Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času"

Transkript

1 Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek a odeslat signál. Vyhodnocení signálů dává u 1 voáka během 0 hodin tyto výsledky: 1,16 1,6 1,77 1,15 1,19 0,93 0,87 1,6 1,7 1,31 1,11 0,73 1,5 1,37 1,45 1,08 0,98 0,83 1,17 1,54. Předpokládete, že odhady časového intervalu maí normální rozdělení. a) Zistěte, zda voák v daných podmínkách odhadue správně hodinový interval. Test proveďte na hladině významnosti α = 0,05. b) Sestrote oboustranný interval spolehlivosti pro střední hodnotu odhadů s rizikem α = 0,05 a komentute srovnání s výsledkem testu. Řešení: a) n = 0, x Ä 1,184, s Ä 0,48, α = 0,05 Hypotéza a alternativa H: μ = 1 A: μ 1 Testové kritérium x μ0 1184, 1 t = n = 0 Ä 3,317 s 0, 48 Kritický obor W 0,05 : t t 0,975 (19) 3,317,093 tzn., že hodnota testového kritéria patří do kritického oboru, nulovou hypotézu H na hladině významnosti α = 0,05 zamítáme, platí alternativní hypotéza. S 95% spolehlivostí lze tvrdit, že odhad hodinového intervalu není správný. b) Oboustranný interval spolehlivosti pro střední hodnotu s s x t0, 975( 19) < μ < x + t0, 975(19) n n 0,48 0,48 1,184,093 < μ < 1,184 +, ,068 < μ < 1,300 Hodnota 1 nepatří do 95% intervalu spolehlivosti pro střední hodnotu. Na základě toho můžeme říct, že odhad hodinového intervalu není s pravděpodobností 95 % správný. Výsledky získané na základě testu a intervalu spolehlivosti sou stené. (Odpovídaící intervaly spolehlivosti e možné používat při testování hypotéz.) Provedený test a intervalový odhad lze snadno provést v našem excelovském pracovním sešitu STAT1: Otevřeme si list 1V normální (ednovýběrový problém předpoklad normální rozdělení) a v horní části listu vybereme proměnnou s90p čas. Ve žlutých buňkách se zobrazí ednoduchý výstup popisné statistiky hodnoty n, x, s a s (0; 1,184; 0,48 a 1

2 0,06). V této části také vložíme hladinu významnosti α, v našem případě 0,05. V zelených buňkách se budou zobrazovat ednotlivé výsledky statistických analýz viz obr. 1. V části 1 se zobrazí bodové odhady parametrů normálního rozdělení, t. odhad střední hodnoty ˆ μ = x = 1, 184 a odhad rozptylu σˆ = s = 0,06. Navíc se zobrazí i odhad směrodatné odchylky σˆ = s = 0,48 a odhad směrodatné chyby odhadu střední hodnoty estse = s / n = 0,055. Ve. části si můžeme vložit zvolenou velikost přípustné chyby Δ a dostaneme požadovaný minimální rozsah souboru potřebný k tomu, aby velikost přípustné chyby nepřekročila s danou pravděpodobností stanovenou mez. Např. pro zvolenou přípustnou chybu Δ = 0,1 dostaneme minimální rozsah výběru n = 7. Ve 3. části sou uvedené intervalové odhady parametru μ. Zde e právě uvedený i oboustranný interval (1,068; 1,300), který sme v části b) ručního výpočtu také dostali. Konečně 4. část e určená pro testování hypotéz o střední hodnotě. Neprve vložíme hodnotu μ 0 = 1 a dostaneme hodnotu testového kritéria t = 3,317. Dále si mezi nabídnutými alternativami s ohledem na náš řešený problém vybereme alternativu μ μ 0, t. μ 1. V řádku tabulky odpovídaícím této alternativě dostaneme následuící informace: Hodnota testového kritéria padla do kritického oboru (t W 0,05 ); hodnota testového kritéria 3,317 překročila kritickou hodnotu tou e v našem případě Studentův kvantil t 0,975 (19) =,093; p-hodnota = 0,004 e menší než naše hladina významnosti 0,05. To všechno vede k edinému závěru, který e zde uvedený také: hypotéza H se zamítá a alternativa A se přime. Tento závěr se bude interpretovat zcela shodně ako při ručním zpracování: S 95% spolehlivostí není odhad hodinového intervalu správný. Obr. 1: Příklad 90/ odhad času řešený ve STAT1 list 1V-normální

3 Dvouvýběrové testy 97/1 hmotnost sýru Vážením sme získali údae o přesné hmotnosti balíčků sýrů automaticky balených po 50 g, náhodně vybraných před a po seřízení automatu. Údae o hmotnostech [v gramech] před seřízením: 43, 44,8 53,1 47,5 51,0 51,7 54,0 5,5 5,8 50,1 47,3 50,9 53, 5,7 51,8 45,5 po seřízení: 50,4 50, 51,1 48,9 49,9 50, 5,4 50,8 Na 5% hladině významnosti ověřte, zda se seřízením automatu nezměnila nastavená úroveň hmotnosti. Předpokládete normální rozdělení hmotnosti balíčků. Řešení: Před seřízením: n 1 = 16, x Ä 50,131, Po seřízení: n = 8, y Ä 50,488, s1 Ä 11,465, s 1 Ä 3,386, α = 0,05. s Ä 1,04, s Ä 1,01. Neprve provedeme test o shodě rozptylů. H: σ = A: σ 1 σ 1 σ Testové kriterium s1 11, 465 F = = Ä 11,196 s 1, 04 Kritický obor W 0,05 : F F 0,05 (15; 7) F F 0,975 (15; 7) 11,196 0,304 11,196 4,568 Jelikož 11,196 > 4,568, tzn., že hodnota testového kriteria patří do kritického oboru, hypotézu o shodě rozptylů na hladině významnosti 0,05 tedy zamítáme. V dalších výpočtech budeme předpokládat, že rozptyly obou výběrů sou různé. Nyní přistoupíme k testu o shodě středních hodnot. H: μ 1 = μ A: μ 1 μ Testové kriterium x y 50, , 488 t = = Ä 0,388 s 11, 465 1, 04 1 s + + n n 16 8 Kritický obor 1 W 0,05 : t t 0,975 (ν*), kde ν* = [k*] a s1 s ,, + 1 k* n n 16 8 = 1 s s,, n n n n Ä 19,504. 3

4 Protože ν* = [19,504] = 19 (funkce [x] znamená celou část argumentu, např. [3,8] = 3), potom W 0,05 : t t 0,975 (19) 0,388,093 0,388,093 Protože tato nerovnost neplatí, znamená to, že hodnota testového kriteria nepaří do kritického oboru a hypotézu o shodě středních hodnot nemůžeme na hladině významnosti 0,05 zamítnout. Změna úrovně hmotnosti před a po seřízení automatu tedy nebyla prokázána. Také tuto úlohu můžeme pohodlně řešit v našem excelovském pracovním sešitu STAT1: Otevřeme si list V normální (dvouvýběrový problém předpoklad normální rozdělení) a v horní části listu vybereme proměnné s97p1 sýry-před a s97p1 sýry-po. Ve žlutých buňkách se zobrazí ednoduché výstupy popisné statistiky obou souborů hodnoty n 1, x, s 1 a s 1 resp. n, y, s a s (16; 50,131; 3,386 a 11,465 resp. 8; 50,488; 1,01 a 1,04). V této části také vložíme hladinu významnosti α, v našem případě 0,05. V zelených buňkách se budou zobrazovat ednotlivé výsledky statistických analýz viz obr.. Obr. : Příklad 97/1 hmotnost sýru řešený ve STAT1 list V-normální V souladu s teorií testování hypotéz o shodě dvou středních hodnot musíme neprve otestovat 4

5 shodu obou rozptylů. Výsledky sou v 1. části listu, hodnota testového kritéria e F = 11,195, a pro alternativu σ 1 σ překračue kvantil F 0,975 (15; 7) = 4,568, také p-hodnota = 0,003 e menší než α = 0,05. Tyto výsledky znamenaí, že s 95% pravděpodobností nelze akceptovat shodu rozptylů homoskedasticitu. Budeme předpokládat neshodu rozptylů heteroskedasticitu, tento výsledek e v 1. části listu také zobrazený. Ve. a 3. části listu řeší STAT1 testy hypotéz o shodě středních hodnot, a to za předpokladu shody (. část) resp. neshody (3. část) rozptylů. S ohledem na náš výsledek prvního testu předpoklad heteroskedasticita použieme pro další řešení problému 3. část. Hodnota testového kritéria t = 0,388, stupně volnosti ν* = 19, Studentův kvantil t 0,975 (19) =,093 a p-hodnota = 0,703 vede pro alternativu μ 1 μ k závěru, že shoda středních hodnot μ 1 = μ se nezamítá. To prakticky znamená, že změna úrovně hmotnosti před a po seřízení automatu tedy nebyla prokázána. 3 Testy o tvaru rozdělení Pokud sledueme reálně istou náhodnou veličinu prostřednictvím náhodného výběru, potom ednou ze zásadních informací, které budeme při statistické analýze potřebovat, e informace o rozdělení této náhodné veličiny. Přesněi řečeno budeme rozhodovat, zda náš náhodný výběr pochází z normálního rozdělení, nebo zda normální rozdělení ako teoretický model nebude možné akceptovat. I když tuto informaci už můžeme vysledovat z tabulky rozdělení četností resp. z grafu rozdělení četností, korektněi tuto informaci získáme pomocí testů o normalitě konkrétně pomocí testů o nulové šikmosti a nulové špičatosti resp. C-testu. V některých reálných situacích může být užitečné ověřit, zda náš výběr nepochází z iného než normálního rozdělení, např. z Poissonova rozdělení, logaritmicko-normálního rozdělení apod. K tomu slouží χ -test dobré shody, kterým lze otestovat shodu dat s akýmkoliv rozdělením. 99/3 a 91/9 pneumatiky Byl proveden test životnosti u 80 kusů pneumatik. Výsledky sou uvedeny v tabulce. tisíc km počet a) Vypočítete koeficienty šikmosti a špičatosti. b) Pomocí testů o nulové šikmosti a nulové špičatosti ověřte, zda výběr pochází z normálního rozdělení. Použite hladinu významnosti 0,05 i 0,01. c) C-testem normality ověřte, zda výběr pochází z normálního rozdělení. Použite také hladinu významnosti 0,05 i 0,01. Řešení: a) Výběrové koeficienty šikmosti a špičatosti určíme v programu STAT1 ako momentové koeficienty a 3 = 0,64 a a 4 = 0,068 viz obr. 1. b) Ověření normality e založené na skutečnosti, že normální rozdělení má nulovou šikmost a současně nulovou špičatost: α 3 = 0 α 4 = 0. Proto použieme tuto neednodušší filozofii, která spočívá pouze ve snaze zamítnout nulovou šikmost nebo zamítnout nulovou špičatost. Pokud by se to podařilo, potom prohlásíme, že výběr z normálního rozdělení nepochází. V opačném případě, tedy když nulovou šikmost ani nulovou špičatost 5

6 nezamítneme, bude možné normální rozdělení ako model pro popis sledované náhodné veličiny akceptovat. Neprve otestueme nulovou šikmost pro α = 0,05: užieme n = 80 a a 3 = 0,64 H: α 3 = 0 A: α 3 0 a3 0,64 u 3 = = Ä,365, kde D(a 3 ) = D( a 3 ) 0,0696 W 0,05 : u 3 u 0,975,365 1,960 platí H se zamítá 6( n ) = ( n + 1)( n + 3) 6 78 Ä 0, Výběr tedy pochází z rozdělení, které s 95% spolehlivostí vykazue nenulovou šikmost, to tedy znamená, že normální rozdělení není vhodným modelem pro popis naší náhodné veličiny! V takovém případě test o nulové špičatosti už není potřebné provádět. Nyní otestueme nulovou šikmost pro α = 0,01: užieme n = 80 a a 3 = 0,64 H: α 3 = 0 A: α 3 0 výpočet D(a 3 ) = 0,0696 a u 3 =,365 se nemění W 0,01 : u 3 u 0,995,365,576 neplatí H se nezamítá V tomto případě se s 99% spolehlivostí nepodařila prokázat nenulová šikmost. To tedy znamená, že výběr pochází ze symetrického rozdělení, a o normálním rozdělení musíme rozhodnout pomocí testu o nulové špičatosti pro α = 0,01: užieme n = 80 a a 4 = 0,068 H: α 4 = 0 A: α 4 0 a , u 4 = n = Ä 0,01, D( a4 ) 0,49 4n( n )( n 3) kde D(a 4 ) = = ( n + 1) ( n + 3)( n + 5) W 0,01 : u 4 u 0,995 0,01,576 neplatí H se nezamítá Ä 0,49 S 99% spolehlivostí se nepodařila prokázat ani nenulová špičatost, to tedy znamená, že na hladině významnosti α = 0,01 lze normální rozdělení akceptovat ako vhodný model pro popis sledované veličiny. Dáme-li dohromady naše úvahy, e patrné, že normalita se na hladině významnosti 0,05 zamítá (koeficient šikmosti e nenulový, říkáme také, že e statisticky významný), avšak na hladině významnosti 0,01 e možné považovat data za výběr z normálního rozdělení (oba koeficienty sou statisticky nevýznamné). c) C-test normality e založený na skutečnosti, že součet čtverců normovaných veličin u 3 a u 4 má Pearsonovo rozdělení se dvěma stupni volnosti. Neprve otestueme normalitu pro α = 0,05: užieme u 3 =,365 a u 4 = 0,01 H: X má normální rozdělení A: X nemá normální rozdělení C = u + =, ,01 Ä 5,593 3 u4 6

7 W 0,05 : C χ 0,95() 5,593 5,991 neplatí H se nezamítá S 95% spolehlivostí se nepodařilo hypotézu o normálním rozdělení zamítnout, a proto budeme normální rozdělení považovat za vhodný model pro popis naší náhodné veličiny. Dále otestueme normalitu pro α = 0,01: užieme u 3 =,365, u 4 = 0,01 a C = 5,593. H: X má normální rozdělení A: X nemá normální rozdělení W 0,05 : C χ 0,99() 5,593 9,10 neplatí H se nezamítá S 99% spolehlivostí se také nepodařilo hypotézu o normálním rozdělení zamítnout, a proto budeme i v tomto případě normální rozdělení považovat za vhodný model pro popis naší náhodné veličiny. Rozdíly od normality nesou tedy na obou hladinách významnosti statisticky významné. Excelovský pracovní sešit STAT1 nám poskytue základní informace o normalitě na 3 listech, které sou určené pro základní zpracování dat: Popisné charakteristiky, Bodové rozdělení a Intervalové rozdělení. Pod tabulkou s popisnými charakteristikami a grafy se nachází část Ověření normality viz obr. 1. Samostatně e zde provedený test o nulové šikmosti, test o nulové špičatosti (závěr o normalitě si musí uživatel udělat sám!) a C-test o normalitě. Na obr. 1 se týkaí všechny výstupy našeho řešeného příkladu 91/9 pneumatiky, všechny na hladině významnosti 0,05. Obr. 1: Příklad 91/9 pneumatiky řešený ve STAT1 list Popisná statistika 101/15 myčka Po dobu 3 měsíců se v pracovních dnech sledoval počet aut na mycí lince za den. počet aut počet případů Předpokládete, že počet aut na myčce má Poissonovo rozdělení. Je tento předpoklad opodstatněný? Použite χ -test dobré shody a řešte na hladině významnosti 0,05. 7

8 Řešení: Odhad parametru lambda provedeme pomocí výběrového průměru (pro Poissonovo rozdělení totiž platí E(X) = λ a odhad ˆ λ = x = 5 ). Zformulueme hypotézu a alternativu: H: X má Poissonovo rozdělení s parametrem λ = 5 A: X nemá Poissonovo rozdělení s parametrem λ = 5 Jako testové kriterium použieme statistiku k ( n nπ ) χ =, = 1 nπ která má při platnosti hypotézy Pearsonovo rozdělení s ν = k c 1 stupni volnosti, kde n e rozsah výběrového souboru, k e počet tříd, c e počet neznámých parametrů ověřovaného rozdělení. Potom kritický obor e W α = {χ ; χ χ1 α ( ν ) }. x n četnosti π hodnoty pravděpodobnostní funkce nπ teoretické četnosti nπ sdružené n ( n n 0 0 0, , ,03369, , , ,084 5, , , , , , , , , , , , , ,146 9, , , , , , , ,0658 4, ,0367,318 8, , a více 1 0,03183, , , , ,3149 nπ π ) V tabulce e uveden výpočet testové statistiky. V prvním sloupci e uvedený obor hodnot náhodné veličiny s Poissonovým rozdělením, ve druhém sloupci sou empirické četnosti. Ve třetím a čtvrtém sloupci sou pravděpodobnosti (např. z tabulek) a vypočítáme teoretické četnosti. Vzhledem k tomu, že teoretické četnosti v prvních třech a posledních třech třídách sou menší než 5, provedeme eich sloučení; sdružené hodnoty sou uvedené v pátém a šestém sloupci. Sedmý sloupec obsahue ednotlivé vypočítané hodnoty testového kritéria a eich součet = hodnota testového kritéria. Kritický obor pro α = 0,05 e χ χ 0,95(5), tedy 3,315 11,1 (neplatí). Stupně volnosti určíme ze vztahu ν = k c 1 = = 5. Protože hodnota testového kriteria nepatří do kritického oboru, testovanou hypotézu, že Poissonovo rozdělení s parametrem λ = 5 e vhodným modelem pro popis naší náhodné veličiny počet aut na myčce, nemůžeme na hladině významnosti 0,05 zamítnout. Na obr. e zobrazené srovnání teoretických a empirických četností, ze kterého e vidět, ak empirické četnosti přibližně kopíruí teoretický model, což vizuálně také napovídá, že Poissonův model s parametrem λ = 5 bude možné považovat pro popis naší veličiny ako 8

9 vhodný. Zobrazený grafický výstup e vytvořený v běžném excelovském prostředí, není součástí programu STAT1. Srovnání teoretických a empirických četností n a více počet aut Obr. : Srovnání teoretických a empirických četností 9

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE 1 Úvod Michal Dorda, Dušan Teichmann VŠB - TU Ostrava, Fakulta strojní, Institut dopravy Seřaďovací stanice jsou železniční

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Doporučené příklady k procvičení k 2. Průběžnému testu

Doporučené příklady k procvičení k 2. Průběžnému testu Doporučené příklady k procvičení k 2. Průběžnému testu - Statistika v příkladech Marek a kol. (2013) - kapitola 2.3, 9 řešené příklady 2.52-2.53, 2.58a,b - kapitola 3.1 o řešené příklady: 3.1, 3.2, 3.4

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

1 Popisná statistika. 1.1 Základní pojmy. 1.2 Třídění dat. Četnosti. Grafické znázornění. Rozdělení znaků. Statistika I

1 Popisná statistika. 1.1 Základní pojmy. 1.2 Třídění dat. Četnosti. Grafické znázornění. Rozdělení znaků. Statistika I Statistika I 1 Popisná statistika 1.1 Základní pojmy Statistický soubor konečná množina prvků, které jsou nositeli určitého hromadného jevu Rozsah s.s. počet prvků množiny Statistické jednotky prvky s.s.

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M4 ZÁKLADY TESTOVÁNÍ HYPOTÉZ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO RNDr. Jana Hrubá Katedra matematických metod v ekonomice (K151) Institut inovace vzdělávání (K167) Ekonomická fakulta

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace

Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace České vysoké učení technické v Praze Fakulta elektrotechnická Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace Životnost LED diod Autor: Joel Matějka Praha, 2012 Obsah 1 Úvod

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení

Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Aktivita A 0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení 1/62 Aktivita A0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Datum

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová Vysoká škola báňská Technická univerzita Ostrava Západočeská univerzita v Plzni Úvod do statistiky (interaktivní učební text) - Řešené příklady Martina Litschmannová 1. strana ze 159 1 Explorační analýza

Více