U Úvod do modelování a simulace systémů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "U Úvod do modelování a simulace systémů"

Transkript

1 U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení nesmí dostat, popř. je nutno ověřovat chování zařízení ještě ve fázi jejich návrhu. V těchto a dalších případech je vhodné a efektivní pro účely zkoumání využívat modely těchto soustav. Podle své podstaty lze modely rozdělit do dvou skupin: Fyzický (fyzikální) model vychází z fyzikální nebo geometrické podobnosti mezi skutečnou soustavou a modelem. Model je většinou zmenšenina reálného systému ve stanoveném měřítku. Jako příklad můžeme uvést zkoumání aerodynamických vlastností silničních vozidel v aerodynamickém tunelu nebo ovladatelnosti lodí na jejím modelu v experimentálním kanále. Matematický model představuje abstraktní systém, popisující zkoumanou soustavu pomocí stanoveného formalizovaného zápisu. Nejčastěji se využívá systému normálních nebo diferenciálních rovnic. Tyto modely neumožňují realizovat experimenty založené na fyzikální podstatě. Tento model však samostatně není schopen dávat informace potřebné pro hodnocení zkoumaného děje. Ty získáme teprve řešením tohoto modelu, nejčastěji pomocí numerického řešení na číslicových nebo analogových počítačích. za použití vhodných simulačních nástrojů (software). Způsob modelování se liší podle kritéria přiřazení modelu k originálu. Vycházíme z [Noskievič, 999]: podobnosti která představuje jednoznačné vzájemné přiřazení vlastností, struktury a chování. o Fyzikální podobnost podobnost mezi systémy a procesy na základě geometrické podobnosti parametrů a stavových veličin. o Matematická podobnost podobnost mající stejný matematický popis. o Kybernetická podobnost matematická podobnost vnějšího chování modelu a popisovaného systému. Pomocí této podobnosti nepopisujeme vnitřní strukturu systému, vnímáme jej jako černou skříňku. analogie která představuje matematickou podobnost modelu od fyzikálně odlišného popisovaného systému. Příkladem může být popisování spolehlivosti soustavy jednotlivých prvků řazených sériově, která se modeluje pomocí analogie se stanovení kapacity elektrického obvodu sestaveného z kapacit ve stejném řazení. U. Základní pojmy Na úvod této problematiky je nutné stručně charakterizovat základní pojmy, se kterými budeme v dalším textu pracovat: Simulace systému označuje techniky studia určitých vlastností systému na jeho modelu. Systém představuje určitým způsobem uspořádaná množinu komponent (příznaků), systémově označovaných Q Q = { Q, Q, 2, } L a vazeb (relací) mezi nimi, označované symbolem R R = { R, R, 2, } Q m L R n

2 Okolí systému vnější prostředí, do kterého je systém zasazený a se kterým komunikuje pomocí vstupních a výstupních kanálů. Rozhraní mezi systémem a jeho okolím musí splňovat podmínku separatibility systému. Systém je saparatibilní, jestliže jeho výstupy nepůsobí na okolí tak, že se mění vstupy systému. Jinak řečeno: působení okolí na systém není podstatných způsobem závislé na chování a vlastnostech systému [Noskievič, 992]. Propojení jsou komunikační kanály mezi komponentami pomocí kterých mezi sebou tyto komponenty komunikují. Struktura systému množina komponent, tvořících daný systém a jejich vzájemná propojení. Schématicky můžeme strukturu zapsat jako přiřazení S: {( Q, Q R )} S =, kde: Q i Q j R k i j k vstupní komponenta(příznak) vazby R výstupní komponenta (příznak) vazby R vazba (relace) systému Obr. U.: Struktura systému a proměnné. Proměnné systému Proměnné můžeme popsat jako vektory, definované na univerzu W systému. { w, w2, } W =, L w q Vstupní a výstupní proměnné systému popisují proměnné, pomocí kterých systém komunikuje přes vstupní a výstupní kanály s okolím. Vstupní proměnné systému budeme označovat symbolem u a jsou charakterizované vektorem:

3 u u2 = M u o u, popř.: u = [ u u L ] T 2 Výstupní proměnné budeme označovat symbolem y a popisovat vektorem: y y = M 2 y p u o y, popř.: y = [ y y L ] T 2 y o Proměnné, které popisují parametry uvnitř modelu charakterizujeme jako proměnné stavové s vektorem: x x2 = M x t x, popř.: x = [ x x L ] T 2 x o Podle vnitřního uspořádání modely dělíme na: Vnitřní model systému (modely struktury) kde vnitřní struktura je popsaná jako soubor komponent Q a jejich propojení R. Tímto modelem budeme rozumět takový popis systému, který transformuje vektor vstupů u na vektor vnitřních stavů x, jejich transformaci je možno získat vektor výstupních veličin y. Stavové modely můžeme popisovat pomocí soustav rovnic diferenciálních a diferenčních, nebo soustavou příznaků Q a relací R ve formě kartézského součinu: S Q Q R i j k Jako příklad může sloužit elektronický logický obvod, který je sestaven z několika logických členů. Vnější model systému (modely chování) vychází z popisu daného systému pomocí vektoru vstupů u a vektoru výstupů y - na systém se můžeme dívat jako na černou skříňku (bez znalosti jeho struktury). Vlastnosti systému zkoumáme při sledování odezvy systému na předem definované hodnota vstupních proměnných u. Tomuto postupu říkáme identifikace systému. Pro popis spojitých i diskrétních systémů se používají diferenciální či diferenční rovnice vyššího než prvního řádu. Toto chování je definované pomocí soustavy funkčních vztahů zobrazujících hodnoty vstupních a stavových proměnných do nového stavu a hodnot výstupních proměnných.

4 Obr. U.3: Princip identifikace vnějšího modelu systému. Pro statický systém platí, že výstup systému je jednoznačně definován jeho vstupem. Dokončit charakteristiku statického systému podle [Noskievič, 999] Systém je dynamický, jestliže výstup y není jednoznačně určen pouze vstupy u, ale závisí také na čase. Jeho popis je vyjádřen pomocí vektorové stavové rovnice, popisující změnu stavového vektoru x& v čase a vektorové výstupní rovnice y, popisující závislost výstupů na vstupech a stavu systému, znázorněný rovnicemi: x& = f y = g ( x,u) ( x,u) s vektorem počátečního stavu x(0)=x 0 kde f, g jsou obecně nelineární funkce. Jestliže funkce f, g jsou nezávislé na čase, systém nemění v čase své vlastnosti, parametry modelu jsou konstantní, pak hovoříme o systému stacionárním, t-invariantním. Pokud systém mění v čase své vlastnosti, jedná se o systém nestacionární t-variantní. Model systému je popsán funkcemi závislými explicitně na čase: x & = f ( x,u,t) y = g ( x,u,t) s vektorem počátečního stavu x(0)=x 0 Stav systému představuje okamžité hodnoty jeho stavových proměnných x(t), ev. stavy komponent v daném okamžiku. Systém dělíme podle definičního oboru proměnných (viz Obr. U.3) na: diskrétní - hodnota proměnných se mění nespojitě v určitých časových okamžicích; spojitý proměnné mění svoje hodnoty spojitě ve sledovaném čase.

5 a) b) Obr.U.3: Definiční obor systému. a) diskrétní, b) spojitý. Podle vlastností chování systému provádíme dělení : deterministické systémy hodnoty proměnných jsou v každém okamžiku přesně definovány, při stejných podmínkách jsou výsledky simulace stejné. stochastické systémy proměnné se chovají náhodně podle určené pravděpodobnosti. Znázorňování modelů Strukturu systému můžeme znázorňovat několika způsoby. Nejčastěji se používají znázorňování struktury pomocí: relační strukturní matice orientované grafy o blokové schéma o stavové schéma o signální schéma Strukturní matice systému Pomocí strukturní matice znázorňujeme zápis struktury systému vyjádřenou podle U.. řádky matice odpovídají relacím R i a sloupce odpovídají jednotlivým příznakům Q j v systému. Výstupní příznak z dané relace je umístěn na hlavní diagonále matice. Prvky strukturní matice r ij nabývají hodnot r ij = účastní-li se j-tý příznak relace R i r ij = 0 neúčastní-li se j-tý příznak relace R i Q 5 Q 4 Q 3 Q 2 Q R R R R

6 Obr. U.4: příklad strukturní matice systému. Z matice strukturního systému podle Obr. U.4 je možno sestavit vztahy popisující jednotlivé relace: R : Q 5 = f (Q ) R 3 : Q 3 = f 3 (Q 4,Q ) a následující. Ty příznaky, které nejsou výstupem žádné z relací představují vstupní příznaky. V příkladu podle Obr. U.4 je vstupem příznak Q. Grafické znázornění struktury Nejčastějším používaným prostředkem pro znázornění struktury systému je orientovaný graf. Představuje posloupnost uzlů a orientovaných hran. Tento princip se používá pro realizaci : blokových schémat signálových schémat. Blokové schéma V tomto orientovaném grafu uzly představují tzv. bloky, odpovídající relacím systému a hrany představující příznaky systému. Podle teorie grafů příznak na výstupu relace představuje vstupní příznak navazující relace. To znamená, že blok představující relaci popisuje transformaci proměnné popsané v tomto schématu jako orientovaná hrana. prvky tohoto zobrazení je možno pracovat (zjednodušovat) pomocí pravidel blokové algebry.. Funkce bloku (transformace) je popsána pomocí dalších nástrojů, jako jsou operátorové funkce, přenosové funkce, stavové popisy, diferenciální rovnice a další charakteristiky, které budou popsána v dalším textu. Ukázka blokového schématu je na obrázku Obr. U.5. Obr. U.5: Blokové schéma systému. Stavové schéma Stavové schéma je zvláštním případem blokových schémat. Vycházejí ze stejného principu orientovaného grafu, rozdíl je v tom, že uzly znázorňují pouze základní relace: integrace jako základní dynamická relace statická relace jako je násobení, dělení. Signály přestavované orientovanými hranami je možno sčítat a odčítat pomocí sumačních členů. Složité dynamické relace je nutno rozložit na tyto atomické relace. Ukázka stavového schématu, které odpovídá systému na Obr. U.6 je na Obr. U.5.

7 Obr. U.6: Stavové schéma systému podle Obr. U.5. Signálové schéma Signálové schéma se nazývá taktéž signálovým diagramem popř. Masonovým grafem. Jeho uspořádaní je opačné než u schématu blokového. Příznaky představují uzly orientovaného grafu a relace jsou přestavovány hrana grafu. Uzly představují současně místa sčítání a větvení relací. V tomto zobrazení je povinné značení orientace hran, představující směr šíření signálu pro transformaci a současně symbolického označení způsobu transformace signálu. Ukázka signálových schémat a a jejich přiřazení ke schématům blokovým je na obrázku Obr. U.7.

8 Obr. U.7: Bloková a odpovídající signálová schémata. Modelování ve speciálních simulačních prostředích využívá při grafické tvorbě modelu některé z možnosti orientovaného grafu. Ukázky jsou na obrázcích Obr. U.8 pro simulační prostření Simulink a Obr. U.9 pro prostředí Witness, která budou popsána v dalším textu. Obr. U.8: Ukázka blokového schématu modelu v prostředí Simulink.

9 Doplnit Witness Obr. U.9: Ukázka blokového schématu modelu v prostředí Simulink.

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Teorie systémů TES 1. Úvod

Teorie systémů TES 1. Úvod Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 1. Úvod ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní ČVUT v Praze

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí

Více

Konečný automat. Studium chování dynam. Systémů s diskrétním parametrem číslic. Počítae, nervové sys, jazyky...

Konečný automat. Studium chování dynam. Systémů s diskrétním parametrem číslic. Počítae, nervové sys, jazyky... Konečný automat. Syntéza kombinačních a sekvenčních logických obvodů. Sekvenční obvody asynchronní, synchronní a pulzní. Logické řízení technologických procesů, zápis algoritmů a formulace cílů řízení.

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ Radim Pišan, František Gazdoš Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně Nad stráněmi 45, 760 05 Zlín Abstrakt V článku je představena knihovna

Více

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY Michal Dorda VŠB - TU Ostrava Fakulta strojní Institut dopravy 1 Úvod V běžné technické praxi se velice často setkáváme s tzv. systémy hromadné obsluhy aniž

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování.

Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování. 3 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Business modelling, základní nástroje a metody business modelování.

Více

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina

Více

Soustavy se spínanými kapacitory - SC. 1. Základní princip:

Soustavy se spínanými kapacitory - SC. 1. Základní princip: Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení

Více

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.

Více

SEKVENČNÍ LOGICKÉ OBVODY

SEKVENČNÍ LOGICKÉ OBVODY Sekvenční logický obvod je elektronický obvod složený z logických členů. Sekvenční obvod se skládá ze dvou částí kombinační a paměťové. Abychom mohli určit hodnotu výstupní proměnné, je potřeba u sekvenčních

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Středoškolská technika SCI-Lab

Středoškolská technika SCI-Lab Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT SCI-Lab Kamil Mudruňka Gymnázium Dašická 1083 Dašická 1083, Pardubice O projektu SCI-Lab je program napsaný v jazyce

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. 1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Profilová část maturitní zkoušky 2017/2018

Profilová část maturitní zkoušky 2017/2018 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

HAZARDY V LOGICKÝCH SYSTÉMECH

HAZARDY V LOGICKÝCH SYSTÉMECH HAZARDY V LOGICKÝCH SYSTÉMECH 1. FUNKČNÍ HAZARD : Při změně vstupního stavu vstupních proměnných, kdy se bude měnit více jak jedna proměnná - v reálné praxi však současná změna nenastává a ke změnám hodnot

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

PROGRAMOVATELNÉ LOGICKÉ OBVODY

PROGRAMOVATELNÉ LOGICKÉ OBVODY PROGRAMOVATELNÉ LOGICKÉ OBVODY (PROGRAMMABLE LOGIC DEVICE PLD) Programovatelné logické obvody jsou číslicové obvody, jejichž logická funkce může být programována uživatelem. Výhody: snížení počtu integrovaných

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

Číselné vyjádření hodnoty. Kolik váží hrouda zlata?

Číselné vyjádření hodnoty. Kolik váží hrouda zlata? Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Operátory pro maticové operace (operace s celými maticemi) * násobení maticové Pro čísla platí: 2*2

Operátory pro maticové operace (operace s celými maticemi) * násobení maticové Pro čísla platí: 2*2 * násobení maticové Pro čísla platí: Pro matice - násobení inverzní maticí inv inverzní matice A -1 k dané matici A je taková matice, která po vynásobení s původní maticí dá jednotkovou matici. Inverzní

Více

Virtuální instrumentace I. Měřicí technika jako součást automatizační techniky. Virtuální instrumentace. LabVIEW. měření je zdrojem informací:

Virtuální instrumentace I. Měřicí technika jako součást automatizační techniky. Virtuální instrumentace. LabVIEW. měření je zdrojem informací: Měřicí technika jako součást automatizační techniky měření je zdrojem informací: o stavu technologického zařízení a o průběhu výrobního procesu, tj. měření pro primární zpracování informací o bezpečnostních

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na 4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

CW01 - Teorie měření a regulace cv. 7.0

CW01 - Teorie měření a regulace cv. 7.0 Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace cv. 7.0 Teorie regulace ZS 2014/2015 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření

Více

Simulační modely. Kdy použít simulaci?

Simulační modely. Kdy použít simulaci? Simulační modely Simulace z lat. Simulare (napodobení). Princip simulace spočívá v sestavení modelu reálného systému a provádění opakovaných experimentů s tímto modelem. Simulaci je nutno považovat za

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1

P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1 Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 Vznik a historie projektového řízení Akad. rok 2015/2016, LS Projektové řízení a marketing

Více

VUT FSI v Brně SIMULACE SYSTÉMŮ RNDr.Ing. Jiří Šťastný, CSc.

VUT FSI v Brně SIMULACE SYSTÉMŮ RNDr.Ing. Jiří Šťastný, CSc. VUT FSI v Brně SIMULACE SYSTÉMŮ RNDr.Ing. Jiří Šťastný, CSc. Doplňkový učební text Předmluva Tento učební text je určen zejména pro posluchače studijního oboru Aplikovaná informatika a řízení v kombinovaném

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU

SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU M. Anderle, P. Augusta 2, O. Holub Katedra řídicí techniky, Fakulta elektrotechnická, České vysoké učení technické v Praze 2 Ústav teorie informace

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD .. Minimalizace logické funkce a implementace do cílového programovatelného obvodu Zadání. Navrhněte obvod realizující neminimalizovanou funkci (úplný term) pomocí hradel AND, OR a invertorů. Zaznamenejte

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem 7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového

Více

POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD.

POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD. POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ Ing. V. Glombíková, PhD. SIMULACE nástroj pro studium chování objektů reálného světa SYSTÉM určitým způsobem uspořádána množina komponent a relací mezi nimi. zjednodušený,

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Modelování procesů (2) 23.3.2009 Procesní řízení 1

Modelování procesů (2) 23.3.2009 Procesní řízení 1 Modelování procesů (2) 23.3.2009 Procesní řízení 1 Seznam notací Síťové diagramy Notace WfMC Notace Workflow Together Editor Aktivity diagram (UML) FirsStep Designer Procesní mapa Select Prespective (procesní

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty

Více

3. Úloha o společném rozhraní

3. Úloha o společném rozhraní 34 3. Úloha o společném rozhraní Cíle Po prostudování této kapitoly budete schopni: Zjistit neregularity v systému Navrhnout řešení pro odstranění neregulárních vazeb Doba potřebná ke studiukapitoly:60minut

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

Modelování a simulace

Modelování a simulace Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut ekonomiky a systémů řízení Modelování a simulace Ostrava 2012 Ing. Lukáš Otte, Ph.D. Obsah Otázky... 3 1. Úvod... 3

Více

Výpočet stlačitelného proudění metodou konečných objemů

Výpočet stlačitelného proudění metodou konečných objemů Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Stanovení nejistot při výpočtu kontaminace zasaženého území

Stanovení nejistot při výpočtu kontaminace zasaženého území Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních

Více

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1 NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

ekologie Pavel Fibich Vektor a Matice Operace s maticemi Vlastnosti matic Pavel Fibich Shrnutí Literatura

ekologie Pavel Fibich Vektor a Matice Operace s maticemi Vlastnosti matic Pavel Fibich Shrnutí Literatura emi - nalévárna pavel.fibich@prf.jcu.cz 4. října 2012 Obsah emi 1 2 3 emi 4 5 6 emi Proč povídat o ích v kurzu? ové modely se používají v populační ekologii téměř nejčastěji bude snažší porozumět práci

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Základní pojmy technické diagnostiky

Základní pojmy technické diagnostiky P1 Základní pojmy technické diagnostiky Poruchy a jejich příčiny Žádné zařízení nelze konstruovat tak, aby se u něj dříve či později neobjevily vady, závady a poruchy. Vada nám funkční spolehlivost neovlivňuje,

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ MODEL PROPUSTNÉHO MĚNIČE PROJEKT DO PŘEDMĚTU SNT AUTOR PRÁCE KAMIL DUDKA BRNO 2008 Model propustného měniče Zadání

Více

www.pedagogika.skolni.eu

www.pedagogika.skolni.eu 2. Důležitost grafů v ekonomických modelech. Náležitosti grafů. Typy grafů. Formy závislosti zkoumaných ekonomických jevů a jejich grafické znázornění. Grafy prezentují údaje a zachytávají vztahy mezi

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy Moderní technologie ve studiu aplikované fyziky CZ.1.07/..00/07.0018 7. Funkce jedné reálné proměnné, základní pojmy V této chvíli jsme již ve výkladu přikročili ke kapitole, kterou můžeme považovat za

Více