Úvodní informace. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :18
|
|
- Marcela Krausová
- před 6 lety
- Počet zobrazení:
Transkript
1 O předmětu Úvodní informace Matematické modelování Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 1. přednáška 11MSP 2019 verze: :18
2 O předmětu Obsah přednášky 1 O předmětu Základní organizační informace Seznam literatury Hodnocení předmětu Domácí příprava Vstupní znalosti Výstupní znalosti
3 O předmětu Základní informace Přednášející: Ing. Bohumil Kovář, Ph.D. přednášky út. 13:15-14:45 a 15:00-16:30 Cvičící: Mgr. Lucie Kárná, Ph.D. (karna@fd.cvut.cz) Ing. Alexeeva Elena (alexeele@fd.cvut.cz) Erasmus a výuka v angličtině: Ing. Bohumil Kovář, Ph.D. (kovar@fd.cvut.cz) Garant předmětu: prof. RNDr. Miroslav Vlček, DrSc. (vlcek@fd.cvut.cz)
4 O předmětu Základní informace Pokračování Domovská stránka předmětu MSP: Cvičení: Pravidla jsou na stránkách předmětu. Cvičení pro druhý zápis: Vzhledem ke kapacitě počítačových laboratoří není možné, aby studenti opakující předmět navštěvovali cvičení. Budou odevzdávat elektronicky zadávané domácí úlohy a v průběhu semestru pro ně vypíšeme dva termíny, na kterých si napíšou písemné testy.
5 O předmětu Literatura I 1 CARLSON, Gordon E. Signal and Linear System Analysis: with Matlab. 2. vyd. New York: John Wiley & Sons, 1998, 768 s. ISBN CHATURVEDI, Devendra K. Modeling and simulation of systems using MATLAB and Simulink. Boca Raton: CRC Press, 2009, 733 s. ISBN ALLEN, Roy G. D. Matematická ekonomie. Praha: Academia, 1971, 782 s. 4 OPPENHEIM, Alan V., Alan S. WILLSKY a Syed Hamid NAWAB. Signals and Systems. 2. vyd. Upper Saddle River: Prentice Hall, 1997, 957 s. ISBN KARBAN, Pavel. Výpočty a simulace v programech Matlab a Simulink. Brno: Computer Press, ISBN
6 O předmětu Literatura II 6 Informace o prostředí MATLAB MatIntro.pdf 7 Matematika-opakování
7 O předmětu Zápočet a zkouška Celkový počet bodů, které studenti mohou během semestru získat, je 40. Ke zkoušce se z toho započítá maximálně 30. Zápočet udělujeme od 25 bodů výše. Body jsou rozděleny následovně: 10 bodů za 3 testy domácí přípravy, 4 body za tři automaticky hodnocené domácí úkoly, 12 bodů za dva praktické testy z Matlabu a Simulinku, 14 bodů za závěrečný test (dva početní příklady po pěti bodech a dvě doplňkové otázky za dva body).
8 O předmětu Zápočet a zkouška Pokračování V průběhu semestru může být vyhlášeno několik bonusových úloh, jejichž úspěšní a nejrychlejší řešitelé budou odměněni až dvěma bonusovými body. Bonusové body se přičítají k celkovému bodovému zisku v semestru. Bodování zaručuje, že v případě získání zápočtu (25 bodů a výše) můžete automaticky předmět absolvovat s klasifikací dostatečně, případně uspokojivě. V případě, že máte zájem o lepší hodnocení, můžete zbylých 20 bodů získat u zkoušky.
9 O předmětu Domácí příprava Témata domácích příprav a na ně navázaných testů: 1. Typy systémů 2. Laplaceova transformace, zpětná Laplaceova transformace a řešení diferenciálních rovnic 3. Z-transformace, zpětná Z-transformace a řešení diferenčních rovnic Domácí přípravy jsou zároveň vaší přípravou na závěrečný test.
