Modelov an ı syst em u a proces
|
|
- Vilém Čermák
- před 5 lety
- Počet zobrazení:
Transkript
1 Modelování systémů a procesů 13. března 2012
2 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů
3 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů
4 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů
5 Konvoluce V důsledku časové invariance dostáváme konvoluční sumu y(n) = h(n m)x(m) = h(k)x(n k), (1) m= k= která bývá občas značená y(n) = h(n) x(n). (2)
6 Příklad časově invariantního systému Uvažujme mikroekonomický systém variace ceny popsaný diferenční rovnici y(n)+ ay(n 1) = x(n). (3) Protože její koeficienty nezávisí na čase, tj. a není funkcí n, zachovává tato rovnice tvar při záměně n n m tvar. Impulsní odezva je potom h(n) = ( a) n 1(n) (4)
7 Příklad časově proměnného systému Uvažujme diferenční rovnici y(n)+ny(n 1) = x(n). (5) Protože koeficient u y(n 1) závisí na čase, nezachovává tato rovnice tvar při záměně n n m tvar. Impulsní odezvu lze psát ve tvaru h(n) = ( 1) n n!1(n) (6)
8 Kauzální systém Výstupní signál y(n) kauzálního systému závisí pouze na současných a minulých hodnotách vstupního signálu {x(n), x(n 1), x(n 2),...} takže v konvoluční sumě (1) y(n) = = k= 1 k= h(k)x(n k) (7) h(k)x(n k) + h(k)x(n k) k=0 musíme položit všechny členy impulsní odezvy h(k) = 0 pro k < 0.
9 Kauzální systém Konvoluční suma pro lineární, časově invariantní a kauzální systém má tvar y(n) = h(k)x(n k). (8) k=0 Jestliže navíc budeme požadovat, aby vstupní a výstupní signály měly dobře definovaný počátek, tj. aby x(n) 0, y(n) 0 pouze pro n 0, potom platí y(n) = n h(k)x(n k) = k=0 n x(k)h(n k). (9) k=0
10 Spojitý systém V případě spojitého času postupujeme podobně a odvodíme pro lineární časově invariantní systém konvoluční integrál y(t) = x(τ)h(t τ)dτ = h(τ)x(t τ)dτ. (10) Uvedený integrál opět nazýváme konvolucí a velmi často ho označujeme jako y(t) = h(t) x(t). (11)
11 Spojitý systém Funkce h(t) se nazývá impulsní odezva. Jedná se o výstup systému, na jehož vstupu se uplatní Diracův impuls x(t) = δ(t). Platí totiž y(t) = h(τ)δ(t τ)dτ = h(t). (12)
12 Kauzální systém Z důvodů, které klademe na kauzální chování systému je y(t) = = 0 h(τ)x(t τ)dτ (13) h(τ)x(t τ)dτ + 0 h(τ)x(t τ)dτ musíme položit hodnoty impulsní odezvy h(t) = 0 pro t < 0. a Konvoluční integrál pro lineární, časově invariantní a kauzální systém má tvar y(t) = 0 h(τ)x(t τ)dτ. (14)
13 Lineární a nelineární Spojitý stavový systém Diskrétní stavový systém u(t)... vstupní (řídící) vektor x(t)... stavový vektor y(t)... výstupní vektor Obecný tvar stavových rovnic u(n)... vstupní (řídící) vektor x(n)... stavový vektor y(n)... výstupní vektor Obecný tvar stavových rovnic ẋ(t) = f(x(t), u(t), t) x(n + 1) = f(x(n), u(n), n) y(t) = g(x(t), u(t), t) y(n) = g(x(n), u(n), n)
14 Stacionární a nestacionární Spojitý stavový systém Diskrétní stavový systém u(t)... vstupní (řídící) vektor x(t)... stavový vektor y(t)... výstupní vektor Lineární stavový systém ẋ(t) = A(t) x(t) + B(t) u(t) y(t) = C(t) x(t) + D(t)u(t) u(n)... vstupní (řídící) vektor x(n)... stavový vektor y(n)... výstupní vektor Lineární stavový systém x(n + 1) = M(n) x(n)+ N(n) u(n) y(n) = C(n) x(n) + D(n)u(n) A(t) je matice systému (n n) B(t) je matice vstupů (řízení)(n r) C(t) je výstupní matice (m n) D(t) je výstupní matice (m r) M(n) je matice systému N(n) je matice vstupů (řízení) C(n) je výstupní matice D(n) je výstupní matice
15 Stacionární a nestacionární Spojitý stavový systém Diskrétní stavový systém u(t)... vstupní (řídící) vektor x(t)... stavový vektor y(t)... výstupní vektor Lineární stacionární stavový systém ẋ(t) = A x(t) + B u(t) y(t) = C x(t) + Du(t) u(n)... vstupní (řídící) vektor x(n)... stavový vektor y(n)... výstupní vektor Lineární stacionární stavový systém x(n + 1) = M x(n)+ N u(n) y(n) = C x(n) + Du(n) A je matice systému (n n) B je matice vstupů (řízení)(n r) C je výstupní matice (m n) D je výstupní matice (m r) M je matice systému N je matice vstupů (řízení) C je výstupní matice D je výstupní matice
16 Vnitřní popis spojitého systému D u(t) B ẋ(t) x(t) C y(t) A Obrázek: Blokové schéma spojitého lineárního systému
17 Vnitřní popis diskrétního systému D u(n) N x(n+1) z 1 x(n) C y(n) M Obrázek: Blokové schéma diskrétního lineárního systému
18 Cykloida Pohyb po cykloidě je popsán parametrickou soustavou rovnic x 1 (t) x = at b sin t, x 2 (t) y = a b cos t, která je pro počáteční podmínky dána řešením stavové rovnice d dt x 1 (0) = 0 a x 2 (0) = a b [ ] x1 (t) = x 2 (t) [ ][ ] x1 (t) + x 2 (t) [ ] 0 t. a
19 Cykloida 1 s Integrator Scope 1 XY Graph Clock 1.1 Gain Add 1 s Integrator 1 Scope Obrázek: Model cykloidy
20 Cykloida Obrázek: Graf cykloidy
21 Vlci a ovečky Nelineární stavový model vlci a ovečky, který je znám v literatuře jako Lotka - Volterra predator-prey model, se týká populace ovcí popsané stavovou proměnnou x 1 (t) a populace vlků popsané stavovou proměnnou x 2 (t). Dynamický model je dán nelineární soustavou stavových rovnic d dt x 1(t) = a x 1 (t) bx 1 (t)x 2 (t), d dt x 2(t) = c x 2 (t)+d x 1 (t)x 2 (t).
22 Vlci a ovečky Uvedený model můžeme snadno interpretovat. Žijí-li ovce a vlci odděleně, pro ovce platí rovnice d dt x 1(t) = a x 1 (t), jejímž řešením je exponenciální růst zatímco vlci bez potravy exponenciálně hynou, x 1 (t) = x 1 (0) e at, d dt x 2(t) = c x 2 (t) x 2 (t) = x 2 (0) e ct.
23 Vlci a ovečky Počet sežraných ovcí a nasycených vlků je úměrný počtu jejich setkání, tj. součinu x 1 (t)x 2 (t) a počet ovcí klesá úměrně s b x 1 (t)x 2 (t), zatímco se vlci mají dobře a jejich počet stoupá úměrně s d x 1 (t)x 2 (t).
24 Vnitřní popis diskrétního systému Gain2 0.2 Gain 1 s Sum Integrator Graph Mux Mux 1 s Product Sum1 Integrator1-0.2 Gain Gain3
25 Vnitřní popis diskrétního systému O V C E V L C I T [ D N Y ] Obrázek: Průběh populací vlků a oveček
26 MSaP - domácí úkol č. DU-1 zadání 13. a odevzdání 20. resp
27 Problém Původní signál EEG Signál EEG vyhlazený klouzavým průměrem délky
28 Problém 1 Na obrázku je uveden příklad použití klouzavého průměru. Klouzavý průměr je nejpoužívanější metoda analýzy dat. Vyhlazuje prudké výkyvy. Jednoduchý klouzavý průměr y(n) z naměřených dat x(n) v pěti následujících obdobích má tvar y(n) = 1 5 (x(n)+x(n 1)+x(n 2)+x(n 3)+x(n 4)). Vaším úkolem je: Napočítat klouzavý průměr y(n) délky 5 pro prvních deset členů jednotkového skoku x(n) 1(n). Nakreslit průběh jednotkového skoku a odpovídajícího klouzavého průměru. Určit jaký tvar bude mít vzorec pro klouzavý průměr délkyl.
29 Problém 2 Dynamický systém je popsán diferenciální rovnicí tvaru ÿ(t)+α 2 0 (1+sinω 0t) y(t) = cosωt. Určete zda uvedený systém je spojitý/nespojitý autonomní/neautonomní lineární/nelineární časově invariantní/ časově proměnný
Řízení a optimalizace Stavové modely a model-prediktivní řízení
Řízení a optimalizace Stavové modely a model-prediktivní řízení Modelování systémů a procesů (11MSP) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAMY středa 23.
Cvi ení 3. Cvi ení 3. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 28, 2017
Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 28, 2017 1 Jednoduché modely 2 Modelování diferenciálních rovnic 3 Model ovce a vlci Jednoduché modely Jednoduchý p íklad Namodelujte
Cvi ení 5 Simulink. Cvi ení 5 Simulink. Modelování systém a proces. Lucie Kárná. March 26, 2018
Cvi ení 5 Simulink Modelování systém a proces Lucie Kárná karna@fd.cvut.cz March 26, 2018 1 Jednoduché modely Archimédova spirála Logaritmická spirála Asteroida Cykloida 2 Modelování diferenciálních rovnic
Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz
Systémy Vlastnosti lineárních systémů. Konvoluce diskrétní a spojitý čas. Vlastnosti konvoluce Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Systémy obecně: spojení komponentů, zařízení nebo
1. března Organizace Základní informace Literatura Úvod Motivace... 3
Modelování systémů a procesů (611MSP) Děčín přednáška 1 Vlček, Kovář, Přikryl 1. března 2012 Obsah 1 Organizace 1 1.1 Přednášející....................................... 1 1.2 Základní informace...................................
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů
Řízení a optimalizace Stavové modely a model-prediktivní řízení
Řízení a optimalizace Stavové modely a model-prediktivní řízení Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAMY středa 22.
Řízení a optimalizace Stavové modely a model-prediktivní řízení
Řízení a optimalizace Stavové modely a model-prediktivní řízení Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAMY úterý 27.
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března
Matematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Separovatelné diferenciální rovnice
Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
Flexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
Inverzní Laplaceova transformace
Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
ÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4.
CVIČENÍ POZNÁMKY. CVIČENÍ. Vazby mezi systémy. Bloková schémata.vazby mezi systémy a) paralelní vazba b) sériová vazba c) zpětná (antiparalelní) vazba. Vnější popis složitých systémů a) metoda postupného
Diskretizace. 29. dubna 2015
MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme
Předmět A3B31TES Př. 2 B
Předmět A3B31TES Př. 2 B PS,TB,OK 1 1 Katedra teorie obvodů Přednáška 2: Systémy PS,TB,OK Předmět A3B31TES Př. 2 B únor 2015 1 / 56 Obsah 1 Úvod 2 Typy systémů 3 Stabilita systémů 4 Příklady systémů 5
Modelování polohových servomechanismů v prostředí Matlab / Simulink
Modelování polohových servomechanismů v prostředí Matlab / Simulink Lachman Martin, Mendřický Radomír Elektrické pohony a servomechanismy 27.11.2013 Struktura programu MATLAB-SIMULINK 27.11.2013 2 SIMULINK
Vlastnosti členů regulačních obvodů Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů
naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.
Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají
Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x.
Program 2. Aplikace určitého integrálu zadání 1. y = x 2 + Bx 3A y = ln(bx), x = 1/A a x = 3A Vypočítejte její obsah. 3. Určete obsah plochy ohraničené parametricky zadanou křivkou (tzv. cykloidou) x(t)
Diferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
Inverzní z-transformace. prof. Miroslav Vlček. 25. dubna 2013
Modelování systémů a procesů 25. dubna 2013 Obsah Inverzní z-transformace 1 Inverzní z-transformace 2 Obsah Inverzní z-transformace 1 Inverzní z-transformace 2 Metody výpočtu inverzní z-transformace Zpětná
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Řízení a optimalizace Stavové modely a model-prediktivní řízení Matematické metody pro ITS (11MAMY)
Řízení a optimalizace Stavové modely a model-prediktivní řízení Matematické metody pro ITS (11MAMY) Jan Přikryl 2. přednáška 11MAMY středa 22. února 2017 verze: 2017-02-22 20:04 Obsah Vnější popis 2 Opakování
Parciální diferenciální rovnice
Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s
Soustavy lineárních rovnic
Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a
ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl
Robust 14, Jetřichovice ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Robust 14, Jetřichovice ÚVOD Úvod Analýzníkům
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
Předmět A3B31TES/Př. 13
Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s
Pavel Nevøiva ANALÝZA SIGNÁLÙ A SOUSTAV Praha 2000 Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics spol.
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
(K611MSAP) prof. Miroslav Vlček. 24. února Ústav aplikované matematiky Fakulta dopravní ČVUT
(K611MSAP) Ústav aplikované matematiky Fakulta dopravní ČVUT 24. února 2011 K611MSAP Základní informace Přednášející: prof. RNDr. Miroslav Vlček, DrSc. (vlcek@fd.cvut.cz) přednášky: čt. 8.00-9.30 & 9.45-11.15
Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 10.2 reg-2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření Teorie
Teoretická elektrotechnika - vybrané statě
Teoretická elektrotechnika - vybrané statě David Pánek EK 63 panek50@kte.zcu.cz Fakulta elektrotechnická Západočeská univerzita v Plzni September 26, 202 David Pánek EK 63 panek50@kte.zcu.cz Teoretická
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.
11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou
CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I
Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci
KMS cvičení 9. Ondřej Marek
KMS cvičení 9 Ondřej Marek SYSTÉM S n DOF ŘEŠENÍ V MODÁLNÍCH SOUŘADNICÍCH Pohybové rovnice lineárního systému: U je modální matice, vlastní vektory u 1, u 2,..., u n jsou sloupce v matici U x - vektor
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
Řízení a optimalizace Stavové modely a model-prediktivní řízení Matematické metody pro ITS (11MAMY)
Řízení a optimalizace Stavové modely a model-prediktivní řízení Matematické metody pro ITS (11MAMY) Jan Přikryl 2. přednáška 11MAMY úterý 27. února 2018 verze: 2018-03-18 09:34 Obsah Tento text je do jisté
Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,
Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární
Obsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
9. cvičení z Matematické analýzy 2
9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
21. Úvod do teorie parciálních diferenciálních rovnic
21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.
Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu
NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí.
NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. RNDr. Radovan Potůček, Ph.D., K-15, FVT UO, KŠ 5B/11, Radovan.Potucek@unob.cz, tel. 443056 -----
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
12 Obyčejné diferenciální rovnice a jejich soustavy
12 Obyčejné diferenciální rovnice a jejich soustavy 121 Úvod - opakování Opakování z 1 ročníku (z kapitoly 5) Definice 121 Rovnice se separovanými proměnnými je rovnice tvaru Návod k řešení: Pokud g(c)
1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
1/15 Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 2/15 Vsuvka: Vlastní čísla matic Definice: Bud A čtvercová matice a vektor h 0 splňující rovnici A h = λ h pro nějaké číslo λ R. Potom λ nazýváme
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému
2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka
Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10
Obsah Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 KAPITOLA 1 Úvod 11 Dostupná rozšíření Matlabu 13 Alternativa zdarma GNU Octave 13 KAPITOLA 2 Popis prostředí
Biofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
Matematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE
JMÉNO A PŘÍJMENÍ: 1 VZOROVÝ TEST K PŘIJÍMACÍ ZKOUŠCE do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE Odpovědi na otázky pište do volného místa za každou otázkou. Pro pomocné výpočty použijte čistou
Spojité deterministické modely I 1. cvičná písemka
Spojité deterministické modely I 1. cvičná písemka I. část 1.ajděteoecnéřešenírovnice tx xttg x t. 2.Rozhodnětezdapočátečníúloha x t 3 x xjejednoznačněřešitelná.odpověď zdůvodněte. 3. ajděte první tři
IV120 Spojité a hybridní systémy. Jana Fabriková
IV120 Spojité a hybridní systémy Základní pojmy teorie řízení David Šafránek Jiří Barnat Jana Fabriková Problém řízení IV120 Základní pojmy teorie řízení str. 2/25 Mějme dynamický systém S definovaný stavovou
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Interpolace pomocí splajnu
Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
LAPLACEOVA TRANSFORMACE LAPLACEOVA TRANSFORMACE
LAPLACEOVA TRANSFORMACE 2 log 2 (log 2)/2 exp((log 2)/2) = 2, přičemž se pro hledání logaritmů a exponenciel používaly tištěné tabulky. V této kapitole bude vyložena dosti odlišná teorie od těch předešlých.
časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.
Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení
Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 6. 9. Obsah přednášky Literatura Derivace vyšších
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah
Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, Sc. holcik@iba.muni.cz @iba.muni.cz,, Kamenice 3, 4. patro, dv.č.44.44 INVESTIE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VIII. SPOJITÉ SYSTÉMY
Zpětná vazba, změna vlastností systému. Petr Hušek
Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze
VEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
O řešení diferenční rovnice y(n+2) 1, 25y(n+1)+0, 78125y(n) = x(n + 2) x(n)
O řešení diferenční rovnice yn+), 5yn+)+0, 785yn) xn + ) xn) Prof. RNDr. Josef Diblík, DrSc. a Prof. Ing. Zdeněk Smékal, CSc. V příspěvku je řešena rovnice Abstrakt yn + ), 5yn + ) + 0, 785yn) xn + ) xn)