1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15"

Transkript

1 Úvodní poznámky Vlastnosti diskretních a číslicových metod zpracování signálů Základní pojmy Aplikační oblasti a etapy zpracování signálů Klasifikace diskretních metod zpracování signálů Výhody a nevýhody diskretního a zvláště číslicového zpracování signálů Diskretní signály a systémy Vzorkování a rekonstrukce signálů Poznámka o Z-transformaci Diskretní lineární systémy modely a charakteristiky Vstupně-výstupní modely a základní charakteristiky Stavové modely Spojování systémů Diskretní lineární transformace Fourierova transformace diskretního signálu Diskretní unitární transformace obecně Diskretní Fourierova transformace Definice a vlastnosti DFT Metody rychlého výpočtu DFT Rozklad v časové oblasti Rozklad ve frekvenční oblasti Kosínová a sínová transformace Vlnkové transformace Spojité vlnkové transformace Diskretní vlnkové transformace Realizace vlnkových transformací bankami filtrů Karhunen-Loeveova transformace Náhodné procesy a jejich charakteristiky Náhodné signály a procesy Korelační a kovarianční funkce Stacionární a ergodické procesy... 93

2 6 Obsah 4.4 Spektra náhodných procesů Výkonová spektra náhodných procesů Vzájemná spektra dvojic procesů Přenos náhodného signálu lineárním systémem Poznámka o principu ortogonality Lineární filtrace signálů a principy návrhu filtrů Obecně o lineární filtraci Filtry s konečnou impulsní charakteristikou Základní vlastnosti FIR filtrů Základní metody návrhu FIR filtrů Metoda vzorkování frekvenční charakteristiky Metoda váhování impulsní charakteristiky Realizace FIR filtrů Realizace v časové oblasti Realizace prostřednictvím frekvenční oblasti Filtry s nekonečnou impulsní charakteristikou Základní vlastnosti IIR filtrů Základní metody návrhu IIR filtrů Optimalizační přístupy Interaktivní rozmísťování nulových bodů a pólů Optimalizační návrh podle frekvenční charakteristiky Optimalizační návrh podle impulsní charakteristiky Přístupy, založené na podobnosti s analogovými systémy O podobnosti a analogových filtrech Impulsní invariance Transformace nulových bodů a pólů Bilineární transformace Transformace frekvenčních charakteristik diskretních systémů Realizace IIR filtrů Přímé realizace Kombinace systémů 2. řádu Realizace založené na stavovém popisu Kumulační metody zvýrazňování signálů v šumu Princip kumulačních technik Kumulace s rovnoměrnými vahami Kumulace s pevným oknem Kumulace s klouzavým oknem Exponenciální kumulace

3 7 7. Komplexní signály a jejich využití Reprezentace komplexních signálů Hilbertova transformace a analytický signál Translace spekter a frekvenčních charakteristik Prostá multiplikativní modulace a demodulace Modulace s jedním postranním pásmem Aproximace frekvenčně asymetrických filtrů frekvenční translací Korelační analýza Úvod Vlastnosti korelačních a kovariančních funkcí Vlastnosti autokorelační a autokovarianční funkce Vlastnosti vzájemné korelační funkce Metody odhadu korelačních funkcí Přímý odhad v časové oblasti Odhad prostřednictvím frekvenční oblasti Odhad na základě výkonového resp. vzájemného spektra Korelační analýza signálů Korelační detekce známého signálu v šumu, přizpůsobený filtr Korelační restaurace neznámého signálu v šumu Korelační identifikace systémů Autokorelační identifikace Vzájemně korelační identifikace Spektrální analýza Úvod Spektrální analýza deterministických signálů Analýza periodických signálů Analýza obecných signálů Časově-frekvenční analýza Spektrální analýza stochastických signálů Náhodné odhady spekter stochastických procesů Odhad výkonových spekter Neparametrické metody Parametrické metody Porovnání vlastností parametrických a neparametrických metod Vzájemná spektra Inverzní filtrace a restaurace signálu v šumu Model zkreslení Prostá dekonvoluce a pseudoinverze

4 8 Obsah 10.3 Koncept odhadu s minimálními středními kvadratickými odchylkami LMS filtrace Wienerova filtrace Formulace Wienerova filtru ve frekvenční oblasti Diskretní formulace Wienerova filtru v originální oblasti Kalmanova filtrace Úvod Skalární Kalmanův filtr Vektorový Kalmanův filtr Vázaná dekonvoluce Dekonvoluce s optimalizací tvaru impulsní charakteristiky Zobecněná diskretní minimalizace kvadratické odchylky Jiné přístupy k restauraci Metoda maximalizace aposteriorní pravděpodobnosti Metoda maximalizace entropie Adaptivní filtrace a identifikace Koncept adaptivní filtrace Algoritmy adaptivních filtrů Adaptivní verze diskretního Wienerova filtru Filtr s rekurzivní optimální adaptací Filtr se stochasticky gradientní adaptací Filtr s adaptací na základě ortogonalizovaných vstupních dat Typické aplikace adaptivní filtrace Přímá identifikace a modelování Inverzní identifikace a modelování Lineární adaptivní predikce Adaptivní potlačování rušení Nelineární filtrace Úvod Nelineární diskretní dynamické systémy Obecné a polynomiální nelineární diskretní systémy Filtry založené na třídění Homomorfická filtrace Kanonická forma homomorfického systému Homomorfická filtrace a dekonvoluce Výkonové kepstrum a jeho aplikace Nelineární přizpůsobené filtry

5 9 13. Zpracování signálů neuronovými sítěmi Koncept neuronových sítí Jednotlivý neuron Dopředné sítě Koncept a architektura dopředných sítí Učení sítě zpětným šířením chyb Sítě s radiální bází Sítě se vzájemnými vazbami Samoorganizující se mapy Aplikace neuronových sítí ve zpracování signálů Vícerozměrné signály Spojité vícerozměrné signály a systémy Koncept vícerozměrných signálů Dvojrozměrná Fourierova transformace a lineární dvojrozměrné systémy Náhodná pole Diskretní vícerozměrné signály a systémy Dvojrozměrné vzorkování a rekonstrukce ze vzorků Maticová a vektorová reprezentace obrazů, 2D systémů a unitárních transformací Diskretní náhodná pole Zpracování a analýza obrazů jako 2D signálů Aplikace bodových operátorů Aplikace lokálních operátorů Vyšší metody zpracování a analýzy Principy komprese signálových dat Filozofie komprese signálů Podstata bezeztrátové komprese Principy ztrátové komprese Volba kompresní metody Literatura

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

Ultrazvuková defektoskopie. M. Kreidl, R. Šmíd, V. Matz, S. Štarman

Ultrazvuková defektoskopie. M. Kreidl, R. Šmíd, V. Matz, S. Štarman Ultrazvuková defektoskopie M. Kreidl, R. Šmíd, V. Matz, S. Štarman Praha 2011 ISBN 978-80-254-6606-3 2 OBSAH 1. Předmluva 7 2. Základní pojmy 9 2.1. Fyzikální základy ultrazvuku a akustické veličiny 9

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

TECHNICKÁ DIAGNOSTIKA

TECHNICKÁ DIAGNOSTIKA . Marcel Kreidl, Radislav Šmíd TECHNICKÁ DIAGNOSTIKA SENZORY - METODY - ANALÝZA SIGNÁLU Praha 2006 tanovení Ignostika,ostickou lespokojí :i závady 'oduvodu 1,v knize :h mfjtod obsahují 'stických 'tfedních

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Teorie řízení a regulace (Vysoký)

Teorie řízení a regulace (Vysoký) Teorie systémů 1. Tvrdé (hard) a měkké (soft) systémy, jejich charakterizace, příklady a aplikace; definice systému. 2. Identifikace systému. Vztahy: originál / model / systém; relace systém okolí; přístupy

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda 2.předn ednáška Telefonní kanál a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda Telekomunikační signály a kanály - Při přenosu všech druhů telekomunikačních signálů je nutné řešit vztah

Více

Obsah 1 ÚVOD... 11 2 TECHNICKÁ DIAGNOSTIKA: ZÁKLADNÍ POJMY... 13 2.1 Diagnostické prostøedky... 14 2.2 Technický stav objektu... 15 2.3 Porucha, vada, provozuschopnost, funkènost... 16 2.4 Údržba objektu...

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 17.160 2006 Vibrace a rázy - Zpracování signálů - Část 1: Obecný úvod ČSN ISO 18431-1 01 1466 Říjen Mechanical vibration and shock - Signal processing - Part 1: General introduction

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Učební osnova předmětu ELEKTRONICKÁ ZAŘÍZENÍ

Učební osnova předmětu ELEKTRONICKÁ ZAŘÍZENÍ Učební osnova předmětu ELEKTRONICKÁ ZAŘÍZENÍ Obor vzdělání: 26-41-M/01 Elektrotechnika, zaměření slaboproud Forma vzdělávání: denní studium Ročník kde se předmět vyučuje: čtvrtý Počet týdenních vyučovacích

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Využití algoritmu DTW pro vyhodnocování vad řeči dětí postižených Landau-Kleffnerovým syndromem (LKS)

Využití algoritmu DTW pro vyhodnocování vad řeči dětí postižených Landau-Kleffnerovým syndromem (LKS) Využití algoritmu DTW pro vyhodnocování vad řeči dětí postižených Landau-Kleffnerovým syndromem (LKS) Petr Zlatník České vysoké učení technické v Praze, Fakulta elektrotechnická zlatnip@fel.cvut.cz Abstrakt:

Více

FAKULTA ELEKTROTECHNICKÁ

FAKULTA ELEKTROTECHNICKÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA ELEKTROTECHNICKÁ Měření zpoždění mezi signály EEG Ondřej Drbal Vedoucí diplomové práce: Doc. Ing. Roman katedra Teorie obvodů rok obhajoby 24 Čmejla, CSc. Zadání diplomové

Více

Počítačová podpora automatického řízení - CAAC

Počítačová podpora automatického řízení - CAAC XXVI. AR '2001 eminar, Instruments and Control, Ostrava, April 26-27, 2001 Paper 47 Počítačová podpora automatického řízení - CAAC NAVRÁTIL, Pavel 1 & BALÁTĚ, Jaroslav 2 1 Ing., Institut Informačních Technologií,

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ.

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ. RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ pro BIOMEDICÍNSKÉ INŽENÝRY 1. Cíl specializačního vzdělávání

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz OBSAH Obchodování a strojové učení Specifika prediktivního

Více

Vlastnosti Fourierovy transformace

Vlastnosti Fourierovy transformace Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího

Více

Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava 21. 10. 2013

Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava 21. 10. 2013 Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava 21. 10. 2013 Podstata biologických signálů Signál nosič informace Biosignál signál, který je generovaný živým organismem Rozdělení

Více

P6 Časově frekvenční analýza signálů

P6 Časově frekvenční analýza signálů P6 Časově frekvenční analýza signálů Je vhodné podotknout, že převážná většina reálných technických signálů je zařazována do oblasti nestacionárních signálů. Fourierova transformace, případně její modifikace

Více

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ.

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ. RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ pro BIOMEDICÍNSKÉ TECHNIKY 1. Cíl specializačního vzdělávání

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE)

Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE) V rámci projektu OPVK CZ.1.07/2.2.00/28.0021 Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE) se v roce 2015

Více

Aplikace multifraktální geometrie na finančních trzích

Aplikace multifraktální geometrie na finančních trzích Aplikace multifraktální geometrie na finančních trzích 5. studentské kolokvium a letní škola matematické fyziky Stará Lesná Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha 1. 9. 2011 Úvod náhodné procesy

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008

Popis projektu Jednotlivé experimenty. Projekt BAYES. Jan Zeman. Colosseum, a.s. 21. května 2008 Colosseum, a.s. ÚTIA AV ČR, v.v.i. 21. května 2008 Osnova presentace 1 Úvod 2 3 4 Hodnocení výsledků Budoucnost projektu Úvod Futures trhy Cíle obchodování s kontrakty Vyvinout původní, ucelenou, široce

Více

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12 Obsah Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11 Typografická konvence použitá v knize 12 1 Vybraná témata z Excelu pro techniky 13 Vzorce a funkce pro techniky 14 Vytvoření jednoduchého vzorce

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr.

Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr. Webové stránky 16. Vytvořil: Petr Lerch www.isspolygr.cz Datum vytvoření: 12. 1. 2013 Webové Strana: 1/6 Škola Ročník Název projektu Číslo projektu Číslo a název šablony Autor Tématická oblast Název DUM

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky

Více

Modelování výnosové křivky a modelování úrokových nákladů státního dluhu Kamil Kladívko Odbor řízení státního dluhu a finančního majetku Úrokové náklady portfolia státního dluhu 2 Úrokové náklady státního

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Robust 2014, 19. - 24. ledna 2014, Jetřichovice

Robust 2014, 19. - 24. ledna 2014, Jetřichovice K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

zařízení prof.ing. Petr Chlebiš, CSc. Fakulta elektrotechniky a informatiky

zařízení prof.ing. Petr Chlebiš, CSc. Fakulta elektrotechniky a informatiky Konstrukce elektronických zařízení prof.ing. Petr Chlebiš, CSc. Ostrava - město tradiční průmyslové produkce - třetí největší český výrobce v oboru dopravních zařízení - tradice v oblasti vývoje a výroby

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází.

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází. Písemná práce z Úvodu do počítačových sítí 1. Je dán kanál bez šumu s šířkou pásma 10kHz. Pro přenos číslicového signálu lze použít 8 napěťových úrovní. a. Jaká je maximální baudová rychlost? b. Jaká je

Více

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý FINANČNÍ MODELY Koncepty, metody, aplikace Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý Recenzenti: Jan Frait, ČNB Jaroslav Ramík, SU v Opavě Autorský kolektiv: Zdeněk Zmeškal vedoucí autorského kolektivu,

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Využití DPZ v Národní inventarizaci lesů (NIL2) - potenciál dat GMES/Copernicus

Využití DPZ v Národní inventarizaci lesů (NIL2) - potenciál dat GMES/Copernicus Využití DPZ v Národní inventarizaci lesů (NIL2) - potenciál dat GMES/Copernicus Filip Hájek Forest Management Institute Czech Republic hajek.filip@uhul.cz 2. české uživatelské fórum GMES/Copernicus, 29.

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Senzor teploty. Katalogový list SMT 160-30

Senzor teploty. Katalogový list SMT 160-30 Senzor teploty Katalogový list SMT 160-30 Obsah 1. Úvod strana 2 2. Inteligentní senzor teploty strana 2 3. Vývody a pouzdro strana 4 4. Popis výrobku strana 4 5. Charakteristické údaje strana 5 6. Definice

Více

Možnosti vyhodnocení časových řad v softwaru STATISTICA

Možnosti vyhodnocení časových řad v softwaru STATISTICA StatSoft Možnosti vyhodnocení časových řad v softwaru STATISTICA Mnoho informací se zachycuje ve formě chronologicky uspořádaných údajů, jinak řečeno ve formě časových řad. Časová řada je tedy v čase uspořádaná

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Obsah metodiky. Obsah metodiky... 2 Úvod... Cíle využití metody e-learningu ... ... ... 6 Kurz Matematika Svobodová...

Obsah metodiky. Obsah metodiky... 2 Úvod... Cíle využití metody e-learningu ... ... ... 6 Kurz Matematika Svobodová... Metodika aktivity 04 E-learning Matematika v rámci projektu Škola pro praktický život Zpracovala: Mgr. Zdeňka Hudcová Mgr. Martina Svobodová 2010 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝ SOCIÁLNÍ FONDEM

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

Architektura počítačů. Zvukové karty

Architektura počítačů. Zvukové karty Architektura počítačů Zvukové karty Zvuková karta Zařízení které slouží k počítačovému zpracování zvuku. Vstupy a výstupy zvukové karty: Analogový výstup pro stereo signál (sluchátka, přední reproduktory)

Více

Připojení k rozlehlých sítím

Připojení k rozlehlých sítím Připojení k rozlehlých sítím Základy počítačových sítí Lekce 12 Ing. Jiří ledvina, CSc Úvod Telefonní linky ISDN DSL Kabelové sítě 11.10.2006 Základy počítačových sítí - lekce 12 2 Telefonní linky Analogové

Více

Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně

Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně Dominik Peklo, Pavel Valoušek dominik@audiopraise.com, pavel@audiopraise.com 1 Úvod V internetových diskuzích na serveru www.f-sport.cz/hifi

Více

Manuál k programu ERANN. Ing. Adam Karaba

Manuál k programu ERANN. Ing. Adam Karaba Manuál k programu ERANN Ing. Adam Karaba 1 Obsah 1 Obsah... 2 2 Licence... 3 3 Úvod... 4 4 Implementovaný aparát... 5 4.1 Model neuronu... 5 4.2 Přechodové funkce... 6 4.2.1 Prosté předání hodnoty... 6

Více

UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Hledání parametrů modelů dynamických systémů Miroslav Moravec

UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Hledání parametrů modelů dynamických systémů Miroslav Moravec UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Hledání parametrů modelů dynamických systémů Miroslav Moravec Bakalářská práce 2011 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Regenerace digitálního signálu. Jiří Vodrážka

Regenerace digitálního signálu. Jiří Vodrážka Regenerace digitálního signálu Jiří Vodrážka Autor: Jiří Vodrážka Název díla: Regenerace digitálního signálu Zpracoval(a): České vysoké učení technické v Praze Fakulta elektrotechnická Kontaktní adresa:

Více

1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX.

1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX. 1/30 31.3.2006 Seminář z aktuárských věd Slides by LATEX Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení 2/30 Obsah 1 Zobecněné lineární modely (GLZ 1 ) Obecný lineární model (GLM)

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více