Úvod do problematiky měření
|
|
- Jozef Štěpán Doležal
- před 7 lety
- Počet zobrazení:
Transkript
1 1/18
2 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek znalosti, ale stěží jste se ve svých úvahách dostali do oblasti vědy. " 2/18
3 Měření proces experimentálního získávání informace o hodnotě měřené veličiny - délky, váhy. - vzhledem k nějakému standardu (jednotce měření) - metr, kilogram označení čísla, které je výsledkem tohoto procesu Metrologie věda zabývající se měřením Měřící činnost obvykle zahrnuje použití měřícího přístroje (pravítko, váha, teploměr, voltmetr) který je kalibrován tak, aby porovnal měřenou vlastnost s jednotkou měření 3/18
4 Měření Vždy vykazuje chyby a v důsledku toho nejistoty. Redukci nejistot (nikoli nezbytně jejich eliminaci) lze považovat za ústřední koncept měření. Častý předpoklad - chyby měření jsou normálně rozloženy kolem skutečné hodnoty měřené veličiny (mají Gaussovo rozložení). Za tohoto předpokladu má každé měření 3 složky: odhad skutečné hodnoty toleranci chyby nebo nejistoty úroveň spolehlivosti - to je pravděpodobnost, že skutečná hodnota leží v rozpětí tolerance chyby. Například, měření délky prkna může vést k tomuto výsledku: 2,53 m ± 0,01 m s pravděpodobností 99% 4/18
5 Chyba latinsky "error" = odchýlení se, bloudění chyba ve smyslu "omyl" - tomu se lze vyhnout chyba v pojetí statistiky - chyba neznamená omyl, ale rozdíl mezi naměřenou hodnotou veličiny a její skutečnou hodnotou. Rozptyl je nedílnou součástí procesu měření a naměřených veličin. Typy chyb hrubá chyba = omyl systematická chyba (= statistické ovlivnění) nahodilá chyba (= náhodné kolísání) náhodná chyba systematická chyba skutečná hodnota 5/18
6 Nejistota = rozsah chyby měření stanoví se pomocí rozsahu hodnot, v němž se pravděpodobně nachází skutečná hodnota - měřená hodnota ± nejistota 1,00794 ± 0, měřená hodnota (nejistota) 1,00794(7) Nejistota se týká pouze poslední významové číslice! 6/18
7 Normální = Gaussovo rozložení pravděpodobnosti N( µ, σ 2 ) f (x) = 1 σ 2π e ( x µ ) 2σ 2 2 standardizované: N(0,1) f (x) = 1 2π e x 2 2 Funkce hustoty pravděpodobnosti (zvonová křivka) Červená čára je standardizované (normované) normální rozložení. 7/18
8 Normální rozložení pravděpodobnosti F(x) ( t µ ) σ = x 2 e σ 1 2π 2 dt Distribuční funkce 8/18
9 Normální rozložení pravděpodobnosti je definováno 2 parametry: - střední hodnota = průměr µ - rozptyl = kvadrát standardní odchylky σ 2 N (µ, σ 2 ) normované N (0,1) mnohá měření mohou být v různé míře aproximována normálním rozložením má vztah k metodě odhadu pomocí metody nejmenších čtverců 9/18
10 2 nejvýznamnější teorémy v teorii pravděpodobnosti Zákon velkých čísel - Popisuje dlouhodobou stabilitu střední hodnoty náhodné proměnné: Máme-li náhodnou veličinu s konečnou očekávanou hodnotou, a tu opakovaně měříme, bude se střední hodnota se vzrůstajícím počtem měření (pozorování) blížit očekávané hodnotě. Teorém centrálního limitu Zprůměrňovaný součet dostatečně velkého počtu nezávislých náhodných veličin s libovolným rozložením, které mají konečnou střední hodnotu a rozptyl, bude mít přibližně normální rozložení. 10/18
11 Teorém centrálního limitu Rozložení průměru se bude blížit normálnímu rozložení se zvětšujícím se počtem vzorků, nezávisle na tom, jaké je rozložení veličin, ze kterých je vzat průměr. Neplatí to, pokud neexistují momenty původního rozložení (střední hodnota je první moment). Mnoho reálných procesů má rozložení s konečným rozptylem všudypřítomnost normálního rozložení. 11/18
