Uni- and multi-dimensional parametric tests for comparison of sample results
|
|
- Mária Beránková
- před 5 lety
- Počet zobrazení:
Transkript
1 Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita Pardubice, Pardubice milan.meloun@upce.cz Telefon:
2 Literatura M. Meloun, J. Militký: Kompendium statistického zpracování dat, Karolinum Praha 2012, 3. vydání, včetně DVD s databazí dat 1700, 985 stran. M. Meloun, J. Militký, M. Hil: Statistická analýza vícerozměrných dat v příkladech, Karolinum Praha 2017, 3. vydání, ISBN , včetně DVD s databazí dat řešených úloh, 757 stran.
3 Vyšetření předpokladů o výběru Examination of the sample assumptions Outliers Odlehlé body Symmetry Symetrie Heteroscedasticity Konstantní rozptyl Sample size Velikost výběru
4
5 Study case I Parametric tests for samples of uni-dimensional data Porovnání dvou vektorů dat
6 Test of the result accuracy
7 Evropa: porovnání t vůči kritické hodnotě t (1-α/2) (n-1)
8 USA: porovnání spočtené hladiny p vůči zadané hladině významnosti α
9 F1-test F2-test T3-test T1-test T2-test
10 F1-test F2-test Test of equal variances (homoscedasticity)
11 F1-test
12 F2-test
13
14 T1-test T2-test T3-test
15 T1-test
16 T2-test
17 T3-test
18
19
20 Normality test: Šikmost (skewness) < +-0.3
21 JB-test normality of the sample A Sample A: Normality is accepted JB-test normality of the sample B Sample B: Normality is accepted
22 F1 a F2-test of the homoskedasticity Conclusion: F1-test Sample variances are equal T1-test a T2-test of the means equality Conclusion: T1-test Sample means are not equal
23 Porovnání dvou výběrů QC-EXPERT Test shody průměrů Název úlohy : P332 pro SHODNÉ rozptyly Hladina významnosti : 0,050 t-statistika : 4,164 Porovnávané sloupce : P332a P332b Počet stupňů volnosti : 28,000 Počet dat : Kritická hodnota : 2,048 Závěr : Průměry jsou ROZDÍLNÉ Průměr : 40,203 39,942 Pravděpodobnost : 0,000 Směr. odchylka : 0,142 0,197 Rozptyl : 0,020 0,039 Test shody průměrů pro ROZDÍLNÉ rozptyly Test shody rozptylů t-statistika : 4,164 Redukované stupně Poměr rozptylů : 1,932 volnosti : 25,000 Počet stupňů volnosti : Kritická hodnota : 2,060 Kritická hodnota : 2,540 Závěr : Průměry jsou ROZDÍLNÉ Závěr : Rozptyly jsou SHODNÉ Pravděpodobnost : 0,000 Pravděpodobnost : 0,125 Test dobré shody rozdělení Robustní test shody rozptylů dvouvýběrový K-S test Poměr rozptylů : 1,932 Diference DF : 0,667 Redukované stupně volnosti : 7 7 Kritická hodnota : 0,496 Kritická hodnota : 3,787 Závěr : Rozdělení jsou ROZDÍLNÁ Závěr : Rozptyly jsou SHODNÉ Pravděpodobnost : 0,202
24 Normality test: Šikmost (skewness) is > 0.3.
25 JB-test normality of the sample A Sample A: JB-test Normality is rejected JB-test normality of the sample B Sample B: JB-test Normality is accepted
26 F1-test and F2-test of the homoscedasticity Conclusion: F2-test Sample variances are equal T3-test of the means equality Conclusion: T3-test Sample means are equal
27 Normality test: Šikmost (skewness) is > 0.3.
28 JB-test normality of the sample A Sample A: JB-test Normality is rejected JB-test normality of the sample B Sample B: JB-test Normality is accepted
29 F1-test and F2-test of the homoscedasticity Conclusion: F2-test Sample variances are equal T3-test of the means equality Conclusion: T3-test Sample means are not equal
30 Pair test for the pair data
31 Pair test for the pair data
32
33 Pair test Conclusion: Sample means are not equal
34 Horn
35
36 Horn s procedure for 4 n 20 Procedure based on order statistics. 1) Write the table of order statistics. 2) The pivot depth is expressed by H L = int[(n + l)/2]/2 or H L = int[(n + l)/2 + l]/2 according to which of the H L is an integer. 3) The lower pivot is x L = x (H) and the upper one is x U = x (n+1-h). 4) The estimate of the parameter of location is then expressed by the pivot half sum P 0.5( x x ) L L U
37 5) The estimate of the parameter of spread is expressed by the pivot range 6) The random variable R x x L U L P x x T L L U L R 2( x x ) L U L has approximately a symmetric distribution and its quantiles are given in Table. 7) The 95% confidence interval of the mean is expressed by pivot statistics as P R t ( n) P R t ( n) L L L,0.975 L L L,0.975
38 Exercise B3.01 Estimate of median value of haptoglobin in human blood serum (Horn) The concentration of haptoglobin in human blood serum was measured in eight adult individuals. Calculate estimates for median value, parameter of variance, and 95% interval of reliability of median value. Examine whether this sample comes from a logarithmic-normal distribution. Also apply Horn s procedure (pg. 51 in [14]). Data: Concentration of haptoglobin [g. l -1 ] in human blood serum: 1.82, 3.32, 1.07, 1.27, 0.49, 3.79, 0.15, 1.98.
39
40 Study case II Parametric tests for samples of multi-dimensional data Porovnání více vektorů ve zdrojové matici dat
41 Vícerozměrný test správnosti Výběr V1 je modrý, výběr V2 je červený. Úkol: Mají oba, a to výběr V 1 a výběr V 2 správnou střední hodnotu, tj. μ 1 = ( ) a μ 2 = ( )? Vícerozměrný test shodnosti Úkol: Má výběr V 1 a výběr V 2 shodný vektor středních hodnot, tj. μ 1 = μ 2?
42
43 Vícerozměrný test správnosti Rozdíl mezi průměry výběrů je dle spočtené hladiny p > 0.05 nevýznamný.
44 Numerické řešení: Vícerozměrný test správnosti Vícerozměrný test správnosti výběru V1 Numerický test: Hotellingovou T 2 statistikou μ 0 = { 1,75 70} Rozdíl mezi průměry výběrů je dle spočtené hladiny p > 0.05 nevýznamný.
45 Vícerozměrný test správnosti výběru V1 Počítačový test: software NCSS2007 Rozdíl průměru po odečtení μ 0 Test rozdílu = μ - μ 0 vůči μ 0 = {1,75 70} Testování rozdílu vůči μ 0 Testování jednotlivých proměnných vůči μ 0 Rozdíl mezi průměry výběrů je dle spočtené hladiny p > 0.05 nevýznamný. Testování intervalu spolehlivosti rozdílů vůči μ 0
46 Vícerozměrný test správnosti výběru V2 Počítačový test: software NCSS2007 Rozdíl průměru po odečtení μ 0 Test rozdílu = μ - μ 0 vůči μ 0 = {1,75 70} Testování rozdílu vůči μ 0 Testování jednotlivých proměnných vůči μ 0 Rozdíl mezi průměry výběrů je dle spočtené hladiny p > 0.05 nevýznamný. Testování intervalu spolehlivosti rozdílu vůči μ 0
47 Vícerozměrný test shodnosti Výběr V1 je modrý, výběr V2 je červený. Úkol: Má výběr V 1 a výběr V 2 shodný vektor středních hodnot, tj. μ 1 = μ 2?
48 Vícerozměrný test shodnosti Rozdíl mezi průměry výběrů je dle spočtené hladiny p > 0.05 nevýznamný.
49
50
51 Vícerozměrný test shodnosti Vícerozměrný test shodnosti Numerický test: Hotellingovou T 2 statistikou Test: Rozdíl průměrů pro výběry V 1 a V 2 je roven μ 1 - μ 2, a pro spočtenou hladinu p > 0.05 je tento rozdíl nevýznamný
52 Rozdíl mezi průměry výběrů je dle spočtené hladiny p > 0.05 nevýznamný. Rozdíl mezi průměry výběrů je dle spočtené hladiny p > 0.05 nevýznamný.
53 Vícerozměrný test shodnosti Počítačový test: softwarem NCSS2007 Rozdíl mezi průměry výběrů je roven = μ 1 μ 2 Rozdíl dvou průměrů by měl být nula se svou směrodatnou odchylkou Rozdíl dvou průměrů u ostatních proměnných kromě průměru vlevo; Změna rozdílu. kromě toho vlevo; Změna rozdílu. od toho vlevo; Rozdíl mezi průměry výběrů je dle spočtené hladiny p > 0.05 nevýznamný. Testování rozdílu dvou průměru jeho intervalem spolehlivosti
54 Vícerozměrný test shodnosti pro více středních hodnot
55 Vícerozměrný test shodnosti pro více středních hodnot
56
57
58 Rozdíl průměrů tří výběrů je dle spočtené hladiny p < 0.05 významný.
59 Vícerozměrný test shodnosti pro 3 střední hodnoty Počítačové řešení: software NCSS2007 Test: Rozdíl průměrů tří výběrů je dle spočtené hladiny p < 0.05 významný.
60 M. Meloun, J. Militký: Interaktivní statistická analýza dat, Karolinum Praha 2012, 4. vydání, včetně DVD s databazí dat 1700, 955 stran M. Meloun, J. Militký: Kompendium statistického zpracování dat, Karolinum Praha 2012, 3. vydání, včetně DVD s databazí dat 1700, 985 stran. M. Meloun, J. Militký, M. Hil: Statistická analýza vícerozměrných dat v příkladech, Karolinum Praha 2017, 3. vydání, ISBN , včetně DVD s databazí dat řešených úloh, 757 stran. M. Meloun, J. Militký: Statistical Data Analysis, A Practical Guide with 1250 Exercises and Answer key on CD, Woodhead Publishing India, 2011, 1600 pages, ISBN: M. Meloun, J. Militký, M. Forina: CHEMOMETRICS FOR ANALYTICAL CHEMISTRY: Volume 1: PC-Aided Statistical Data Analysis, Ellis Horwood, Chichester 1992, 330 stran, ISBN M. Meloun, J. Militký, M. Forina: CHEMOMETRICS FOR ANALYTICAL CHEMISTRY. Volume 2: PC-Aided Regression and Related Methods, Ellis Horwood, Chichester 1994, ISBN
61 Děkuji za pozornost!
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.
Protonační rovnováhy léčiv faktorovou analýzou a nelineární regresí absorbanční responzní plochy
Protonační rovnováhy léčiv faktorovou analýzou a nelineární regresí absorbanční responzní plochy Ing. Sylva Bordovská, Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, sylva.bordovska@seznam.cz
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII
Statistická analýza jednorozměrných dat
Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Statistická analýza jednorozměrných
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.
Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
Design Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: T 9:00 10:30 or by appointment
Analýza rozptylu ANOVA
Licenční studium Galileo: Statistické zpracování dat ANOVA ANOVA B ANOVA P Analýza rozptylu ANOVA Semestrální práce Lenka Husáková Pardubice 05 Obsah Jednofaktorová ANOVA... 3. Zadání... 3. Data... 3.3
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat ANOVA Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří
Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze
Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Popis vstupních dat Vstupní data pro úlohu (A) se nacházejí v souboru "glukoza.csv".
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět Statistická analýza
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.
SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné
Statistická analýza. jednorozměrných dat
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie icenční studium chemometrie Statistické zpracování dat Statistická analýza jednorozměrných dat Zdravotní ústav se sídlem v
Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.
Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce ze 6. soustředění Předmět: 3.3 Tvorba nelineárních
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ANALÝZA
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.
II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
ZNALOSTI A DOVEDNOSTI ČESKÝCH MUŽŮ V OBLASTI INFORMAČNÍ BEZPEČNOSTI - VÝSLEDKY STATISTICKÉ ANALÝZY
ZNALOSTI A DOVEDNOSTI ČESKÝCH MUŽŮ V OBLASTI INFORMAČNÍ BEZPEČNOSTI - VÝSLEDKY STATISTICKÉ ANALÝZY Knowledge and skills of Czech men in the field of information security - the results of statistical analysis
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu
Testy nezávislosti kardinálních veličin
Testy nezávislosti kardinálních veličin Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Načtení vstupních dat Vstupní data
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113
ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální
STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno
Tvorba nelineárních regresních
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba nelineárních regresních modelů v analýze dat Zdravotní ústav
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Statistická analýza jednorozměrných dat
Licenční studium Galileo: Statistické zpracování dat Analýza velkých výběrů Hornův postup analýzy malých výběrů Statistické testování Statistická analýza jednorozměrných dat Semestrální práce Lenka Husáková
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání
Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání 1. Analýzu variance (ANOVu) používáme při studiu problémů, kdy máme závislou proměnou spojitého typu a nezávislé proměnné
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
1.4 ANOVA. Vliv druhu plodiny na míru napadení houbami Fusarium culmorum a Fusarium graminearum v systému ekologického hospodaření
1.4 ANOVA Úloha 1 Jednofaktorová ANOVA Vliv druhu plodiny na míru napadení houbami Fusarium culmorum a Fusarium graminearum v systému ekologického hospodaření Bylo měřeno množství DNA hub Fusarium culmorum
Pomůcka pro cvičení: 3. semestr Bc studia
Pomůcka pro cvičení: 3. semestr Bc studia Statistika Základní pojmy balíček: Statistics Pro veškeré výpočty je třeba načíst balíček Statistic. Při řešení můžeme použít proceduru infolevel[statistics]:=1,
ZNALOSTI A DOVEDNOSTI ČESKÝCH ŽEN V OBLASTI INFORMAČNÍ BEZPEČNOSTI - VÝSLEDKY STATISTICKÉ ANALÝZY
ZNALOSTI A DOVEDNOSTI ČESKÝCH ŽEN V OBLASTI INFORMAČNÍ BEZPEČNOSTI - VÝSLEDKY STATISTICKÉ ANALÝZY Knowledge and skills of Czech women in the field of information security - the results of statistical analysis
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Klasická a robustní ortogonální regrese mezi složkami kompozice
Klasická a robustní ortogonální regrese mezi složkami kompozice K. Hrůzová, V. Todorov, K. Hron, P. Filzmoser 13. září 2016 Kompoziční data kladná reálná čísla nesoucí pouze relativní informaci, x = (x
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.
Statistické zpracování vodohospodářských dat
Statistické zpracování vodohospodářských dat 4 Testování správnosti a shodnosti v kontrolní laboratoři vh 3/007 Milan Meloun Klíčová slova test správnosti - test shodnosti - párový test - Hornův postup
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
SOFTWARE STAT1 A R. Literatura 4. kontrolní skupině (viz obr. 4). Proto budeme testovat shodu středních hodnot µ 1 = µ 2 proti alternativní
ŘEŠENÍ PRAKTICKÝCH ÚLOH UŽITÍM SOFTWARE STAT1 A R Obsah 1 Užití software STAT1 1 2 Užití software R 3 Literatura 4 Příklady k procvičení 6 1 Užití software STAT1 Praktické užití aplikace STAT1 si ukažme
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ ANALÝZA VÝSLEDKŮ DOTAZNÍKOVÉHO ŠETŘENÍ (FAKULTNÍ DOTAZNÍK) Datum odevzdání: 13.05.2016
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Vysoká škola ekonomická v Praze
Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Studijní program: Kvantitativní metody v ekonomice Studijní obor: Statistické metody v ekonomii Autor bakalářské práce: Jakub Zajíček Vedoucí
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba lineárních regresních modelů. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba lineárních regresních modelů 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha 1 Porovnání regresních přímek u jednoduchého lineárního regresního modelu Porovnání
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015
Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody
Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody Prof. RNDr. Milan Meloun, DrSc, Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, milan.
LEKCE 6 ZÁKLADY TESTOVÁNÍ HYPOTÉZ
1 LEKCE 6 ZÁKLADY TESTOVÁNÍ HYPOTÉZ STATISTICKÉ HYPOTÉZY neboli formální výroky o: neznámých parametrech základního souboru, o tvaru rozložení četností, o statistických vztazích mezi soubory či proměnnými
TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY
Rožnovský, J., Litschmann, T. (ed.): XIV. Česko-slovenská bioklimatologická konference, Lednice na Moravě 2.-4. září 2002, ISBN 80-85813-99-8, s. 242-253 TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY
Uloha B - Kvantitativní test. Radek Kubica A7B39TUR. B1 Radek Kubica Kvantitativní testování Stránka 1
Uloha B - Kvantitativní test Radek Kubica A7B39TUR B1 Radek Kubica Kvantitativní testování 26.4.2014 Stránka 1 Obsah Úvod... 3 Nezávislé proměnné... 3 Závislé proměnné... 3 Popis uživatelů pro tento testování...
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Kapitola VII. ANALYSA ROZPTYLU ANOVA.
Analysa rozptylu ANOVA. 37 Kapitola VII. ANALYSA ROZPTYLU ANOVA. Luděk Dohnal Tato kapitola rozšiřuje téma testování statistické významnosti tím, že popisuje způsob současného porovnání více než dvou sad
TEORIE A PRAXE INFORMAČNÍ BEZPEČNOSTI ČESKÝCH MANAŽERŮ STATISTICKÁ ANALÝZA
TEORIE A PRAXE INFORMAČNÍ BEZPEČNOSTI ČESKÝCH MANAŽERŮ STATISTICKÁ ANALÝZA Theory and Practice of Information Security of Czech Manager Statistical Analysis Ing. Bc. Marek Čandík, PhD. Abstrakt Článek
MSA-Analýza systému měření
MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu
Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Oddělení celoživotního vzdělávání Závěrečná práce Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické Vypracoval:
P-value. Alžběta Gardlo, Karel Hron Laboratoř metabolomiky Ústav molekulární a translační medicíny, UPOL a FNOL
P-value Alžběta Gardlo, Karel Hron alzbetagardlo@gmail.com Laboratoř metabolomiky Ústav molekulární a translační medicíny, UPOL a FNOL Přírodovědecká fakulta UPOL 18.11. 2015 Obsah 1 Úvod 2 Testování statistických
PYTHAGORAS Statistické zpracování experimentálních dat
UNIVERZITA PARDUBICE Fakulta chemicko-technologická, Katedra analytické chemie SEMESTRÁLNÍ PRÁCE Květen 2008 Licenční studium PYTHAGORAS Statistické zpracování experimentálních dat Předmět 1.4 ANOVA a
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Lubomír Pavliska. Datový sklad pro vědu a výzkum s návazností na datové analýzy klinických dat FNO
Lubomír Pavliska Datový sklad pro vědu a výzkum s návazností na datové analýzy klinických dat FNO Hlavní funkce datového skladu Modelování datových struktur Zabezpečený přístup uživatelů Přímé analytické
Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.
Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
Jste aktivní sportovec?(pravidelně sportuji alespoň 2x týdně) Jakým sportovním činnostem se pravidelně věnujete? (alespoň 1 x za dva týdny v sezóně)
Seznam příloh Příloha 1 Dotazník sportovních aktivit... 1 Příloha 2 Homogenita souboru věk... 3 Příloha 3 Homogenita souboru pohlaví... 4 Příloha 4 4Elements Inventory a sportovní aktivita... 5 Příloha
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování