11.13 Tepelná emisivita betonu
|
|
- Iva Jandová
- před 5 lety
- Počet zobrazení:
Transkript
1 11.13 Tepelná emisivita betonu Tepelně vyzařují všechna tělesa, jejichž teplota je větší, jak nula stupňů Kelvina (-73,15 o C). K tepelnému záření se vztahují čtyři základní fyzikální zákony: Planckův vyzařovací zákon, Wienův posunovací zákon, Stefan-Boltzmanův zákon a Kirchhoffův zákon. První tři zákony se týkají tepelného záření absolutně černého tělesa (modelové těleso, které vyzařuje nejvíce ze všech těles), avšak Kirchoffův zákon se týká vyzařování především šedých těles (reálná tělesa, která nás obklopují). O těchto zákonech je blíže pojednáno v elektronických skriptech k předmětu CB001, takže by nebylo účelné výklad těchto zákonů opakovat. Na základě Kirchoffova zákona můžeme integrální intenzitu tepelného záření H vydávané povrchem šedých těles vyjádřit pomocí redukované intenzity vydávané absolutně černým tělesem, které má stejnou teplotou povrchu T, jako šedé těleso. Redukci integrální intenzity absolutně černého tělesa H b provádíme integrální emisivitou (vedle integrální emisivity se zavádí také spektrální emisivita, která závisí na vlnové délce tepleného záření). Integrální emisivita je - přibližně řečeno - materiálovou konstantou, jejíž hodnota se pohybuje v intervalu nula až jedna. 8 H T, Hb T 1, (0;1), 5,67 10 Wm - K - (1) Absolutně černý povrch má emisivitu rovnu jedné (vše pohlcuje, nic neodráží), kdežto tuhé šedé povrchy mají emisivitu menší než jedna (částečně pohlcují, částečně odráží, ale nic nepropouští - objemem tuhých těles se teplo šíří vedením, nikoliv zářením). Tepelná emisivita, jakožto materiálová konstanta, hraje významnou roli při výpočtu vyzářené tepelné energie, což je například zcela zásadní při oceňování tepelného přenosu v interiérech budov a výpočtu tepelných ztrát. Emisivita ovšem není konstantou v absolutním smyslu, protože jeví závislost na některých dalších fyzikálních veličinách. K těmto veličinám patří např. teplota povrchu, tvar povrchu (konvexní, konkávní), stav povrchu (hrubý, hladký), vlhkost povrchu, rozsah vyzařovaných vlnových délek tepelného záření, směr vyzařování apod. V této laboratorní práci se zaměříme především na materiálovou závislost integrální emisivity. Hodnoty emisivit budou určovány u vzorku betonu při různých teplotách pomocí dvou teploměrů, z nichž jeden je kontaktní a druhý bezkontaktní. Teploty obou teploměrů se budou lišit, poněvadž bezkontaktní teploměr je cejchován vzhledem k černému tělesu, jehož emisivita je rovna jedné. Tento bezkontaktní teploměr bude mít stabilně nastavenu hodnotu emisivity rovnu jedné, a proto teplotu, kterou bude ukazovat, budeme označovat jako T 1. Kontaktní teploměr nám ukáže skutečnou teplotu vzorku T. Teplota přečtená z bezkontaktního teploměru bude menší, než teplota zjištěná kontaktním teploměrem ( T 1 T ). Obě teploty budeme měřit současně, takže vzorek betonu bude vyzařovat tepelnou energii H T a tuto energii bude registrovat bezkontaktní teploměr H, tj. b T 1 H H b T T 1, T 1 T () Teplota T 1 je vlastně pomyslná teplota, kterou by mělo absolutně černé těleso, kdyby vyzařovalo energii odpovídající šedému tělesu se skutečnou teplotou T. Rovnice () nahrazuje šedé těleso pomyslným černým tělesem. Pomocí poměru teplot () budeme počítat emisivitu. Měření bude probíhat tak, že nejdříve zahřejeme vzorek betonu na teplotu, která bude nejméně o 5 o C nad pokojovou teplotou. K tomu účelu bude k dispozici malý vařič. Teplý 1
2 vzorek se pak pomocí termo-rukavice přemístí z vařiče na měřící místo a počká se, až se setrvačný vzrůst teploty vzorku zastaví. Jakmile teplota vzorku poklesne o 3 o C, zahájí se měření v předepsaných časových intervalech oběma teploměry současně. K tomuto způsobu měření je ale nutné dodat, že měření pomocí bezkontaktního teploměru je ovlivněno radiační teplotou okolí, která je blízká pokojové teplotě. Vliv radiační teploty na měření lze jen stěží eliminovat, a proto zahříváme vzorek dostatečně vysoko nad pokojovou teplotu, abychom dostatečně zesílili zářivý tepelný "signál" ze vzorku, který se tak stává dominantní, kdežto radiační "signál" z okolí je pak jen druhořadý a lze jej zanedbat. To ovšem platí jen pro dostatečně vysoké teploty vzorku. Jakmile se chladnoucí vzorek začne přibližovat pokojové teplotě, oba "signály" se stávají srovnatelně silné a při teplotě vzorku dostatečně blízké k pokojové teplotě začne radiační "signál" dominovat a emisivita vzorku je pak neměřitelná, protože se měří vlastně jen vliv okolí. Toto chování lze pozorovat na obou měřených teplotách T a T 1. S chladnoucím vzorkem se rozdíl mezi teplotami zmenšuje, až u teplot vzorku dostatečně blízkých k pokojové teplotě se hodnoty T a T 1 vyrovnávají, takže hodnota emisivity počítaná podle poměru () se přibližuje jedničce, což je známkou toho, že jsme se dostali do dominantního vlivu okolní radiační teploty a výsledky měření pak již nelze považovat za věrohodné. Úkol: 1) Stanovte hodnoty tepelné emisivity vzorku betonu při různých teplotách materiálu. ) Ověřte vliv radiační teploty okolí, tj. ověřte postupné vyrovnávání teplot T a T 1 v závislosti na chladnoucím vzorku. Vyneste graf závislosti T f( T), kde T T T 1. Graf proložte polynomem druhého stupně T c bt at (metoda nejmenších čtverců) a z podmínky T 0 vypočítejte teplotu Tmin, při které je experiment řízen dominantně radiační teplotou okolí. 3) Vyneste graf závislosti emisivity na teplotě vzorku f ( T ), proložte jej polynomem druhého stupně cbt at (metoda nejmenších čtverců). Technická literatura (viz tabulka 1) udává hodnoty emisivit betonu 0.88 až 0.93 při teplotě 7 o C. Položením 0,93 vypočítejte z rovnice polynomu teplotu vzorku T max, která v našem experimentu zaručuje pravděpodobnou emisivitu 0,93. Takto zjištěná teplota vzorku nás informuje o tom, kde začíná oblast dominantního působení teplotního "signálu" vzorku a kdy je upozaděn vliv radiační teploty laboratorní místnosti. ) Jakmile budete znát hodnotu teploty Tmax, zjistěte aritmetický průměr naměřených při teplotách vyšších než je teplota Tmax, tj. průměrné hodnotu emisivity okolí teploty T max závislosti na teplotě mění jen pomalu. z emisivit pro T T max. Tuto je možno přibližně považovat za průměrnou hodnotu odpovídající a potažmo celému měřenému intervalu teplot, neboť emisivita se v