10 O předmětu Výsledky 2017/2018 Klasifikováno A E Nezapočteno Počet studujících dle KOS ke dni 20. února 2019 = 97
11 O předmětu Výsledky 2017/2018
12 O předmětu Výsledky 2017/2018 A 12 B C A B C Nulová účast na cvičeních a testech Přestalo docházet na cvičení a testy Nesplnilo požadavky udělení zápočtu
13 O předmětu Znalosti vstupní Toto jsou znalosti, u nichž předpokládáme, že je ovládáte. Jejich neznalost se neomlouvá. 1 Znalost základních pojmů a operací s vektory a maticemi 2 Znalost práce s komplexními čísly a základů funkcí komplexní proměnné 3 Znalost vlastností trigonometrických, hyperbolických, exponenciálních funkcí 4 Znalost výpočtu součtů nekonečné řady, derivace a integrálů funkce jedné proměnné 5 Znalost práce se zlomky, algebraickými výrazy a běžné středoškolské matematiky 6 Základní znalosti prostředí SCILAB/MATLAB (v rozsahu předmětů 11PT a 11STS)
14 O předmětu Znalosti výstupní 1 Znalost použití Laplaceovy transformace pro řešení diferenciálních rovnic popisujících spojité lineární časově invariantní systémy 2 Znalost použití Z-transformace pro řešení diferenčních rovnic popisujících diskrétní lineární časově invariantní systémy 3 Znalost nalezení stavového popisu ze slovního zadání dynamického systému 4 Znalost použití pojmu stabilita řešení a metody ověření stability dynamického systému 5 Znalost prostředí MATLAB/SIMULINK pro modelování dynamických systémů a řešení soustav nelineárních diferenciálních a diferenčních rovnic
15 Obsah přednášky 2 Matematické modelování systémů Jaké cíle může modelování dosáhnout? Klasifikace modelů Fáze modelování Model systému Vnější popis systémů Vnitřní popis systémů 3 Příklady systémů 4 Iterace diferenční rovnice
16 Sestavení Studium Testování Použití Tento proces opakovaných iterací je pro modelovací projekty typický a je jedním z nejužitečnějších aspektů modelování, pokud jde o lepší pochopení toho, jak systém funguje. Toto rozdělení činnosti v oblasti modelování budeme používat i nadále a bude tvořit strukturu pro zbytek tohoto kurzu.
17 Systém Definition (Systém) Charakteristické vlastnosti, se kterými vystačíme při modelování: systém považujeme za část prostředí, kterou lze od jejího okoĺı oddělit fyzickou nebo myšlenkovou hranicí, systém se skládá z podsystémů, vzájemně propojených součástí. Je to část našeho světa, která se svým okoĺım nějak interaguje, například prostřednictvím vstupu a výstupu.
18 Co je modelování? Model Za model můžeme pokládat náhradu nebo zjednodušení skutečného objektu reálného světa z hlediska jeho vlastností a funkčnosti. Modelování je možné pouze pokud zavedeme určitý stupeň abstrakce a aproximace.
19 Diskrétní a spojitý model vstup? výstup u(t) u[n] spojitý systém diskrétní systém y(t) y[n]
20 Tvorba modelu
21 Tvorba modelu Při analýze navrženého modelu chceme učinit co možná nejsilnější rozhodnutí na základě malého množství dat. Správnost našeho návrhu je nutné statisticky vyhodnotit. Problémy: 1 Významné diference ve sledovaných parametrech mohou být způsobeny špatným návrhem modelu, případně měřením dat 2 Je těžké rozlišit, zda diference v datech jsou skutečné nebo způsobené náhodným vlivem.
22 Proč modelování systémů? Otázky: Jak ověříme správnost výpočtu rychlosti šíření ptačí chřipky? Jak ověříme pevnost nového mostu? Jak ověříme bezpečnost softwaru? Pokud nemůžeme předem prokázat určité vlastnosti na samotného systému, prokážeme hledané vlastnosti na jeho modelu!
23 Modely reálného světa Antoni Gaudí
24 Modely reálného světa Antoni Gaudí
25 Modely reálného světa VW Polo crash test
26 Vnější popis systémů Vnější popis vychází z popisu systému vektorem vstupu u a vektorem výstupu y. Systém tak chápeme jako černou skříňku, o jejíchž vlastnostech se dozvíme pouze tehdy, jestliže budeme zkoumat její reakci na vnější události (signály, data). Vnější model popisujeme diferenciální rovnicí pro systémy se spojitým časem a diferenční rovnicí pro systémy s diskrétním časem. Uvedená rovnice je obecně vyššího řádu, než 1.
27 Vnitřní popis systémů Vnitřní, tzv. stavový popis systému používá k popisu dynamiky systému vektor vnitřních stavů x. Vektor vstupů u a vektor výstupních veličin y jsou druhotné veličiny vnitřního popisu. Stavové modely popisujeme soustavou diferenciálních rovnic prvního řádu pro systémy se spojitým časem a soustavou diferenčních rovnic prvého řádu pro systémy s diskrétním časem.
28 Role matematiky Modelování není samospasitelné: výstupy modelu je vždy třeba ověřovat, možné chyby jsou jak v modelu, tak i v jeho výpočtu. Verifikace: Počítáme správný model. Validace: Model počítá správně.
29 Obsah přednášky 2 Matematické modelování systémů 3 Příklady systémů 4 Iterace diferenční rovnice
30 Zombie apokalypsa SIR model (1/8)
31 Zombie apokalypsa SIR model(2/8) Rovnice SIR modelu S (t) = αi (t)s(t) R (t) = βi (t) I (t) = S (t) R (t) = αi (t)s(t) βi (t) S(t) I (t) R(t) počet zdravých jedinců počet infikovaných počet mrtvých nebo imunních S(t) + I (t) + R(t) = c S (t) + I (t) + R (t) = 0
32 Zombie apokalypsa SIR model - Numerické řešení (3/8) Co nám tyto rovnice říkají? Předpokládejme, populaci S(0) = zdravých jedinců, I (0) = 10 Zombies a R(0) = 10 imunních s mírou šíření nákazy α = a úmrtností β = 0.1. V čase t = 0, tedy dnes: S (0) = αi (0)S(0) = 100 R (0) = βi (0) = 1 I (0) = S (0) R (0) = αi (0)S(0) βi (0) = 99 První den Zombie apokalypsy se počet zdravých jedinců sníží o 100, jeden člověk zemře a množství infikovaných vzroste o 99.
33 Zombie apokalypsa SIR model - Numerické řešení(4/8) Zítra, v čase t = 1 můžeme tedy očekávat S(1) S(0) + S (0) = R(1) R(0) + R (0) = 11 I (1) I (0) + I (0) = 109 a S (1) = αi (1)S(1) = R (1) = βi (1) = 10.9 I (1) = S (1) R (1) = αi (1)S(1) βi (1) =
34 Zombie apokalypsa SIR model - Numerické řešení (5/8) Rovnice nám umožňují odhadovat změny S, I, R i v minulosti. Pokud známe stav apokalypsy dnes (v čase t = 0), pak můžeme odhadnout hodnoty včera (v čase t = 1) jako S( 1) S(0) S (0) R( 1) R(0) R (0) I ( 1) I (0) I (0) Takto můžeme numericky analyzovat změny S, I a R v čase a predikovat, jak se bude apokalypsa vyvíjet. Jedná se o rekurentní výpočty, které jsou s použitím počítače velmi snadné.
35 Zombie apokalypsa SIR model - Simulink (6/8)
36 Zombie apokalypsa SIR model - Simulink (7/8) 10 x Time offset: 0 α = , β = 0.11, S(0) = , I (0) = R(0) = 10
37 Zombie apokalypsa SIR model - Analytické řešení (8/8) Analýza rovnice pro infikované I (t) = αs(t)i (t) βi (t) = (αs(t) β)i (t) Pokud S(t) > β α pak I (t) > 0 a tedy apokalypsa se zhoršuje a počet Zombies roste, S(t) < β α pak I (t) < 0 situace se lepší a počet Zombies klesá, β α je práh. Počet infikovaných tedy bude klesat, pokud se nám podaří snížit hodnotu koeficientu α, případně i β.
38 Příklady systémů Příklad variace ceny (1/2) Rovnice nabídky Nabídka dnes závisí na včerejší ceně a to tak, že nabídka stoupá s rostoucí cenou. Pro C > 0 platí n[k] = Cc[k 1] + Au[k]. Rovnice poptávky Poptávka dnes závisí na dnešní ceně a to tak, že poptávka klesá s rostoucí cenou. Pro D > 0 platí p[k] = Dc[k] + Bu[k].
39 Příklady systémů Příklad variace ceny (2/2) Rovnost nabídky a poptávky n[k] = p[k] pak vede na diferenční rovnici prvního řádu c[k] + C D B A c[k 1] = D u[k].
40 Příklady systémů Příklad variace ceny nabídka a poptávka cena
41 Rozdíl mezi lineárním a linearizovaným P D1 D2 S P2 P1 Q1 Q2 Q
42 Obsah přednášky 2 Matematické modelování systémů 3 Příklady systémů 4 Iterace diferenční rovnice Iterace rovnice ceny
43 Iterace rovnice ceny Diferenční rovnici, kterou jsme odvodili c[k] + C D B A c[k 1] = D x[k] přepíšeme do kanonického tvaru y[k] + γy[k 1] = βu[k] a postupnými iteracemi nalezneme pro u[k] = 1[k] a počáteční podmínku y[ 1] = 0
44 Iterace rovnice ceny Pro k = 0: y[0] + γy[ 1] = βu[0] y[0] = β γy[ 1] = β Pro k = 1: y[1] + γy[0] = βu[1] y[1] = β γy[0] = β βγ
45 Iterace rovnice ceny Pro k = 2: y[2] + γy[1] = βu[2] y[2] = β γy[1] = β βγ + βγ 2 Pro obecné n: y[n] + γy[n 1] = βu[n] y[n] = β γy[n 1] = β ( 1 γ + γ ( γ) n)
46 Iterace rovnice ceny y[n] = β n ( γ) m = β 1 ( γ)n γ m=0 = β 1 + γ + βγ 1 + γ ( γ)n nabídka a poptávka cena
47 Na závěr Děkuji za pozornost. Až budete utíkat, prosím opatrně.
Úvodní informace. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :47
O předmětu Úvodní informace Matematické modelování Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 1. přednáška 11MSP 2018 verze:
(K611MSAP) prof. Miroslav Vlček. 24. února Ústav aplikované matematiky Fakulta dopravní ČVUT
(K611MSAP) Ústav aplikované matematiky Fakulta dopravní ČVUT 24. února 2011 K611MSAP Základní informace Přednášející: prof. RNDr. Miroslav Vlček, DrSc. (vlcek@fd.cvut.cz) přednášky: čt. 8.00-9.30 & 9.45-11.15
Úvodní informace Matematické modelování Modelování systémů a procesů (11MSP)
Úvodní informace Matematické modelování Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl 1. přednáška 11MSP čtvrtek 20. února 2014 verze: 2014-03-05 15:37 Obsah O předmětu 2 Základní organizační
1. března Organizace Základní informace Literatura Úvod Motivace... 3
Modelování systémů a procesů (611MSP) Děčín přednáška 1 Vlček, Kovář, Přikryl 1. března 2012 Obsah 1 Organizace 1 1.1 Přednášející....................................... 1 1.2 Základní informace...................................
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Inverzní z-transformace. prof. Miroslav Vlček. 25. dubna 2013
Modelování systémů a procesů 25. dubna 2013 Obsah Inverzní z-transformace 1 Inverzní z-transformace 2 Obsah Inverzní z-transformace 1 Inverzní z-transformace 2 Metody výpočtu inverzní z-transformace Zpětná
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
Inverzní Laplaceova transformace
Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března
Diskretizace. 29. dubna 2015
MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
21. Úvod do teorie parciálních diferenciálních rovnic
21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah
Elektronické obvody analýza a simulace
Elektronické obvody analýza a simulace Jiří Hospodka katedra Teorie obvodů, 804/B3 ČVUT FEL 4. října 2006 Jiří Hospodka (ČVUT FEL) Elektronické obvody analýza a simulace 4. října 2006 1 / 7 Charakteristika
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah
Parciální diferenciální rovnice
Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s
4EK201 Matematické modelování. 11. Ekonometrie
4EK201 Matematické modelování 11. Ekonometrie 11. Ekonometrie Ekonometrie Interdisciplinární vědní disciplína Zkoumá vztahy mezi ekonomickými veličinami Mikroekonomickými i makroekonomickými Ekonomie ekonomické
Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014
Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra
Speciální numerické metody 4. ročník bakalářského studia. Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D.
Speciální numerické metody 4. ročník bakalářského studia Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D. 1 Základní informace o cvičení Předmět: 228-0210/01 Speciální numerické metody
Modelov an ı syst em u a proces
Modelování systémů a procesů 13. března 2012 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.
11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená
APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL
APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.
STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza
časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.
Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat
Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan Vyčichl, Ph.D.
Statika (18SAT) letní semestr 2016/2017 přednášky: Ing. Daniel Kytýř, Ph.D. cvičení: Ing. Tomáš Doktor, Ing. Petr Koudelka, Ing. Nela Krčmářová, Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující
Základy matematiky pro FEK
Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
Propojení matematiky, fyziky a počítačů
Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů
Bonn, Rheinischen Friedrich-Wilhelms-Universität
Bonn, Rheinischen Friedrich-Wilhelms-Universität Seznam přednášek Bc s anotacemi http://www.mathematics.uni-bonn.de/files/bachelor/ba_modulhandbuch.pdf Studijní plán-požadavky http://www.mathematics.uni-bonn.de/studium/bachelor/studienprogramm
Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Modelování a simulace
Modelování a simulace Doc Ing Pavel Václavek, PhD Modelování a simulace Úvod - str /48 Obsah a organizace Obsah a org Cíl předmětu Náplň přednášek Vyučující Hodnocení Literatura Modelování a simulace Úvod
DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 10.2 reg-2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření Teorie
Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.
Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v
teorie elektronických obvodů Jiří Petržela úvod, organizace výuky
Jiří Petržela garant Ing. Jiří Petržela, PhD. UREL, FEKT, VUT v Brně Purkyňova 118, 612 00 Brno 6. patro, dveře 644, telefon 541149126 petrzelj@feec.vutbr.cz, icq 306326432 konzultační hodiny úterý a středa
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
Flexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)
Aplikovaná matematika I
Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3
Lineární stabilita a teorie II. řádu
Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,
Obsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
Řízení a optimalizace Stavové modely a model-prediktivní řízení
Řízení a optimalizace Stavové modely a model-prediktivní řízení Modelování systémů a procesů (11MSP) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAMY středa 23.
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
Základy algoritmizace
Základy algoritmizace Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 1. přednáška 11MAG pondělí 5. října 2014 verze: 2014-10-06 11:27 Obsah přednášky
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
DISKRÉTNÍ PROCESY V ELEKTROTECHNICE
Výuka předmětu DISKRÉTNÍ PROCESY V ELEKTROTECHNICE Jaromír Baštinec, Ústav matematiky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně e-mail: bastinec@feec.vutbr.cz Irena Hlavičková Ústav
Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY
PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
ZS: 2017/2018 NMAF061 F/2 J. MÁLEK. Matematika pro fyziky I. Posluchárna: T2 T1 Konzultační hodiny: pátek 9:40-10:30, posluchárna T5
ZS: 2017/2018 NMAF061 F/2 J. MÁLEK Matematika pro fyziky I OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Michal Báthory, Tomáš Los, Michal Pavelka, Vít Průša Termíny přednášek: Čtvrtek
Matematika I. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Vlastnosti členů regulačních obvodů Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů
Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
1. ÚVOD. Arnošt Žídek, Iveta Cholevová. 15. října 2013 FBI VŠB-TUO
FBI VŠB-TUO 15. října 2013 Kontaktní informace Mgr. Iveta Cholevová, Ph. D. iveta.cholevova@vsb.cz A829, 597 324 146 Mgr. Arnošt Žídek, Ph. D. arnost.zidek@vsb.cz A832, 597 324 177 Předpokládané znalosti
MATEMATIKA PRO INŽENÝRY 21. STOLETÍ
MATEMATIKA PRO INŽENÝRY 21. STOLETÍ Schůzka realizačního týmu 8. 9. 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky PROGRAM SCHŮZKY: Pilotní kurzy
CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I
Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci
Stochastické diferenciální rovnice
KDM MFF UK, Praha Aplikace matematiky pro učitele 15.11.2011 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací Model pro nemoc s rychlým šířením a krátkou dobou léčby. Příkladem takovéto
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic
Diskrétní matematika. DiM /01, zimní semestr 2017/2018
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2017/2018 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Praha technic/(4 -+ (/T'ERATU"'P. ))I~~
Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do
Ing. Michael Rost, Ph.D.
Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty
Numerické metody 6. května FJFI ČVUT v Praze
Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
Požadavky ke zkoušce. Ukázková písemka
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Fyzika laserů. Aproximace rychlostních rovnic. 18. března Katedra fyzikální elektroniky.
Fyzika laserů Aproximace rychlostních rovnic Metody generace nanosekundových impulsů. Q-spínání. Spínání ziskem Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz
Přechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
Matematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
Numerické řešení modelu proudění v porézní hornině s puklinou
Numerické řešení modelu proudění v porézní hornině s puklinou Martin Hanek Úvod Vedoucí práce prof. RNDr. Pavel Burda, CSc. Zajímá nás jednofázová tekutina v puklině porézní horniny. Studie je provedena
Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace
Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového
CO JE A NENÍ NOVÉHO V MODELOVÁNÍ DYNAMICKÝCH SPOJITÝCH SYSTÉMŮ NA POČÍTAČI ZA PŮL STOLETÍ
CO JE A NENÍ NOVÉHO V MODELOVÁNÍ DYNAMICKÝCH SPOJITÝCH SYSTÉMŮ NA POČÍTAČI ZA PŮL STOLETÍ Historické rozdělení počítačových modelů Modelování jako průnik instrumentária kybernetiky 4 Motto: Stará slída
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
MATEMATIKA I. Marcela Rabasová
MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek
Cvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky