOLIA PRO RŮZNÁ OBDOBÍ NA TRHU

POROVNÁNÍ PŘESNOSTI MODELOVÁNÍ VÝNOSŮ PORTFOLIA PRO RŮZNÁ OBDOBÍ NA TRHU POROVNÁNÍ PŘESNOSTI MODELOVÁNÍ VÝNOSŮ PORTFOLIA PRO RŮZNÁ OBDOBÍ NA TRHU Aleš Kresta Klíčová slova: modelování výnosů, kopula funkce, NIG model, VaR Key words: returns modelling, copula functions, NIG

Více

Kvantifikace akciového a měnového rizika pomocí metodologie Value at Risk

Kvantifikace akciového a měnového rizika pomocí metodologie Value at Risk Kvantifikace akciového a měnového rizika pomocí metodologie Value at Risk Petr Gurný 1 Abstrakt V příspěvku je diskutována problematika kvantifikace rizika v portfoliu akciového fondu. Pomocí metodologie

Více

Value at Risk. Karolína Maňáková

Value at Risk. Karolína Maňáková Value at Risk Karolína Maňáková Value at risk Historická metoda Model-Building přístup Lineární model variance a kovariance Metoda Monte Carlo Stress testing a Back testing Potenciální ztráta s danou pravděpodobností

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

POSOUZENÍ ODHADU MĚNOVÉHO RIZIKA PORTFOLIA POMOCÍ LÉVYHO MODELŮ

POSOUZENÍ ODHADU MĚNOVÉHO RIZIKA PORTFOLIA POMOCÍ LÉVYHO MODELŮ POSOUZENÍ ODHADU MĚNOVÉHO RIZIKA PORTFOLIA POMOCÍ LÉVYHO MODELŮ Tomáš Tichý, Ekonomická fakulta VŠB-TU Ostrava* 1. Úvod Modelování pravděpodobnostního rozdělení výnosů portfolií finančních instrumentů

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

VLIV STATISTICKÉ ZÁVISLOSTI NÁHODNÝCH VELIČIN NA SPOLEHLIVOST KONSTRUKCE

VLIV STATISTICKÉ ZÁVISLOSTI NÁHODNÝCH VELIČIN NA SPOLEHLIVOST KONSTRUKCE IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 25 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-055-7 VLIV STATISTICKÉ ZÁVISLOSTI NÁHODNÝCH VELIČIN NA SPOLEHLIVOST

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

8 Coxův model proporcionálních rizik I

8 Coxův model proporcionálních rizik I 8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná

Více

Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo

Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo Kateřina Zelinková 1 Abstract The financial institution, namely securities firms, banks

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

Význam stress testingu v oblasti risk managemementu

Význam stress testingu v oblasti risk managemementu Význam stress testingu v oblasti risk managemementu Daniel Heinrich 1 Abstrakt V příspěvku je popsána podstata a význam stressového testování v oblasti risk managementu finančních institucí, postup a techniky

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména

Více

2 Hlavní charakteristiky v analýze přežití

2 Hlavní charakteristiky v analýze přežití 2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student

Více

Uni- and multi-dimensional parametric tests for comparison of sample results

Uni- and multi-dimensional parametric tests for comparison of sample results Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita

Více

PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)

PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

VaR analýza citlivosti, korekce

VaR analýza citlivosti, korekce VŠB-TU Ostrava, Ekonomická fakulta, katedra financí.-. září 008 VaR analýza citlivosti, korekce František Vávra, Pavel Nový Abstrakt Práce se zabývá rozbory citlivosti některých postupů, zahrnutých pod

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

EKONOMICKÁ FAKULTA KATEDRA FINANCÍ. Zpětné testování modelů odhadu měnového rizika na bázi VaR. Backtesting of FX Rate Risk Models on VaR Basis

EKONOMICKÁ FAKULTA KATEDRA FINANCÍ. Zpětné testování modelů odhadu měnového rizika na bázi VaR. Backtesting of FX Rate Risk Models on VaR Basis VYSOKÁ ŠKOLA BÁŇSKÁ-TECHNICKÁ UNIVERZITA OSTRAVA EKONOMICKÁ FAKULTA KATEDRA FINANCÍ Zpětné testování modelů odhadu měnového rizika na bázi VaR Backtesting of FX Rate Risk Models on VaR Basis Student: Vedoucí

Více

Změna hodnoty pozice v důsledku změn tržních cen.

Změna hodnoty pozice v důsledku změn tržních cen. Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS

Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 3 Posudek únosnosti ohýbaného prutu Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Katedra stavební

Více

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k? A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Změna hodnoty pozice v důsledku změn tržních cen.

Změna hodnoty pozice v důsledku změn tržních cen. Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Teorie náhodných matic aneb tak trochu jiná statistika

Teorie náhodných matic aneb tak trochu jiná statistika Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava

Více

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

STATISTICKÉ ODHADY Odhady populačních charakteristik

STATISTICKÉ ODHADY Odhady populačních charakteristik STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Pravděpodobnost a statistika I KMA/K413

Pravděpodobnost a statistika I KMA/K413 Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

IDENTIFIKACE BIMODALITY V DATECH

IDENTIFIKACE BIMODALITY V DATECH IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

EXTRÉMY V TEPLOTNÍCH ŘADÁCH

EXTRÉMY V TEPLOTNÍCH ŘADÁCH ROBUST 24 c JČMF 24 EXTRÉMY V TEPLOTNÍCH ŘADÁCH Monika Rencová Klíčová slova: Teorie extrémů, teplotní řady, tříparametrické Weibullovo rozdělení. Abstrakt: Ze statistického hlediska je užitečné studovat

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

Vícerozměrná rozdělení

Vícerozměrná rozdělení Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.

Více

Testy statistických hypotéz

Testy statistických hypotéz Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem

Více

Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát

Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát Jiří Havlický 1 Abstrakt Článek je zaměřen na stanovení a zhodnocení citlivosti výše očekávané a neočekávané ztráty plynoucí z podstupovaného

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

8. Normální rozdělení

8. Normální rozdělení 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Metodologie pro ISK II

Metodologie pro ISK II Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.

6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový. 6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého

Více

Dvouvýběrové a párové testy. Komentované řešení pomocí MS Excel

Dvouvýběrové a párové testy. Komentované řešení pomocí MS Excel Dvouvýběrové a párové testy Komentované řešení pomocí MS Excel Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci glukózy v

Více

Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS

Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia obor Konstrukce staveb Cvičení 9 Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET Software FREET Simulace metodou LHS

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Ondřej Pavlačka Praha, 18. ledna 2011 Cíle projektu Vytvořit matematický model pro oceňování přijímaného

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady

PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality STATISTICKÁ REGULACE POMOCÍ VÝBĚROVÝCH PRŮMĚRŮ Z NENORMÁLNĚ ROZDĚLENÝCH DAT Ing. Jan Král, RNDr. Jiří Michálek, CSc., Ing. Josef Křepela Duben, 20 Co je

Více

Metoda backward výběru proměnných v lineární regresi a její vlastnosti

Metoda backward výběru proměnných v lineární regresi a její vlastnosti Metoda backward výběru proměnných v lineární regresi a její vlastnosti Aktuárský seminář, 13. dubna 2018 Milan Bašta 1 / 30 1 Metody výběru proměnných do modelu 2 Monte Carlo simulace, backward metoda

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Kvantily a písmenové hodnoty E E E E-02

Kvantily a písmenové hodnoty E E E E-02 Na úloze ukážeme postup průzkumové analýzy dat. Při výrobě calciferolu se provádí kontrola meziproduktu 3,5 DNB esteru calciferolu metodou HPLC. Sleduje se také obsah přítomného ergosterinu jako nečistoty,

Více

Komparace volatility akciových trhů v Evropské unii

Komparace volatility akciových trhů v Evropské unii VŠB-TU Ostrava, Ekonomická fakulta, katedra Financí 9. 1. září 29 Komparace volatility akciových trhů v Evropské unii Lumír Kulhánek 1 Abstrakt V příspěvku je analyzována historická volatilita měsíčních

Více

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1 Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Stručný úvod do testování statistických hypotéz

Stručný úvod do testování statistických hypotéz Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více