12 Tolerance chyb, interval spolehlivosti - týká se statistické přesnosti odhadů z výběrového šetření interval spolehlivosti - Místo toho, aby byl parametr odhadnut jako jedna hodnota, je dán interval, který pravděpodobně tento parametr obsahuje. To, s jakou pravděpodobností daný interval parametr skutečně obsahuje, je dáno hladinou spolehlivosti neboli koeficientem spolehlivosti. Čím vyšší je požadovaná hladina spolehlivosti, tím širší je interval spolehlivosti. Interval spolehlivosti může být použit například k popisu toho, jak spolehlivé jsou výsledky průzkumu. Má své použití ve všech kvantitativních studiích. 12/18
13 13/18
14 Statistické parametry používané pro zpracování měření Střední hodnota = aritmetický průměr hodnot x 1,x 2.x n x = Směrodatná odchylka σ = Výběrová směrodatná odchylka = chyba jednoho měření δ = Chyba střední hodnoty δ = n i= 1 ( x x ) n i= 1 n i 2 ( x x ) i n(n 1) 2 n i= 1 n i= 1 n x n ( x x ) n 1 i 2 Výsledek měření x = x ± δ 14/18
15 International Vocabulary of Basic and General Terms in Metrology, 3rd Edition true value of a quantity Skutečná hodnota veličiny - získala by se dokonalým měřením, tedy měřením prostým chyby. Reálně je nezjistitelná accuracy of measurement Správnost (přesnost) měření - shoda mezi hodnotou veličiny získanou měřením a skutečnou hodnotou veličiny» Nemůže být vyjádřena číselně.» Je nepřímo úměrná jak systematické, tak náhodné chybě.» Termín "accuracy of measurement" nesmí být používán pro "trueness of measurement" a zaměňován s termínem "measurement precision"» Dle normy ČSN P ENV "Směrnice pro vyjádření nejistoty měření" je možné chápat: accuracy = trueness + precision 15/18
16 International Vocabulary of Basic and General Terms in Metrology, 3rd Edition accuracy of measuring system Správnost (a přesnost) měřícího systému - schopnost měřícího systému poskytovat hodnotu veličiny blízkou skutečné hodnotě veličiny. (Správnost je větší, když je hodnota veličiny blíže skutečné hodnotě.) trueness of measurement Pravdivost měření - shoda mezi průměrem vzešlým z nekonečného počtu hodnot měřené veličiny při daných podmínkách měření a skutečnou hodnotou veličiny» Nemůže být vyjádřena číselně.» Je nepřímo úměrná pouze systematické chybě. error of measurement Chyba měření - rozdíl mezi hodnotou veličiny získanou měřením a skutečnou hodnotou veličiny error of indication Chyba zobrazení - rozdíl mezi zobrazením měřené hodnoty veličiny měřícím přístrojem a skutečnou hodnotou veličiny 16/18
17 International Vocabulary of Basic and General Terms in Metrology, 3rd Edition random error of measurement Náhodná chyba měření - rozdíl hodnoty veličiny získané měřením a průměrnou hodnotou vzešlou z nekonečného počtu opakovaných měření stejné veličiny prováděných za opakovatelných podmínek» Náhodné chyby množiny opakovaných měření tvoří rozložení, které může být charakterizováno rozptylem s nulovou očekávanou hodnotou.» náhodná chyba = chyba měření - systematická chyba měření systematic error of measurement Systematická chyba měření - rozdíl průměrné hodnoty vzešlé z nekonečného počtu opakovaných měření stejné veličiny prováděných za opakovatelných podmínek a skutečné hodnoty veličiny» Systematická chyba a její příčiny mohou být známé nebo neznámé. Pokud je příčina známá, měla by být provedena korekce na systematickou chybu.» systematická chyba = chyba měření - náhodná chyba měření 17/18
18 International Vocabulary of Basic and General Terms in Metrology, 3rd Edition accuracy class Třída přesnosti - třída měřícího přístroje, která vyhovuje stanoveným metrologickým požadavkům na to, aby chyby indikace byly v rámci stanovených mezí» Třída přesnosti je obvykle označována číslem nebo symbolem podle konvence. intrinsic error of a measuring system Vnitřní chyba měřícího systému - chyba zobrazení určená za referenčních podmínek bias of a measuring system Zkreslení měřícího systému - systematická chyba zobrazení měřícího systému 18/18