3 Pomůcky: Vzorek betonu se zabudovaným čidlem kontaktního teploměru Dotykový teploměr Bezdotykový teploměr Postup měření: 1) Bezdotykový teploměr má podobu pistole se spouští dole na rukojeti. Po stisknutí spouště se rozsvítí dvě laserové stopy, které je nutné zaměřit na dvě červeně vyznačené skvrny na vzorku betonu. Stačí přidržet nad vzorkem z malé vzdálenosti tak, aby se laserové stopy kryli s červenými stopami na vzorku, pak počkat asi 3 vteřiny na ustálení hodnot, uvolnit spoušť, oddálit teploměr a přečíst teplotu na displeji teploměru, který podrží hodnotu teploty ještě malou chvíli, než pohasne. Bezdotykový teploměr je uložen celou dobu mimo vzorek a měří se s ním jen v okamžiku uplynutí dalšího časového intervalu. Vyzkoušejte si celou proceduru měření bezdotykovým teploměrem na studeném vzorku. Až si nacvičíte rychlé zaměření barevných skvrn na vzorku a pohotové ovládání a čtení z teploměru, pak pokračujte k bodu ). Při manipulaci s bezdotykovým teploměrem je třeba opatrnosti, aby laserové stopy nedopadly do lidského oka - hrozí poškození zraku. ) Přeneste dřevěný deskový podnos s celým zařízením k vařiči. Zapněte kontaktní teploměr. Chladný vzorek betonu opatrně přesuňte na plotnu vařiče a pak vařič zapněte na maximum. Vzorek betonu zahřívejte tak dlouho, až kontaktní teploměr ukáže hodnotu 65 o C, pak okamžitě vařič vypněte, ihned uchopte horký vzorek pomocí termo-rukavice a přemístěte jej na dřevěný měřící podnos a vraťte se s ním na své místo v laboratoři. Zde vyčkejte, až se setrvačný vzrůst teploty vzorku zastaví. Jakmile teplota vzorku poklesne o 3 o C, zahajte měření - v předepsaných časových intervalech zapisujte do tabulky teploty zjištěné na obou teploměrech (viz tabulka 1 s příkladem měření). Publikované hodnoty emisivit některých materiálů s teplotou 7 o C. (Nebyl uveden stav povrchu ani metoda měření). Materiál Emisivita Ocel (leštěná) 0,10 Hliníková fólie 0,05 Hliník(eloxovaný) 0,15-0,69 Nerezová ocel (leštěná) 0,0 Nikl (oxidovaný) 0,37 Látka textilní 0,90 Dřevo 0,8-0,9 Papír 0,9-0,97 Beton 0,88-0,93 Cihla (červená) 0,
4 Příklad měření: Tab. 1 Naměřené hodnoty teplot v průběhu chladnutí vzorku betonu (pokojová teplota o C, vlhkost vzduchu 50% ). t/min t/s T / o C T ε=1 / o C T=T- T ε=1 / o C ε=[(73,15+ T ε=1 )/(73015+T)] ,9 68,1 5,8 0, ,7 6,8 6,9 0, , 6,1 7,3 0, ,5 6,5 0, ,8 58, 6,6 0, , 55,7 5,7 0, , 53,5 5,7 0, , 5 5, 0, ,3 50,1 5, 0, ,3 8,,9 0, ,6 7,, 0, ,9 5,7, 0, ,5,6 3,9 0, , 3,6 0, ,7 3,7 0, ,6 0, 3, 0, , 38,8,6 0, ,5 37,,3 0, , ,5 3,9 1,6 0, ,3 3 1,3 0, , 3,1 1,3 0, ,7 9, 0,5 0, ,8 7,8 0 1 Obr. 1 Závislost teplotního rozdílu na teplotě vzorku. T 0, 0003T 0,3598T 8, 6331 T 0 Tmin 8,6 o C
5 Obr. Závislost emisivity na teplotě vzorku. 5 3, T 0, 0076T 1, ,93 T max 63, o C 0,91... pro T Tmax Diskuse výsledů měření:... 5
Měření teploty v budovách
Měření teploty v budovách Zadání 1. Seznamte se s fyzikálními principy a funkčností předložených senzorů: odporový teploměr Pt100, termistor NCT, termočlánek typu K a bezdotykový úhrnný pyrometr 2. Proveďte
VícePROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VíceInfračervený teploměr 759-016
Vlastnosti: 759-016 - Přesné bezdotykové měření - Vestavěné laserové ukazovátko - Volitelný údaj ve stupních Celsia nebo Fahrenheita - Údaj maximální a minimální naměřené teploty - Zajištění spouště -
Více1 Bezkontaktní měření teplot a oteplení
1 Bezkontaktní měření teplot a oteplení Cíle úlohy: Cílem úlohy je seznámit se s technologií bezkontaktního měření s vyhodnocováním tepelné diagnostiky provozu elektrických zařízení. Součastně se seznámit
VíceAX-7520. Návod k obsluze. UPOZORNĚNÍ: Tento návod popisuje tři modely, které jsou odlišeny označením model A, B a C. A B C.
AX-7520 UPOZORNĚNÍ: Tento návod popisuje tři modely, které jsou odlišeny označením model A, B a C. A B C Nastavitelná emisivita Teplotní alarm Návod k obsluze OBSAH 1. Bezpečnostní informace...3 2. Bezpečnostní
VícePYROMETR AX-6520. Návod k obsluze
PYROMETR AX-6520 Návod k obsluze OBSAH 1. Bezpečnostní informace... 3 2. Poznámky... 3 3. Popis součástí měřidla... 3 4. Popis displeje LCD... 4 5. Způsob měření... 4 6. Obsluha pyrometru... 4 7. Poměr
VíceTeplota je nepřímo měřená veličina!!!
TERMOVIZE V PRAXI Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/48 Teplota je nepřímo měřená veličina!!! Základní rozdělení senzorů teploty: a) dotykové b) bezdotykové 2/48 1
VíceFyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
VíceA:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)
A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu
VíceFyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření teploty wolframového vlákna Datum měření: 1. 4. 2016 Doba vypracovávání: 12 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání
Víced p o r o v t e p l o m ě r, t e r m o č l á n k
d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní
VíceU218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
VíceBezkontaktní me ř ení teploty
Bezkontaktní me ř ení teploty I když je bezkontaktní měření teploty velmi jednoduché - opravdu stačí "namířit na měřený objekt a na displeji odečíst teplotu" - pro dosažení správných hodnot, co nejvyšší
VíceBezkontaktní termografie
Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření
VíceAnalýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva
Analýza sálavého toku podlahového a stropního vytápění Výzkumná zpráva Ing. Daniel Adamovský, Ph.D. Ing. Martin Kny, Ph.D. 20. 8. 2018 OBSAH 1 PŘEDMĚT ZAKÁZKY... 3 1.1 Základní údaje zakázky... 3 1.2 Specifikace
Vícee, přičemž R Pro termistor, který máte k dispozici, platí rovnice
Nakreslete schéma vyhodnocovacího obvodu pro kapacitní senzor. Základní hodnota kapacity senzoru pf se mění maximálně o pf. omu má odpovídat výstupní napěťový rozsah V až V. Pro základní (klidovou) hodnotu
VíceNÁVOD AC 2043Q. Laserový teploměr. ACI - Auto Components International, s.r.o. 1.10.2009
NÁVOD AC 2043Q 1.10.2009 Laserový teploměr laserový teploměr (-35C -> +270C) Vlastnosti produktu NÁVOD Po otevření výrobku zkontrolujte úplnost dodaného balení (baterie nemusí být součástí výrobku) 1.
Více11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,
VíceM e P S. Vyzařující plocha S je konstantní stejně jako σ a pokud těleso odvádí energii jen zářením
Co vše umí žárovka!(?) Co je žárovka Žárovka je vlákno v baňce ve které je plyn nebo vakuum. Plynem jsou plněné větší žárovky a menší jsou většino u vakuové. Vláknem prochází proud a vlákno se tím zahřívá
VíceVyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě.
Klíčová slova Vyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě. Princip Podle Stefanova-Boltzmannova zákona vyzařování na jednotu plochy a času černého tělesa roste se čtvrtou
VíceÚstav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní - 1 18-1p. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Úvodní pokračování - 1. díl o A emisivních principech snímačů VR -
Více3. STANOVENÍ RYCHLOSTI PROPUSTNOSTI PRO PLYNY U PLASTOVÝCH FÓLIÍ
3. STANOVENÍ RYCHLOSTI PROPUSTNOSTI PRO PLYNY U PLASTOVÝCH FÓLIÍ Úkol: Úvod: Stanovte rychlost propustnosti plynů balící fólie pro vzduch vakuometru DR2 Většina plastových materiálů vykazuje určitou propustnost
Více16. MĚŘENÍ TEPLOTNÍ VYZAŘOVACÍ CHARAKTERISTIKY VOLFRAMOVÉHO VLÁKNA PYROMETREM
16. MĚŘENÍ TEPLOTNÍ VYZAŘOVACÍ CHARAKTERISTIKY VOLFRAMOVÉHO VLÁKNA PYROMETREM Měřící potřeby 1) transformátor 220/6 V 2) autotransformátor 3) žárovka 4) pyrometr ve stojanu 5) voltmetr 6) ampérmetr Obecná
Více9. MĚŘENÍ TEPELNÉ VODIVOSTI
Měřicí potřeby 9. MĚŘENÍ TEPELNÉ VODIVOSTI 1) střídavý zdroj s regulačním autotransformátorem 2) elektromagnetická míchačka 3) skleněná kádinka s olejem 4) zařízení k měření tepelné vodivosti se třemi
VíceFyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty
Ústav fyzikální elektroniky PřF MU http://www.physics.muni.cz/kof/vyuka/ Fyzikální praktikum pro nefyzikální obory Úloha č. 5: Měření teploty 1. Úvod jarní semestr 2012 Teplota patří k nejdůležitějším
VícePYROMETR S TEPLOTNÍ SONDOU AX Návod k obsluze
PYROMETR S TEPLOTNÍ SONDOU AX-5002 Návod k obsluze 1.Úvod Děkujeme vám za nákup pyrometru s teplotní sondou. Před zahájením práce věnujte několik minut přečtení návodu k obsluze, abyste se co nejdůkladněji
VíceOtáčkoměr MS6208B R298B
Otáčkoměr MS6208B R298B Návod k použití 1 MS6208B je bezkontaktní otáčkoměr se stabilním provedením, vysokou spolehlivostí a vysokou bezpečností. Jádrem přístroje je vysokorychlostní integrovaný obvod.
VíceRuční bezdotykový teploměr Více jistoty při měření díky dvoubodovému laseru
testo 830-T4 Ruční bezdotykový teploměr Více jistoty při měření díky dvoubodovému laseru testo 830-T4 ruční bezdotykový teploměr Teploměr testo 830-T4 je profesionálním řešením pro bezdotykové měření teploty
VíceInfračervený teploměr
Infračervený teploměr testo 830 rychlé, bezdotykové měření povrchové teploty Laserové označení místa měření a velká optika pro přesné měření i při větších vzdálenostech C Rychlé zjištění měřené hodnoty
VíceMěření součinitele smykového tření dynamickou metodou
Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce
VíceVyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.
oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00
VíceVnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.
VíceTERMOGRAFIE A PRŮVZDUŠNOST LOP
1 TERMOGRAFIE A PRŮVZDUŠNOST LOP 5 5 národní konference LOP 20.3. 2012 Clarion Congress Hotel Praha **** národ Ing. Viktor ZWIENER, Ph.D. 2 prodej barevných obrázků 3 prodej barevných obrázků 4 laický
Vícepracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti
VíceInfračervený teploměr
Infračervený teploměr testo 830 rychlé, bezdotykové měření povrchové teploty C Laserové označení místa měření a optika pro přesné měření i při větších vzdálenostech Rychlé zjištění měřené hodnoty dvěmi
VíceInfračervený teploměr
Infračervený teploměr testo 830 rychlé, bezdotykové měření povrchové teploty Laserové označení místa měření a velká optika pro přesné měření i při větších vzdálenostech C Rychlé zjištění měřené hodnoty
Více102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
VíceTERMOGRAFIE A PRŮVZDUŠNOST LOP
1 TERMOGRAFIE A PRŮVZDUŠNOST LOP 24.4. 2012 Brno IBF Stavební veletrh Ing. Viktor ZWIENER, Ph.D. 2 prodej barevných obrázků 3 prodej barevných obrázků 4 laický pohled 5 termografie, termovize, termodiagnostika
Více25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory
25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem
VíceI. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU
I. diskusní fórum K projektu Cesty na zkušenou Na téma Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) které se konalo dne 30. září 2013 od 12:30 hodin v místnosti H108
VíceLaboratorní práce č. 2: Určení měrné tepelné kapacity látky
Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA
VícePříručka pro infračervenou měřicí techniku
Příručka pro infračervenou měřicí techniku 3. přepracované vydání Příručka pro infračervenou měřicí techniku Informace shromážděné naší firmou jsou uvedeny s veškerou vynaloženou pečlivostí a s odbornými
Více1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.
V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:
VíceLaboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
VíceLABORATORNÍ CVIČENÍ Z FYZIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA APLIKOVANÉ MATEMATIKY FAKULTA DOPRAVNÍ LABORATORNÍ CVIČENÍ Z FYZIKY Jméno Jana Kuklová Stud. rok 7/8 Číslo kroužku 2 32 Číslo úlohy 52 Ročník 2. Klasifikace
VícePrůzkum kvality termohrnků
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.128/02.0055 Průzkum kvality termohrnků (laboratorní práce) Označení: EU-Inovace-BFCh-F-04 Předmět: Biologická, fyzikální a chemická
VícePozorování emise a absorpce tepelného záření tělesy
fyzika Pozorování emise a absorpce tepelného záření tělesy Akademie věd ČR hledá mladé vědce Úvodní list Předmět: Fyzika Cílová skupina: nebo 2. ročník SŠ/G Délka trvání: 90 min. Název hodiny: Pozorování
VíceFyzika. Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti. Mgr. Libor Lepík. Student a konkurenceschopnost
www.projektsako.cz Fyzika Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti Lektor: Projekt: Reg. číslo: Mgr. Libor Lepík Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075
Víceosdílení tepla zářením - radiace
osdílení tepla zářením - radiace Stefanova-Bolzmannova konstanta Konstanta záření dokonale černého tělesa 4 T E = E. cr. T = E. co' 00. ( ) cr = 567 0'8, W m'2 K-4 Co = 5,67 W m'2 K'4 E E=-.- E o 4 řenášený
VíceŠkolení CIUR termografie
Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie
VíceMěření měrné tepelné kapacity látek kalorimetrem
Měření měrné tepelné kapacity látek kalorimetrem Problém A. Změření kapacity kalorimetru (tzv. vodní hodnota) pomocí elektrického ohřevu s měřeným příkonem. B. Změření měrné tepelné kapacity hliníku směšovací
VíceDětský teploměr. Uživatelská příručka. a) Stisk na 3 s režim měření: B/O = Body/ /Object (Tělo/Předmět) stisk Zapnout/Vypnout displej c) Mínus
Dětský teploměr Uživatelská příručka 1. Úvod Popis přístroje Funkční tlačítko 1 Funkční tlačítko 2 Funkční tlačítko 3 a) Stisk na 3 s režim měření: B/O = Body/ /Object (Tělo/Předmět) b) Krátký stisk Zapnout/Vypnout
VíceZáklady spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
VíceBEZDOTYKOVÉ TEPLOMĚRY
Tento dokument je k disposici na internetu na adrese: http://www.vscht.cz/ufmt/kadleck.html BEZDOTYKOVÉ TEPLOMĚRY Bezdotykové teploměry doznaly v poslední době značného pokroku a rozšíření díky pokroku
VíceT- MaR. Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. Podmínky názvy. 1.c-pod. ZS 2015/ Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Podmínky názvy 1.c-pod. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. MĚŘENÍ praktická část OBECNÝ ÚVOD Veškerá měření mohou probíhat
VíceFYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů
VíceMěření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
VíceBezkontaktní teploměry pyrometry AX-7530. Návod k obsluze
Bezkontaktní teploměry pyrometry AX-7530 Návod k obsluze Obsah 1. ÚVOD... 3 2. FUNKCE... 3 3. POUŽITÍ... 3 4. BEZPEČNOST... 3 5. VZDÁLENOST A MĚŘENÁ PLOCHA... 4 6. TECHNICKÉ ÚDAJE... 4 7. POPIS ČELNÍHO
VíceBezkontaktní pyrometr s nastavitelnou emisivitou AX-7531. Návod k obsluze
Bezkontaktní pyrometr s nastavitelnou emisivitou AX-7531 Návod k obsluze OBSAH ÚVOD... 3 VLASTNOSTI... 3 ŠIROKÝ ROZSAH POUŽITÍ... 3 BEZPEČNOST... 3 VZDÁLENOST A MĚŘENÁ PLOCHA... 4 SPECIFIKACE... 4 POPIS
VíceČím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření.
KVANTOVÁ FYZIKA 1. Záření tělesa Částice (molekuly, ionty) pevných a kapalných látek, které jsou zahřáté na určitou teplotu, kmitají kolem rovnovážných poloh. Při tomto pohybu kolem nich vzniká proměnné
VíceFyzikální praktikum pro nefyzikální obory. Úloha č. 5: Měření teploty
Ústav fyzikální elektroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum pro nefyzikální obory 1 Úvod Úloha č. 5: Měření teploty jarní semestr 2015 Teplota patří k nejdůležitějším
VíceFyzikální praktikum z molekulové fyziky a termodynamiky KEF/FP3. Teplotní záření, Stefan-Boltzmannův zákon
Fyzikální praktikum z molekulové fyziky a termodynamiky KEF/FP3 Teorie Teplotní záření, Stefan-Boltzmannův zákon Lze říci, že látky všech skupenství vyzařují elektromagnetické vlnění, jehož vznik souvisí
Více17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA
CELÁ ČÍSLA 1 Teploměr na obrázku ukazuje teplotu 15 C Říkáme: je mínus 15 stupňů Celsia je 15 stupňů pod nulou je 15 stupňů mrazu Ukaž na teploměru: 10 C, 8 C, +3 C, 6 C, 25 C, +36 C 2 Teploměr Teploměr
VíceObrázek 8.1: Základní části slunečního kolektoru
49 Kapitola 8 Měření účinnosti slunečního kolektoru 8.1 Úvod Sluneční kolektor je zařízení, které přeměňuje elektromagnetické sluneční záření na jiný druh energie. Většinou jde o přeměnu na elektrickou
VíceMěření odrazu světla
Úloha č. 5 Měření odrazu světla Úkoly měření: 1. Proměřte velikost činitele odrazu světla pro různě barevné povrchy v areálu školy dvěma různými metodami. 2. Hodnoty naměřených průměrných činitelů odrazu
VícePracovní list vzdáleně ovládaný experiment. Obr. 1: Hodnoty součinitele odporu C pro různé tvary těles, převzato z [4].
Pracovní list vzdáleně ovládaný experiment Aerodynamika (SŠ) Větrný tunel Fyzikální princip Aerodynamika je věda, která se zabývá obtékáním vzduchu kolem těles. Při pohybu tělesa vznikají v důsledku vnitřního
VíceProjekt FRVŠ č: 389/2007
Závěrečné oponentní řízení 7.2.2007 Projekt FRVŠ č: 389/2007 Název: Řešitel: Spoluřešitelé: Pracoviště: TO: Laboratoř infračervené spektrometrie Doc. Ing. Milan Honner, Ph.D. Ing. Petra Vacíková, Ing.
VíceStanovení měrného tepla pevných látek
61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,
VíceIdentifikátor materiálu: ICT 2 54
Identifikátor ateriálu: ICT 2 54 Registrační číslo projektu Název projektu Název příjece podpory název ateriálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního ateriálu Druh interaktivity
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:
VíceOddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:
VíceTermokamera ve výuce fyziky
Termokamera ve výuce fyziky PaedDr. Jiří Tesař, Ph.D. Katedra aplikované fyziky a technické výchovy, Fakulta pedagogická, Jihočeská univerzita v Českých Budějovicích Jeronýmova 10, 371 15 České Budějovice
VíceTeorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 Teorie měření a regulace Praxe názvy 1. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. OBECNÝ ÚVOD - praxe Elektrotechnická měření mohou probíhat pouze při
VíceTechnická měření v bezpečnostním inženýrství. Měření teploty, měření vlhkosti vzduchu
Technická měření v bezpečnostním inženýrství Čís. úlohy: 4 Název úlohy: Měření teploty, měření vlhkosti vzduchu Úkol měření a) Změřte teplotu topné desky IR teploměrem. b) Porovnejte měření teploty skleněným
VíceFJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: 29. 4. 2009 Pracovní skupina: 3, středa 5:30 Spolupracovali: Monika Donovalová, Štěpán Novotný Jméno: Jiří Slabý Ročník, kruh:. ročník, 2. kruh
Více2 Nd:YAG laser buzený laserovou diodou
2 Nd:YAG laser buzený laserovou diodou 15. května 2011 Základní praktikum laserové techniky Zpracoval: Vojtěch Horný Datum měření: 12. května 2011 Pracovní skupina: 1 Ročník: 3. Naměřili: Vojtěch Horný,
Více6. STUDIUM SOLÁRNÍHO ČLÁNKU
6. STUDIUM SOLÁRNÍHO ČLÁNKU Měřicí potřeby 1) solární baterie 2) termoelektrická baterie 3) univerzální měřicí zesilovač 4) reostat 330 Ω, 1A 5) žárovka 220 V / 120 W s reflektorem 6) digitální multimetr
Více4. STANOVENÍ PLANCKOVY KONSTANTY
4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa
Vícepracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Analytická geometrie lineárních útvarů Mirek Kubera žák řeší analyticky polohové a metrické úlohy o lineárních útvarech v rovině a prostoru souřadnice,
VíceTeploměr - Bezkontaktní zdravotní infračervený 32 C~43 C s LCD displejem
1507632426 VÝROBNÍ ČÍSLO Teploměr - Bezkontaktní zdravotní infračervený 32 C~43 C s LCD displejem 1. POPIS Bezkontaktní zdravotní infračervený teploměr je speciálně navržen tak, aby přesně změřil lidskou
VíceBalmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
VíceFyzikální praktikum III
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum III Úloha č. 19 Název úlohy: Měření indexu lomu Jaminovým interferometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 24.2.2016 Datum odevzdání:...
VíceLaboratorní práce Inspektorem staveb kolem nás
Zkvalitnění vzdělávání a rozvoj praktických dovedností studentů SŠ v oborech chemie a fyziky CZ.04.1.03/3.1.15.2/0154 Laboratorní práce Inspektorem staveb kolem nás Co je třeba znát V oblasti vytápění
VíceZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
VíceZobrazení v IR oblasti s využitím termocitlivých fólií
Zobrazení v IR oblasti s využitím termocitlivých fólií ZDENĚK BOCHNÍČEK Přírodovědecká fakulta MU, Brno, Kotlářská 2, 611 37 Úvod Pokusy s infračerveným zářením se staly tématem již několika příspěvků
VíceTERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
VíceOvěření funkčnosti ultrazvukového detektoru vzdálenosti
1 Portál pre odborné publikovanie ISSN 1338-0087 Ověření funkčnosti ultrazvukového detektoru vzdálenosti Plšek Stanislav Elektrotechnika 06.12.2010 Práce se zabývá ověřením funkčnosti ultrazvukového detektoru
VíceTEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
VíceMĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření
MĚŘENÍ RELATIVNÍ VLHKOSTI - pro měření relativní vlhkosti se používají metody měření obsahu vlhkosti vplynech Psychrometrické metody Měření rosného bodu Sorpční metody Rovnovážné elektrolytické metody
VíceTest laminátové plovoucí podlahy vyhřívané folií ECOFILM
Test laminátové plovoucí podlahy vyhřívané folií ECOFILM 1. Účel Testu: Zjištění dynamiky náběhu teploty povrchu podlahy a teploty bezprostředně na povrchu folie. Změření maximální dosažené teploty na
VíceSNÍMAČE PRO MĚŘENÍ TEPLOTY
SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.
VícePRAKTIKUM IV Jaderná a subjaderná fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A15 Název: Studium atomových emisních spekter Pracoval: Radim Pechal dne 19. listopadu
Více1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.
1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí
VíceÚloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy
Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel
Více4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
VíceTechnologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
VíceLaboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ
Laboratorní úloha č 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ 1 Teoretický úvod Pro laboratorní a průmyslové měření teploty kapalných a plynných medií v rozsahu
Více5. MĚŘENÍ TEPLOTY TERMOČLÁNKY
. MĚŘENÍ TEPLOTY TEMOČLÁNKY Úkol měření Ověření funkce dvoudrátového převodníku XT pro měření teploty termoelektrickými články (termočlánky) a kompenzace studeného konce polovodičovým přechodem PN.. Ověřte
VíceÚloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku
Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Teorie První termodynamický zákon je definován du dq dw (1) kde du je totální diferenciál vnitřní energie a dq a dw jsou neúplné
Více