Změna hodnoty pozice v důsledku změn tržních cen.

Rozměr: px
Začít zobrazení ze stránky:

Download "Změna hodnoty pozice v důsledku změn tržních cen."

Transkript

1 Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných příjmů a výdajů s danou citlivostí) Otevřená pozice... neseme tržní riziko Dlouhá (příjmy > výdaje) Krátká (výdaje > příjmy) Uzavřená pozice (příjmy = výdaje)... riziko zajištěné Zajišťování = uzavírání pozic/ spekulace = otevírání p. Přirozené umělé zajišťování

2 Příklad - měnové riziko BÚ Pohledávky Zásoby 5 CZK 30 CZK 60 CZK 40 CZK 1 EUR 50 CZK 2 EUR Prov. úvěr Závazky Invest. úvěr Fix. aktiva 125 CZK 140 CZK Kapitál FX EUR 3M 0,5 EUR 15 CZK FX EUR 3M 285 CZK 240 CZK 225 CZK 1,5 EUR 2 EUR 285 CZK x = 30,00 Krátká pozice 0,5 mil. = 15 mil. Kč.

3 Příklad - měnové riziko (2) BÚ Pohledávky Zásoby Fix. aktiva 5 CZK 30 CZK 60 CZK 40 CZK 1 EUR 50 CZK 2 EUR 138,5 CZK 125 CZK 140 CZK Prov. úvěr Závazky Invest. úvěr Kapitál FX EUR 3M 0,5 EUR 15 CZK FX EUR 3M 289,5 CZK 240 CZK 225 CZK 1,5 EUR 2 EUR 291 CZK x = 33,00 Krátká pozice způsobila při růstu kursu pokles hodnoty podniku.

4 Citlivostní analýza nelineárních rizik Zkoumáme faktorovou citlivost = V / x (V je velikost pozice, x hodnota rizikového faktoru) Riziko je zajištěno, pokud = 0 (pozice je uzavřená). U lineárních rizik (měnové, akciové, komoditní) je tato citlivost konstantní a odpovídá velikosti pozice. U nelineárních rizik (úrokové riziko, opční rizika) je analýza složitější, protože se mění s x. Citlivostní analýza slouží ke kvalitativnímu posuzování tržních rizik a jeho zajišťování. Úlohu lze řešit analyticky (většinou) nebo numericky (vždy).

5 Příklad - úroková citlivost Dlouhá pozice v SD 4,20%/2036 při tržní úrokové sazbě i = 4%. Simulujte procentní změnu hodnoty této pozice V / V při růstu/poklesu tržní úrokové sazby o různé násobky 0,5 p.b. (tzn. na 2%, 2,5%, 3,5%, 10% atd.) Znázorněte graficky funkci V / V = ƒ( i). Funkce je nelineární a konvexní.

6 Durace (srov. Vlachý s ) K odhadu úrokového rizika se jako míra citlivosti používá durace. Durace vyjadřuje změnu hodnoty pozice jako závislost na velmi malé změně úrokové sazby. Názorně ji lze chápat jako směrnici tečny k funkci citlivosti v počátečním bodě. 20% 0% -20% ΔV/V Δi -5% 0% 5% 10% 15% 20% -40% -60%

7 Příklad 2 (modifikovaná durace) Duraci úrokové pozice lze zjistit analyticky (Macaulayho durace) nebo numericky (modifikovaná durace). Odhadněte modifikovanou duraci D mod dlouhé pozice v SD 4,20%/2036 při tržní úrokové sazbě i = 4%, pokud víte, že je definována vztahem V / i = - D mod V.

8 Dynamické zajišťování Durace se používá při tzv. dynamickém zajišťování (imunizaci) úrokového rizika (viz Vlachý s. 99). Imunizované portfolio se tvoří tak, aby byla shodná durace aktiv a pasiv. Analogicky se postupuje při zajišťování opčních pozic (tzv. delta hedging).

9 Kvantifikace rizika Mírou tržního rizika je volatilita. Volatilita je směrodatná odchylka výnosů (tzn. oboustranná míra variability). Volatilitu lze odhadnout Z historických dat (u jednotlivých tříd aktiv se volatilita dlouhodobě zpravidla příliš nemění) Implicitně (výpočtem z tržních hodnot opcí) Kvalifikovaným odhadem Volatilita se využívá K analytickému oceňování opcí (např. pomocí Blackova- Scholesova modelu) K analytickému odhadu Value at Risk

10 Historický odhad volatility 1. Pořídit vhodnou časovou řadu tržních cen. 2. Spočítat výnosy za jednotlivá období (nejlépe logaritmické výnosy podle vztahu r = ln(p 1 /p 0 ). 3. Volatilita (vztažená k výnosovému období) je rovna směrodatné odchylce těchto výnosů. 4. Volatilita se zpravidla uvádí jako roční (případně denní); převod na jiné období se provádí podle tzv. pravidla druhé odmocniny času Y / M = t Y /t M.

11 Riziko investičního portfolia Volatilita (riziko) investičního portfolia je (někdy výrazně) nižší než průměr volatilit jeho složek, přičemž očekávaný výnos je roven váženému průměru výnosů. Tento jev matematicky popisuje Moderní (Markowitzova) portfoliová teorie (MPT) a jde o příklad efektu diverzifikace. Míra diverzifikace závisí na korelaci mezi jednotlivými složkami (nízký korelační koeficient 1 znamená velký efekt diverzifikace a naopak).

12 Value at Risk (VAR) O jakou hodnotu mohu maximálně přijít za určitou dobu v důsledku daného rizika? Vzhledem k tomu, že jde o statistický odhad, mohu to určit pouze s určitou mírou spolehlivosti, za použití příslušného kvantilu. VAR lze odhadnout Analyticky Historickou simulací Statistickou simulací Úlohy, které lze řešit pomocí VAR: Kolik (ekonomického) kapitálu kryje dané riziko? Jaká je tržní hodnota daného rizika? Jaký limit je třeba stanovit pro obchodování?

13 Kvantily normálního rozdělení Vycházejí z distribuční funkce normovaného norm. rozdělení (tabelováno, nebo funkce Excelu =normsdist()) u 50% = 0 (medián) u 90% = 1,28 (9. decil) u 95% = 1,65 (95. percentil) u 99% = 2,33 (99. percentil) x > x min = x < x max = u + u P(x) 99% x

14 Příklady - historická simulace VAR Jaká je maximální ztráta, kterou realizuje investor do portfolia, složeného z 1000 ks SD4,20%/2036, při době držení 10 dní a statistické spolehlivosti odhadu 95%? Jaká je maximální ztráta, kterou realizuje investor do portfolia, složeného napůl z akciového indexu S&P 500 a zlata, při době držení 1 měsíc a statistické spolehlivosti odhadu 95%?

15 Příklad - statistická simulace VAR Jaká je maximální ztráta, kterou realizuje v desetidenním horizontu kupec 1000 ks SD4,20%/2036, je-li aktuální tržní úroková sazba 4%? Předpokládáme chování úrokových sazeb podle stochastického procesu i t = i 0 + t (tzv. geometrický Brownův pohyb, je náhodná veličina s normovaným normálním rozdělením). Odhadujeme denní volatilitu úrokových sazeb = 0,08%. Požadujeme statistickou spolehlivost odhadu 95%. Simulaci lze provést jako semiparametrickou (při každém pokusu se přepočítává hodnota dluhopisu v závislosti na vygenerované úrokové sazbě) nebo jako plně parametrickou (s využitím známé modifikované durace dluhopisu).

16 Dodatek - korelovaná náhodná čísla Předpokl. normální rozdělení veličin x, y Korelační koeficient xy <-1; 1> Očekávané hodnoty x, y, směrodatné odchylky x, y Generujeme dvojice nezávislých normovaných normálních náhodných čísel z 1, z 2 = normsinv(rand()) Z nich vždy vytvoříme třetí proměnnou z 3 = xy z 1 + (1- xy 2 ) z 2 Spočítáme dvojice korelovaných náhodných čísel x = x + z 1 x y = y + z 3 3 Tento postup vychází z tzv. Choleského faktorizace

Změna hodnoty pozice v důsledku změn tržních cen.

Změna hodnoty pozice v důsledku změn tržních cen. Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

Význam ekonomického modelování

Význam ekonomického modelování Základy ekonomického modelování Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Hnilica, J., Fotr, J. Aplikovaná analýza rizika Scholleová, H. Hodnota flexibility:

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 2

FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 Metodický list č. 1 Název tématického celku: Dluhopisy a dluhopisové portfolio I. Cíl: Základním cílem tohoto tematického celku je popsat dluhopisy jako investiční instrumenty,

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více

Aplikace při posuzování inv. projektů

Aplikace při posuzování inv. projektů Aplikace při posuzování inv. projektů Pokročilé metody investiční analýzy Výpočet bodu zvratu Citlivostní analýza Analýzy scénářů Statistické simulace Reálné opce Analýza stochastických procesů Příklad

Více

Jan Vlachý vlachy@atlas.cz. Praha, 2006.

Jan Vlachý vlachy@atlas.cz. Praha, 2006. Řízení rizik II Jan Vlachý vlachy@atlas.cz Vlachý, J.: Řízení finančních rizik; Eupress, Praha, 2006. Řízení rizik II Analýza tržních rizik, zajištění nelineárních rizik, kvantifikace rizik. Kapitálové

Více

Finanční rizika. podniku, způsoben rizikového faktoru. že e protistrana. hodnoty podniku, způsoben. ností ŘÍZENÍ RIZIK I

Finanční rizika. podniku, způsoben rizikového faktoru. že e protistrana. hodnoty podniku, způsoben. ností ŘÍZENÍ RIZIK I Finanční rizika Tržní riziko je pravděpodobnost podobnost změny hodnoty podniku, způsoben sobené změnou tržní hodnoty rizikového faktoru. Kreditní riziko je pravděpodobnost podobnost změny hodnoty podniku,

Více

Význam ekonomického modelování

Význam ekonomického modelování Základy ekonomického modelování Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Hnilica, J., Fotr, J. Aplikovaná analýza rizika Scholleová, H. Hodnota flexibility:

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Obligace II obsah přednášky

Obligace II obsah přednášky Obligace II obsah přednášky 1) Durace obligace 2) Durace portfolia 3) Obchodování obligací kurzovní lístky Durace definice Durace udává střední dobu splatnosti obligace (tento pojem zavedl v roce 1938

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Finanční deriváty ŘÍZENÍ RIZIK I

Finanční deriváty ŘÍZENÍ RIZIK I Finanční deriváty Smlouvy, jimiž se neobchoduje s podkladovými aktivy, ale právy na ně (=> obchody s rizikem ). Hodnota vzniká zprostředkovaně přes hodnotu podkladového aktiva nebo ukazatele. Existence

Více

Fakta a mýty o investování i riziku. Monika Laušmanová Radek Urban

Fakta a mýty o investování i riziku. Monika Laušmanová Radek Urban Fakta a mýty o investování i riziku Monika Laušmanová Radek Urban 1 Mýtus: Mezi investováním a utrácením není skoro žádný rozdíl Utrácení - koupě kabelky 35 000 30 000 Cena kabelky 25 000 20 000 15 000

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

KMA/MAB. Kamila Matoušková (A07142) Plzeň, 2009 EFEKTIVNÍ PORFÓLIO V MARKOWITZOVĚ SMYSLU

KMA/MAB. Kamila Matoušková (A07142) Plzeň, 2009 EFEKTIVNÍ PORFÓLIO V MARKOWITZOVĚ SMYSLU EFEKTIVNÍ PORFÓLIO V MARKOWITZOVĚ SMYSLU KMA/MAB Kamila Matoušková (A07142) Plzeň, 2009 Obsahem práce je vytvoření efektivního portfolia v Markowitzově smyslu.z akcií obchodovaných na SPADu. Dále je uvažována

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Kreditní riziko. hodnoty podniku, způsoben. že e protistrana

Kreditní riziko. hodnoty podniku, způsoben. že e protistrana Kreditní riziko Kreditní riziko je pravděpodobnost podobnost změny hodnoty podniku, způsoben sobené tím, že e protistrana nesplní svůj j závazek. z Míra tržního rizika = pravděpodobnost neplnění (= 1-bonita)...

Více

Základy teorie finančních investic

Základy teorie finančních investic Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základy teorie finančních investic strana 2 Úvod do teorie investic Pojem investice Rozdělení investic a)

Více

DERIVÁTOVÝ TRH. Druhy derivátů

DERIVÁTOVÝ TRH. Druhy derivátů DERIVÁTOVÝ TRH Definice derivátu - nejobecněji jsou deriváty nástrojem řízení rizik (zejména tržních a úvěrových), deriváty tedy nejsou investičními nástroji - definice dle US GAAP: derivát je finančním

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

KRRB M E T O D Y A T E C H N I K Y

KRRB M E T O D Y A T E C H N I K Y KRRB 2. P Ř E D N Á Š K A M E T O D Y A T E C H N I K Y Základní změna přístupu k řízení bankovních rizik Tradiční přístup: řízení rizik se soustřeďovalo na řízení aktiv a pasiv v bankovní bilanci (= banking

Více

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2 Dobrý den. Kladno, 22. 3. 2007 21:35 Chtěl bych se všem omluvit za ten závěr přednášky. Bohužel mě chyba v jednom z příkladů vykolejila natolik, že jsem se již velice těžko soustředil na svůj výkon. Chtěl

Více

Konverzní faktory, koeficienty a metody používané při výpočtu kapitálových požadavků k úvěrovému riziku obchodního portfolia a k tržnímu riziku

Konverzní faktory, koeficienty a metody používané při výpočtu kapitálových požadavků k úvěrovému riziku obchodního portfolia a k tržnímu riziku Příloha č. 20 Konverzní faktory, koeficienty a metody používané při výpočtu kapitálových požadavků k úvěrovému riziku obchodního portfolia a k tržnímu riziku A. Vypořádací riziko Konverzní faktory pro

Více

Tématické okruhy. 4. Investiční nástroje investiční nástroje, cenné papíry, druhy a vlastnosti

Tématické okruhy. 4. Investiční nástroje investiční nástroje, cenné papíry, druhy a vlastnosti Seznam tématických okruhů a skupin tématických okruhů ( 4 odst. 2 vyhlášky o druzích odborných obchodních činností obchodníka s cennými papíry vykonávaných prostřednictvím makléře, o druzích odborné specializace

Více

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni. Finanční trhy Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.cz Tento studijní materiál byl vytvořen jako výstup

Více

transakční devizové riziko

transakční devizové riziko Mezinárodní finance 6. Devizová expozice a devizové riziko transakční, ekonomická a účetní devizová expozice a riziko Devizová expozice definice Devizová expozice měří citlivost změn hodnot aktiv, pasiv

Více

INFORMACE O RIZICÍCH

INFORMACE O RIZICÍCH INFORMACE O RIZICÍCH PPF banka a.s. se sídlem Praha 6, Evropská 2690/17, PSČ: 160 41, IČ: 47116129, zapsaná v obchodním rejstříku vedeném Městským soudem v Praze, oddíl B, vložka 1834 (dále jen Obchodník)

Více

Vysvětlivky k měsíčním reportům fondů RCM

Vysvětlivky k měsíčním reportům fondů RCM Vysvětlivky k měsíčním reportům fondů RCM Rozhodný den Pokud není u jednotlivých údajů uvedeno žádné konkrétní datum, platí údaje k tomuto rozhodnému dni. Kategorie investic Třída aktiv a její stručný

Více

I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní

I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní Náklady na kapitál I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní fond - statutární a ostatní fondy 4)

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo

Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo Kateřina Zelinková 1 Abstract The financial institution, namely securities firms, banks

Více

Metodika klasifikace fondů závazná pro členy AKAT

Metodika klasifikace fondů závazná pro členy AKAT Metodika klasifikace fondů závazná pro členy AKAT Metodika klasifikace fondů AKAT byla vypracována na základě rámcové metodologie ( The European Fund Classification ), kterou vydala Evropská federace fondů

Více

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý FINANČNÍ MODELY Koncepty, metody, aplikace Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý Recenzenti: Jan Frait, ČNB Jaroslav Ramík, SU v Opavě Autorský kolektiv: Zdeněk Zmeškal vedoucí autorského kolektivu,

Více

OPRAVENKA MANAŽERSKÉ FINANCE (1.vydání 2009)

OPRAVENKA MANAŽERSKÉ FINANCE (1.vydání 2009) str. 24 odkaz před kapitolou 3.4 => kapitole 15 Dividendová politika str. 58, příklad 5.1 správné zadání zní: Akciová společnost Belladona a. s. se základním kapitálem ve výši 35 mil. Kč, který je rozdělen

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

Finanční trhy. Finanční aktiva

Finanční trhy. Finanční aktiva Finanční trhy Finanční aktiva Magický trojúhelník investování (I) Riziko Výnos Likvidita Magický trojúhelník investování (II) Tři prvky magického trojúhelníku (výnos, riziko a likvidita) vytváří určitý

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Úvod. Kapitálové statky výrobek není určen ke spotřebě, ale k další výrobě (postupná spotřeba) amortizace Finanční kapitál cenné papíry

Úvod. Kapitálové statky výrobek není určen ke spotřebě, ale k další výrobě (postupná spotřeba) amortizace Finanční kapitál cenné papíry TRH KAPITÁLU Úvod Kapitálové statky výrobek není určen ke spotřebě, ale k další výrobě (postupná spotřeba) amortizace Finanční kapitál cenné papíry Vznik díky odložené spotřebě Nutná kompenzace možnost

Více

PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ

PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ INSTITUT SVAZU ÚČETNÍCH KOMORA CERTIFIKOVANÝCH ÚČETNÍCH CERTIFIKACE A VZDĚLÁVÁNÍ ÚČETNÍCH V ČR ZKOUŠKA ČÍSLO 11 FINANČNÍ ŘÍZENÍ PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ ÚVODNÍ INFORMACE Struktura zkouškového zadání: 1

Více

Poptávka po penězích

Poptávka po penězích Poptávka po penězích 1. Neoklasické teorie poptávky po penězích - tradiční: Fisherova, Marshallova, cambridgeská - moderní: Friedmanova 2. Keynesiánská teorie poptávky po penězích tradiční: Keynesova moderní:

Více

Finanční řízení podniku

Finanční řízení podniku Finanční řízení podniku Finanční řízení Základním úkolem je zajištění kapitálu a koordinace peněžních toků podnikání s cílem dosáhnout co nejlepšího zhodnocení kapitálu při zachování platební schopnosti

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Cíl: seznámení s pojetím peněz v ekonomické teorii a s fungováním trhu peněz. Peníze jako prostředek směny, zúčtovací jednotka a uchovatel hodnoty.

Cíl: seznámení s pojetím peněz v ekonomické teorii a s fungováním trhu peněz. Peníze jako prostředek směny, zúčtovací jednotka a uchovatel hodnoty. Vysoká škola finanční a správní, o. p. s. Akademický rok 2006/07, letní semestr Kombinované studium Předmět: Makroekonomie (Bc.) Metodický list č. 3 7) Peníze a trh peněz. 8) Otevřená ekonomika 7) Peníze

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Manažerská ekonomika KM IT

Manažerská ekonomika KM IT KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout

Více

TEORETICKÉ PŘEDPOKLADY Garantovaných produktů

TEORETICKÉ PŘEDPOKLADY Garantovaných produktů TEORETICKÉ PŘEDPOKLADY Garantovaných produktů 1 Výnosově -rizikový profil Knockoutprodukty Warrants Výnosová-šance Garantované produkty Dluhopisy Diskontové produkty Airbag Bonus Indexové produkty Akciové

Více

Charakteristika rizika

Charakteristika rizika Charakteristika rizika Riziko je možnost, že se dosažené výsledky podnikání budou příznivě či nepříznivě odchylovat od předpokládaných výsledků. Odchylky od předpokladu jsou: a) příznivé b) nepříznivé

Více

CENNÉ PA CENNÉ PÍRY PÍR

CENNÉ PA CENNÉ PÍRY PÍR CENNÉ PAPÍRY ve finančních institucích dr. Malíková 1 Operace s cennými papíry Banky v operacích s cennými papíry (CP) vystupují jako: 1. Investor do CP 2. Emitent CP 3. Obchodník s CP Klasifikace a operace

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Měření kreditního rizika model CreditMetrics

Měření kreditního rizika model CreditMetrics Měření kreditního rizika model CreditMetrics Marcela Gronychová 21/11/2008 1 Obsah přednášky Přístupy k měření kreditního rizika Model CreditMetrics Koncept modelu Kreditní VaR pro 1 instrument Portfoliový

Více

PE 301 Podniková ekonomika 2. Eva Kislingerová. Hodnota kmenových akcií a. obligací. Téma 2. Eva Kislingerová

PE 301 Podniková ekonomika 2. Eva Kislingerová. Hodnota kmenových akcií a. obligací. Téma 2. Eva Kislingerová PE 301 Podniková ekonomika 2 Eva Kislingerová Téma 2 obligací Hodnota kmenových akcií a Téma 2 2-2 Struktura přednášky Cenné papíry akcie, obligace Tržní míra kapitalizace (market capitalization rate)

Více

Ing. Ondřej Audolenský

Ing. Ondřej Audolenský České vysoké učení technické v Praze Fakulta elektrotechnická Katedra ekonomiky, manažerství a humanitních věd Ing. Ondřej Audolenský Vedoucí: Prof. Ing. Oldřich Starý, CSc. Rizika podnikání malých a středních

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

Ministerstvo financí České republiky

Ministerstvo financí České republiky Ministerstvo financí České republiky ODBOR ŘÍZENÍ STÁTNÍHO DLUHU A FINANČNÍHO MAJETKU Čtvrtletní informace o řízení dluhového portfolia PROSINEC 2008 Ministerstvo financí předkládá šestnáctou Čtvrtletní

Více

IAS 39: Účtování a oceňování

IAS 39: Účtování a oceňování IAS 39: Účtování a oceňování Josef Jílek člen Standards Advice Review Group březen 2007 Program Definice Zajišťovací účetnictví Vložené deriváty Deriváty na vlastní kapitálové nástroje Odúčtování aktiv

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Seznam studijní literatury

Seznam studijní literatury Seznam studijní literatury Zákon o účetnictví, Vyhlášky 500 a 501/2002 České účetní standardy (o CP) Kovanicová, D.: Finanční účetnictví, Světový koncept, Polygon, Praha 2002 nebo později Standard č. 28,

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

Československá obchodní banka, a. s. IČ: V Praze dne

Československá obchodní banka, a. s. IČ: V Praze dne Československá obchodní banka, a. s. IČ: 00001350 V Praze dne 31.1.2007 Údaje ve finančních výkazech jsou nekonsolidované. Údaje jsou uvedené podle Mezinárodních standardů finančního výkaznictví (EU IFRS)

Více

Hodnocení pomocí metody EVA - základ

Hodnocení pomocí metody EVA - základ Hodnocení pomocí metody EVA - základ 13. Metoda EVA Základní koncept, vysvětlení pojmů, zkratky Řízení hodnoty pomocí EVA Úpravy účetních hodnot pro EVA Náklady kapitálu pro EVA jsou WACC Způsob výpočtu

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Investiční bankovnictví 4

Investiční bankovnictví 4 Metodický list pro soustředění kombinovaného studia předmětu Investiční bankovnictví 4 Metodický list číslo 1 Název tématického celku: Investiční bankovnictví - analýzy Cíl: Cílem tématického celku je

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

TOOLS4F. Test postačitelnosti rezerv v životním pojištění

TOOLS4F. Test postačitelnosti rezerv v životním pojištění Test postačitelnosti rezerv v životním pojištění Martin Janeček Tools4F, s.r.o. Imrich Lozsi in-pact, k.s. Představení Martin Janeček praxe od 1996 (ČSOBP), od 2000 nezávislý konzultant Ph.D. MFF UK 2006

Více

3.1.1. Výpočet vnitřní hodnoty obligace (dluhopisu)

3.1.1. Výpočet vnitřní hodnoty obligace (dluhopisu) Využití poměrových ukazatelů pro fundamentální analýzu cenných papírů Principem této analýzy je stanovení, zda je cenný papír na kapitálovém trhu podhodnocen, správně oceněn, nebo nadhodnocen. Analýza

Více

INVESTOR ZAČÁTEČNÍK OBSAH

INVESTOR ZAČÁTEČNÍK OBSAH INVESTOR ZAČÁTEČNÍK OBSAH Úvod Investor začátečník Život a finance Úspěch a bohatství Krysí závod Aktiva a pasiva Pasivní příjmy Druhy pasivních příjmů Pasivní příjmy a internet Ideální pasivní příjem

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Význam stress testingu v oblasti risk managemementu

Význam stress testingu v oblasti risk managemementu Význam stress testingu v oblasti risk managemementu Daniel Heinrich 1 Abstrakt V příspěvku je popsána podstata a význam stressového testování v oblasti risk managementu finančních institucí, postup a techniky

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

2013 2014 2015 2016 2017 % Tis. % Tis. % Kč. Kč Pohledávky 40 50 Zásoby 60 64 Závazky 40 42

2013 2014 2015 2016 2017 % Tis. % Tis. % Kč. Kč Pohledávky 40 50 Zásoby 60 64 Závazky 40 42 Vývoj tržeb společnosti EASY PEASY byl následující: v roce 2013 400 000, v roce 2014 420 000. Na základě analýzy prostředí a dle stanovených cílů společnost předpokládá růst tržeb v roce 2015 o 5 %, v

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Informace. o finančních nástrojích a rizicích spojených s investováním

Informace. o finančních nástrojích a rizicích spojených s investováním Informace o finančních nástrojích a rizicích spojených s investováním Společnost QuantOn Solutions, o. c. p., a. s. (Dále jen QuantOn Solutions nebo i obchodník) poskytuje klientovi v souladu s 73d odst.

Více

Kup a drž nebo raději kup a pusť?

Kup a drž nebo raději kup a pusť? Kup a drž nebo raději kup a pusť? Je strategie kup a drž nejlepší možná? Nedá se poznat, kdy jsou trhy levné a kdy drahé a podle toho nakupovat? A jak na převažování a podvažování akcií? Kdy platí strategie

Více

PEGAS NONWOVENS SA. Konsolidované neauditované finanční výsledky za první čtvrtletí 2010

PEGAS NONWOVENS SA. Konsolidované neauditované finanční výsledky za první čtvrtletí 2010 PEGAS NONWOVENS SA Konsolidované neauditované finanční výsledky za první čtvrtletí 2010 20. května 2010 PEGAS NONWOVENS SA oznamuje své neauditované konsolidované finanční výsledky za první čtvrtletí roku

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Hlášení o kapitálové přiměřenosti obchodníka s CP

Hlášení o kapitálové přiměřenosti obchodníka s CP ČESKÁ NÁRODNÍ BANKA Výkaz: OCP (ČNB) 40-12 Datový soubor: DOCOS40 Hlášení o kapitálové přiměřenosti obchodníka s CP Část 1: Kapitál, kapitálové požadavky a kapitálová přiměřenost Datová oblast: DIS20_01

Více

Základní druhy finančních investičních instrumentů

Základní druhy finančních investičních instrumentů Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základní druhy finančních investičních instrumentů strana 2 strana 3 Akcie Vymezení a legislativa Majetkový

Více

Údaje k uveřejnění z účetní závěrky

Údaje k uveřejnění z účetní závěrky Údaje k uveřejnění z účetní závěrky Rozvaha AKTIVA 1-14 Aktiva celkem 55 300 710 1. Pokladní hotovost a pohledávky vůči centrálním bankám 9 186 602 2. Finanční aktiva k obchodování 3 319 428 2.1 Deriváty

Více

1.část: Verdikt dějin 17

1.část: Verdikt dějin 17 Úvod 11 Předmluva 13 Nový materiál ve čtvrtém vydání 13 Závěrečné poznámky 14 1.část: Verdikt dějin 17 1. Výnosy akcii a dluhopisů od roku 1802 17 Každý by měl být bohatý" 17 Výnosy finančního trhu od

Více

J&T MONEY CZK otevřený podílový fond. Květen Comsense analytics s.r.o.

J&T MONEY CZK otevřený podílový fond. Květen Comsense analytics s.r.o. J&T MONEY CZK otevřený podílový fond Květen 2017 Základní informace o produktu Kategorie produktu Podílový fond Země registrace Česká republika ISIN CZ0008473808 Obhospodařovatel J&T INVESTIČNÍ SPOLEČNOST,

Více

Domácí úkol (na 10. cvičení) Finanční aktiva (dluhopis) řešení

Domácí úkol (na 10. cvičení) Finanční aktiva (dluhopis) řešení Domácí úkol (na 10. cvičení) Finanční aktiva (dluhopis) řešení 1FU201 Dne 1.9.2006 společnost BETA, a.s. nakoupila 100 ks dluhopisů o celkové nominální hodnotě 25 000. Za jeden dluhopis přitom společnost

Více

Metodický list - Finanční deriváty

Metodický list - Finanční deriváty Metodický list - Finanční deriváty Základní odborná literatura vydaná VŠFS: [0] Záškodný,P., Pavlát,V., Budík,J.: Finanční deriváty a jejich oceňování.všfs,praha 2007 Tato literatura platí v plném rozsahu,

Více

Podnikem se rozumí: soubor hmotných, jakož i osobních a nehmotných složek podnikání. K podniku náleží věci, práva a jiné majetkové hodnoty, které

Podnikem se rozumí: soubor hmotných, jakož i osobních a nehmotných složek podnikání. K podniku náleží věci, práva a jiné majetkové hodnoty, které Oceňování podniku Podnikem se rozumí: soubor hmotných, jakož i osobních a nehmotných složek podnikání. K podniku náleží věci, práva a jiné majetkové hodnoty, které patří podnikateli a slouží k provozování

Více

Oznámení podílníkům. Pioneer P.F. Fonds Commun de Placement. 8. listopadu 2010

Oznámení podílníkům. Pioneer P.F. Fonds Commun de Placement. 8. listopadu 2010 Oznámení podílníkům 8. listopadu 2010 Pioneer P.F. Fonds Commun de Placement Pioneer Funds P.F - Notice_Unitholders_2010_A5_CZ_v01.indd 1 3.11.2010 8:47:17 Pioneer Funds P.F - Notice_Unitholders_2010_A5_CZ_v01.indd

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více