19 Děkuji za pozornost!
Stavba slovníku VIM 3: Zásady terminologické práce
VIM 1 VIM 2:1993 ČSN 01 0115 Mezinárodní slovník základních a všeobecných termínů v metrologii VIM 3:2007 International Vocabulary of Metrology Basic and General Concepts and Associated Terms Mezinárodní
ZABEZPEČENÍ KVALITY V LABORATOŘI
ZABEZPEČENÍ KVALITY V LABORATOŘI David MILDE, 2014-2017 QUALITY KVALITA (JAKOST) Kvalita = soubor znaků a charakteristik výrobku či služby, který může uspokojit určitou potřebu. Kvalita v laboratoři=výsledky,které:
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3)
Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Přesnost a správnost v metrologii V běžné řeči zaměnitelné pojmy. V metrologii a chemii ne! Anglický termín Measurement trueness Measurement
Nová metrologická terminologie. Marta Farková
Nová metrologická terminologie Marta Farková 14. 11. 2013 DŘÍVE POUŽÍVANÉ POJMY Anglicky: Accuracy Precision Reliability Česky: Správnost Přesnost Spolehlivost 2 SOUČASNÝ STAV Anglicky: Trueness Precision
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Mezinárodn metrologických pojmů a chemická
Mezinárodn rodní slovník metrologických pojmů a chemická a bioanalytická měření Zbyněk k Plzák Ústav anorganické chemie AV ČR, v. v. i Zlatá pravidla vědeckv deckého života... Terminologií se většinou
Charakterizují kvantitativně vlastnosti předmětů a jevů.
Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost
Posouzení přesnosti měření
Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality RNDr. Alena Mikušková FN Brno Pracoviště dětské medicíny, OKB amikuskova@fnbrno.cz Analytické znaky laboratorní metody
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Regulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
Chyby a neurčitosti měření
Radioelektronická měření (MREM) Chyby a neurčitosti měření 10. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Základní pojmy Měření je souhrn činností s cílem určit hodnotu měřené veličiny
Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Semestrální projekt Vyhodnocení přesnosti sebelokalizace Vedoucí práce: Ing. Tomáš Jílek Vypracovali: Michaela Homzová,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Zpracování a vyhodnocování analytických dat
Zpracování a vyhodnocování analytických dat naměřená data Zpracování a statistická analýza dat analytické výsledky Naměř ěřená data jedna hodnota 5,00 mg (bod 1D) navážka, odměřený objem řada dat 15,8;
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
ČESKÝ INSTITUT PRO AKREDITACI, o.p.s. Dokumenty ILAC. ILAC Mezinárodní spolupráce v akreditaci laboratoří
ČESKÝ INSTITUT PRO AKREDITACI, o.p.s. Opletalova 41, 110 00 Praha 1 Nové Město Dokumenty ILAC ILAC Mezinárodní spolupráce v akreditaci laboratoří Číslo publikace: ILAC - G17:2002 Zavádění koncepce stanovení
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Stochastické signály (opáčko)
Stochastické signály (opáčko) Stochastický signál nemůžeme popsat rovnicí, ale pomocí sady parametrů. Hodit se bude statistika a pravděpodobnost (umíte). Tohle je jen miniminiminiopáčko, později probereme
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Podmínky získání zápočtu: Podmínkou pro získání zápočtu je účast na cvičeních (maximálně tři absence) a úspěšné splnění jednoho písemného testu alespoň na 50 % max. počtu
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
Resolution, Accuracy, Precision, Trueness
Věra Fišerová 26.11.2013 Resolution, Accuracy, Precision, Trueness Při skenování se používá mnoho pojmů.. Shodnost měření, rozlišení, pravdivost měření, přesnost, opakovatelnost, nejistota měření, chyba
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
Vyjadřování přesnosti v metrologii
Vyjadřování přesnosti v metrologii Měření soubor činností, jejichž cílem je stanovit hodnotu veličiny. Výsledek měření hodnota získaná měřením přisouzená měřené veličině. Chyba měření výsledek měření mínus
2. PŘESNOST MĚŘENÍ A1B38EMA P2 1
. ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,
Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Mˇ eˇren ı ˇ cetnost ı (Poissonovo rozdˇ elen ı) 1 / 56
Měření četností (Poissonovo rozdělení) 1 / 56 Měření četností (Poissonovo rozdělení) Motivace: měření aktivity zdroje Geiger-Müllerův čítac: aktivita: 1 Bq = 1 částice / 1 s = s 1 Jaká je přesnost měření?
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Technický experiment, příprava, provedení, hodnocení výsledků
Technický experiment, příprava, provedení, hodnocení výsledků 1 Katedra stavebních hmot a hornického stavitelství VŠB - Technická univerzita Ostrava 8. 3. 2012 Experiment Experiment se snaží získat potřebné
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Program semináře 1. Základní pojmy - metody měření, druhy chyb, počítání s neúplnými čísly, zaokrouhlování 2. Chyby přímých měření - aritmetický průměr a směrodatná odchylka,
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce
Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života
Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.
Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je
1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.
Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Chyby spektrometrických metod
Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.
Zákony hromadění chyb.
Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky
Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík
Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod
přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod Měření Pb v polyethylenu 36 různými laboratořemi 0,47 0 ± 0,02 1 µmol.g -1 tj. 97,4 ± 4,3 µg.g -1 Měření
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým