transport asimilátů floémem - vkládání a vykládání do/z floému využití produktů fotosyntézy sekundární metabolismus

Rozměr: px
Začít zobrazení ze stránky:

Download "transport asimilátů floémem - vkládání a vykládání do/z floému využití produktů fotosyntézy sekundární metabolismus"

Transkript

1 transport asimilátů floémem - vkládání a vykládání do/z floému využití produktů fotosyntézy sekundární metabolismus Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková

2 Nejdůležit ležitější sacharidové asimiláty, jejich transport od zdroje do sinku a jejich další osud v rostlině sacharidy = energie + řetězce uhlíku pro syntézu dalších látek

3 sacharidy = energie + řetězce uhlíku pro syntézu dalších látek

4 sacharidy = energie + řetězce uhlíku pro syntézu dalších látek monosacharidy: monooxopolyhydroxysloučeniny triózy glyceraldehyd-3-p monosacharidy Calvinova cyklu biosyntéza karotenoidů (IPP) fytolu, plastochinonu Trióza-fostáty (Glyceraldehyd-3-fosfát, Dihydroxyacenton-fosfát) primární produkty fotosyntézy / Calvinova cyklu vznik v chloroplastu potřeba poslat je dál!! intenzita transportu trióza-fosfátů záleží na jejich koncentraci a koncentraci Pi

5 Transport sacharidů: 1) z chloroplastu, 2) z buňky Den Noc škrob škrob trioza-fosfáty trioza-fosfáty SACHAROZA SACHAROZA hexozafosfáty hexozafosfáty transport do cytosolu SACHAROZA

6 DEN: transport trióza-p z chloroplastu do cytosolu Trioza-fosfát translokátor chloroplastové membrány ANTIPORT současný transport - proti sobě Pi a trióza-p

7 Rozdělování sacharidů chloroplast/cytoplasma (škrob/sacharóza) Priorita: udržení konstantního toku asimilátů po rostlině Hlavní signál: konc. Pi / trióza-p v cytoplasmě trióza-p translokátor (antiport) syntéza sacharózy = potřeba trióza-p

8 Zabudování trióza-p (GA3P a DHAP) glukoneogeneze (metabolismus sacharózy a škrobu) škrob v plastidech sacharóza v cytosolu Ve dne: kontinuální syntéza a export sacharózy do nefotosyntetizujících pletiv, nasyntetizovaný škrob se hromadí v chloroplastu (tzv. asimilační škrob) den noc V noci: zastavena asimilace, degradace škrobu pro zachování exportu sacharózy - z chloroplastu se transportují produkty štěpení škrobu: maltóza a glukóza Taiz a Zeiger 2006

9 sacharóza disacharid nejrozšířenější transportní forma sacharidů sacharóza-p-syntáza fruktóza-6-p + UDP-glukóza sacharóza-6-p + UDP sacharóza-p-fosfatáza sacharóza-6-p sacharóza + Pi vazba α1 β2 glukóza a fruktóza spojeny svými redukujícími skupinami funkce transportní forma sacharidů (zdroj sink) zásobní

10 monosacharidy - hexózy floém redukující sacharidy reaktivní, volná aldehydická nebo ketonická skupina náchylná k redukci - náchylné k neenzymatickým reakcím s proteiny - proto nejsou vhodné jako transportní formy

11 transportní formy sacharidů neredukující cukry Sacharóza disacharid = fruktóza + glukóza Sacharidy rafinózové řady: rafinóza, stachyóza, verbaskóza vždy obsahují +1 molekulu galaktózy rafinóza sacharóza verbaskóza stachyóza galaktóza galaktóza galaktóza glukóza fruktóza

12 škrob asimilační (transientní) - v plastidech fotosyntetizujících orgánů zásobní - v plastidech nefotosyntetizujících orgánů asimilační škrob v jehlici smrku zásobní škrob v hlíze bramboru amyloplasty jako statolity v kořenové čepičce kukuřice

13 amyloplast v zárodečném vaku soji (Glycine max) škrobová zrna Solanum tuberosum Phaseolus vulgaris amyloplasty jako statolity v kořenové čepičce Zea mays

14 polysacharidy - zásobní škrob = polymer α-d-glukózy APD-glukózapyrofosforyláza glukóza-1-p + ATP ADP-glukóza + PPi ADP-glukóza + (α-d-glukosyl) n škrobsyntáza (α-d-glukosyl) n+1 + ADP syntéza probíhá v plastidech chloroplasty amyloplasty velikost a tvar škrobových zrn jsou druhově specifické zbožíznalství endosperm obilnin pšenice, ječmen, žito, oves, rýže, kukuřice, proso, čirok hlízy brambor, maniok, batát, jam dřeň stonku cykasy, palmy Canna indica

15 škrob α(1 6) α(1 4), amylóza vazbaα(1 4) molekula tvoří šroubovici amylopektin vazba α(1 4) a α(1 6) větvení řetězce struktura škrobu (poměr amylózy a amylopektinu) ovlivňuje jeho vlastnosti a průmyslové využití

16 Odbourávání škrobu hydrolytické: α-amyláza hydrolyzuje α-1-4-glykosidické vazby uvnitř glukanového řetězce dextriny β-amylázy odštěpuje ma1tosové jednotky z neredukujícího konce řetězce maltóza α-glukosidáza (maltáza) glukóza fosforolytické: škrobfosforyláza štěpí škrob od neredukujícího konce vzniká glukóza-1-p D-enzymy (debranching enzymes) štěpí vazby 1 6, tj. amylopektin v místech rozvětvení řetězců

17 další důležité sacharidy - jejich osud v rostlině sacharidy = energie + řetězce uhlíku pro syntézu dalších látek 3C triózy glyceraldehyd-3-p monosacharidy Calvinova cyklu biosyntéza karotenoidů (IPP) fytolu, plastochinonu dihydroxyaceton-p 3-P-glycerol lipidy (plastid i cytosol) 4C tetrózy erytróza-4-p kyselina šikimová fosfoenolpyruvát kyselina chorizmová aminace tryptofan tyrozin fenylalanin (aromatické aminokyseliny)

18 další důležité sacharidy - jejich osud v rostlině 5C pentózy vznik - Calvinův cyklus - pentózový cyklus v plastidu i cytosolu dekarboxylace hexóz ribulóza-1,5-p 2 ribóza nukleotidy a RNA deoxyribóza DNA xylóza hemicelulózy arabinóza pektiny 6C hexózy vznik z trióz, štěpením škrobu nebo sacharózy fruktóza fruktany glukóza celulóza, škrob, kalóza hemicelulózy galaktóza transportní oligosacharidy glykolipidy (membrány thylakoidu)

19 schéma metabolizmu sacharidů Pavlová 2005, skriptum

20 polysacharidy strukturní buněčná stěna celulóza polymer β-d-glukózy vazba β1 4 mikrofibrily (20 až 60 molekul celulózy; prům. 36; 2000 až molekul β-d-glukózy) celulózasyntáza, syn. terminální komplex (geny CelS) Taiz l., Zieger E.: Plant Physiology. Sinauer Ass., Inc., Publishsrs, Sunderland, Massachusetts, 2002 (upraveno)

21 celulóza vazba β1 4 opakující se jednotka vodíková vazba mezi molekulami celulózy vodíková vazba uvnitř molekuly celulózy

22

23 TRANSPORT ASIMILÁTŮ FLOÉMEM

24 transport asimilátů zdroj sink transportují se neredukující osmoticky aktivní sacharidy sacharóza rafinóza, verbaskóza, stachyóza manitol, sorbitol (cukerné alkoholy) floém rychlost 0,3 až 1,5 m.h -1 tok: 1-15 g. h -1. m -1 (plocha sítkových elementů) (z angl. sink = dřez, umyvadlo, výlevka, žumpa, vyčerpanost) ;-)

25 redukující sacharidy reaktivní, volná aldehydická nebo ketonická skupina náchylná k redukci - náchylné k neenzymatickým reakcím s proteiny - proto nejsou vhodné jako transportní formy floém neredukující disacharid SACHAROZA + oligosacharidy rafinozové řady

26 Složení floémové šťávy složka Koncentrace mg/ml cukry aminokyseliny 5,2 organické kyseliny 2,0-3,2 proteiny 1,45-2,2 draslík 2,3-4,4 chloridy 0,355-0,675 fosfáty 0,350-0,550 hořčík 0,109-0,122 + fytohormony a jiné signální molekuly! převzato z přednášky Dr. Kulicha a Dr. Žárského

27 Složení floémové šťávy - cukry sacharóza: výhradně nebo převážně (např. brambor, tabák, Arabidopsis s malým množstvím rafinózy) sacharóza spolu s cukerným alkoholem - manitol, sorbitol, volemitol; často ve srovnatelných množstvích se sacharózou (Apium graveolens, Prunus cerasus, Plantago major, rod Primula) RFO s malým množstvím sacharózy: (např. Cucurbita pepo, Alonsoa meridionalis) RFO s cukerným alkoholem a malým množstvím sacharózy: (např. Olea europeaea) Hexózy s malým množstvím sacharózy (převážně příslušníci čeledí Ranunculaceae, Papaveraceae) RFO = oligosacharidy rafinozové řady převzato z přednášky Dr. Kulicha a Dr. Žárského

28 ...jak je možné získat relativně čistý a odpovídající vzorek floémové šťávy...?...za pomocí mšic, mírně morbidním způsobem PREZETACE NA PŘÍŠTĚ referát pro otrlé povahy... ;-)

29 ...jak je možné získat relativně čistý a odpovídající vzorek floémové šťávy...? Aphid stylectomy with barley The Author(s). Gaupels F et al. J. Exp. Bot. 2008;59:

30 transportní formy sacharidů neredukující cukry Sacharóza disacharid = fruktóza + glukóza Sacharidy rafinózové řady: rafinóza, stachyóza, verbaskóza vždy obsahují +1 molekulu galaktózy rafinóza sacharóza verbaskóza stachyóza galaktóza galaktóza galaktóza glukóza fruktóza

31 Co je zdroj a co je sink? rostlina ve vegetativní fázi status ZDROJ / SINK se může dynamicky měnit např. v závislosti na ontogenezi rostliny (vegetativní / generativní fáze) Změna zdroj sink během vývoje bramboru sink sink zdroj sink zdroj sink zdroj sink žádné morfologické změny, ale změny v genové expresi, proteinovém spektru, enzymatických aktivitách převzato od doc. Lipavské

32 Radioaktivní značení asimilátů odhaluje sink 14 C značené importované asimiláty

33 Propojení mezi zdrojem a sinkem je ovlivněno mnoha faktory blízkost vývojové stádium vzájemné propojení - orthostychie - celá síť floému je velice plastická a to i díky výskytu anastomóz vzájemných propojení sítkovic.

34 Vodivé elementy floému floém sítkové elementy s póry, buňky průvodní, floémový parenchym sítková deska buňka průvodní buňka floémového parenchymu článek sítkovice buňka floémového parenchymu buňka průvodní sítkové buňky r. nahosemenné sítkové články r. krytosemenné tvoří řadu sítkovici články sítkovic mají: miktoplazmu, kterávznikne smísením vakuoly a cytoplasmy hladké ER modifikované plastidy a mitochondrie chybí cytoskelet, Golgi, ribozomy p-protein(od phloem protein) vláknitýprotein umístněnýu plasmatické membrány, který se spolu s kalózouúčastníuzavíránípoškozených článků sítkovic

35 floém sítkové elementy s póry, buňky průvodní, floémový parenchym sítková deska buňka floémového parenchymu P protein článek sítkovice buňka floémového parenchymu sítkové buňky r. nahosemenné sítkové články r. krytosemenné tvoří řadu sítkovici póry mají fylogenetický i ontogenetický původ v plazmodezmech póry se sdružují v sítkovém políčku buňka průvodní buňka průvodní pór sítkové desky buňky průvodní

36 sítkové buňky články sítkovic sítková políčka po celém povrchu buněk plní strukturní i transportní funkci sítková políčka vyplněná hladkým ER nemají P protein někdy mají jádro µM póry větší než sítková políčka, umístněné obzvláštěna styčných plochách sítkových elementů. Tvoří tzv. sítkové desky póry sítkových desek jsou zcela otevřené pro strukturní funkci jsou příliš málo pevné µm

37

38 sítkové elementy jsou s buňkami průvodními propojeny četnými plazmodezmy sítkové články s buňkami průvodními tvoří funkční komplex Raven P.H., Everet R.F., Eichhorn S.E.: Biology of Plants. W.H.Freeman and company Worth Publishers, New York 2003

39 uzavírání sítkových elementů po poranění 1 minuta po poranění 4 minuty po poranění Plant Cell, Vol. 10, 35-50,

40 POHYB LÁTEK FLOÉMEM Určující faktor - přísun a odbyt sacharidů rychlost transportu floémem je mnohem větší než rychlost difúze...rychlost difúze 1 m za 32 let...trochu nepoužitelné ve floému - hromadný tok Mechanismus hnací silou je tlakový gradient daný rozdílem vodních potenciálů ve zdroji a v sinku (Münchova teorie Ernst Münch, 1930)!nezávislost na energii (energ. nároky transport do a z floému (phloem (un)loading)!závislost na transpiračním toku xylémem nedostatek vody zastavení transportu sacharidů

41 vodní potenciál a jeho složky: Ψ s potenciál osmotický (množství rozpuštěných látek ) Ψ p potenciál tlakový (turgor buněk) Ψ g potenciál gravitační (výška nad povrchem) Ψ W = Ψ s + Ψ p + Ψ g + sacharóza Ψ p = Ψ W -Ψ s -Ψ g Ψ s = -0,2 MPa Ψ p = 0,2 MPa Ψ W = 0,2-0,2= 0,0 MPa Ψ s = 0MPa Ψ p = 0MPa Ψ W = 0 + 0= 0MPa Ψ s = -0,2 MPa Ψ p = 0MPa Ψ W = 0-0,2= -0,2 MPa

42 hromadný hromadný tok POHYB POHYB LÁTEK LÁTEK FLOÉMEM FLOÉMEM hromadný tok POHYB POHYB LÁTEK LÁTEK FLOÉMEM FLOÉMEM cévní elementy xylému transpirační proud H 2 O Aktivní vkládání asimilátů do sítkových elementů floému snižuje vodní potenciál, vstupuje voda = vysoký turgorový tlak Tlakovým gradientem poháněný hromadný tok vody a v ní rozpuštěných asimilátů ze zdroje do sinku Aktivní vykládání asimilátů do zvyšuje vodní potenciál, voda vystupuje z buněk = nízký turgorový tlak sítkové elementy floému sacharóza průvodní buňka zdrojová buňka sacharóza Sacharidy jsou ve zdroji aktivně vkládány do komplexu průvodní sítková buňka sinková buňka V sinku jsou sacharidy z foému aktivně odebírány Převzato Nobel 1991 v Taiz and Zeiger POHYB LÁTEK FLOÉMEM

43 VKLÁDÁNÍ LÁTEK DO FLOÉMU (PHLOEM LOADING)

44 VKLÁDÁNÍ LÁTEK DO FLOÉMU (PHLOEM LOADING) transport na krátkou vzdálenost (vždy přes pár buněk k nejbližší žilce v listu transport sacharidů z mezofylových buněk do komplexu průvodní sítková buňka koncentrace sacharidů! vstup sacharidů do floému 1) APOPLASTEM 2) SYMPLASTEM jedle

45 VKLÁDÁNÍ LÁTEK DO FLOÉMU (PHLOEM LOADING) transport na krátkou vzdálenost (vždy přes pár buněk k nejbližší žilce v listu transport sacharidů z mezofylových buněk do komplexu průvodní sítková buňka koncentrace sacharidů! vstup sacharidů do floému 1) APOPLASTEM 2) SYMPLASTEM co to je symplast a apoplast? jedle

46 Základní průvodní buňky mají vyvinuté chloroplasty propojení s mezofylovými buňkami jen velmi málo plazmodezmy apoplastický transport cukrů

47 Transferové buňky podobajíse buňkám základním, majívšak mnoho invaginací, kterými zvyšujísvůj povrch a styčnou plochu s ostatními buňkami (kromě článku sítkovice). Transport je tedy apoplastický. Mohou vznikat i v xylémovem parenchymu

48 Zprostředkovatelské buňky slabě vyvinuté chloroplasty, hodně malých vakuol, hodně plasmodesmů i s ostatními buňkami. Transport probíhá symplasticky

49 VKLÁDÁNÍ LÁTEK DO FLOÉMU listová žilka APOPLASTICKÁ CESTA plasmodesma AKTIVNÍ VKLÁDÁNÍ průvodní buňky články sítkovic SYMPLASTICKÁ CESTA buňka floémového parenchymu buňka pochvy cévního svazku mezofyová buňka plazmatická membrána buňky pochev cévních svazků jsou i u rostlin C3...třeba parenchymatické

50 komplex uzavřený apoplastická cesta TRANSFEROVÉ BKY. ATPáza Sacharózový transportér

51 komplex uzavřený apoplastická cesta TRANSFEROVÉ BKY. ATPáza Sacharózový transportér

52 komplex uzavřený apoplastická cesta TRANSFEROVÉ BKY. ATPáza Sacharózový transportér

53 komplex uzavřený apoplastická cesta TRANSFEROVÉ BKY. SYMPORT sacharóza + proton!!! ATPáza Sacharózový transportér

54 Při apoplastickém vkládání do floému mají průvodní buňky sítkového článku charakter buňky transferové buněčná stěna a přiléhající plazmalema transferových buněk tvoří četné výrůstky (vychlípeniny, invaginace; angl. ingrowths), tím se zvětšuje kontaktní plocha apoplastu a protoplastu a zvyšuje se kapacita transportu látek mezi apoplastem a symplastem vychlípeniny zvětšující transportní plochu transferová buňka ve floému mléče (Sonchus) Raven P.H., Everet R.F., Eichhorn S.E.: Biology of Plants. W.H.Freeman and company Worth Publishers, New York 2003

55 komplex uzavřený apoplastická cesta TRANSFEROVÉ BKY. ATPáza Sacharózový transportér transportér SUC2 Arabidopsis

56 komplex uzavřený apoplastická cesta normální průvodní buňky ATPáza Sacharózový transportér transportér SUT1 Solanum, Nicotiana

57 komplex uzavřený apoplastická cesta normální průvodní buňky ATPáza Sacharózový transportér transportér SUT1 Solanum, Nicotiana

58 komplex uzavřený apoplastická cesta normální průvodní buňky ATPáza Sacharózový transportér

59 komplex uzavřený apoplastická cesta normální průvodní buňky ATPáza Sacharózový transportér

60 komplex uzavřený apoplastická cesta normální průvodní buňky ATPáza Sacharózový transportér

61 komplex otevřený symplastická cesta polymerová past polymer trapping častější u stromů, keřů a lián

62 komplex otevřený symplastická cesta polymerová past

63 komplex otevřený symplastická cesta polymerová past

64 komplex otevřený symplastická cesta polymerová past

65 smíšený typ vkládání obsahuje oba typy komplexů asi u 10% čeledí např. Rhododendron, Gossypium, Ricinus

66 VYKLÁDÁNÍ VYKLÁDÁNÍ VYKLÁDÁNÍ LÁTEK LÁTEK LÁTEK Z Z FLOÉMU FLOÉMU FLOÉMU Symplastickou cestou Apoplastickou cestou

67 1/ Apoplastické vykládání: (možnost regulace (sacharózové a hexózové transportéry, enzymy štěpící sacharózu sacharóza syntáza, invertáza, převážně skladovací sinky = zásobní orgány, plody 2/ Symplastické vykládání: (malá možnost řízení, rychlý růst sinkových pletiv udržení gradientu osmotického potenciálu (přestup přes tonoplast) převážně metabolické sinky = vzrostné vrcholy asimiláty vystupují z floému symplastem nebo apoplastem dle typu sinku symplast transport do meristémů a zásobních pletiv s tvorbou polymerů

68 Apoplastické vykládání floemu je typické pro vyvíjející se embrya Symplastické vykládání floemu samé o sobě není energeticky náročné. Apoplastické vykládání: cukry musí překonat 2, někdy i 3 membránové bariéry J Exp Bot September; 59(12):

69 Další využití produktů fotosyntézy...více v přednáškách o dýchání a minerální výživě syntéza mastných kyselin a membránových lipidů asimilace síry z SO 4 2- asimilace dusíku redukce NO 2- na NH 4 +

70 Sekundárn rní metabolismus Sekundární metabolity vše, co není produktem primárního metabolismu (AMK, nukleotidy, sacharidy, lipidy), ale vychází z něho nemusí se vyskytovat ve všech rostlinných druzích látky, které nepatří k základní molekulární výbavě rostlinné buňky jen v určitých pletivech nebo orgánech a jen v určitých vývojových stadiích Význam ALE! Není to odpad metabolismu! pro rostlinu: pro lidstvo: ochrana proti herbivorům a patogenům atraktans pro opylovače komunikační prostředek mezi rostlinami a při symbióze s mikroorganismy léčiva, jedy, aromatické látky, průmyslově využitelné materiály

71 Sekundárn rní metabolismus primární metabolity AMK, nukleotidy, sacharidy, lipidy přímé role v základních fyziol. procesech: fotosyntéza, respirace, transport (na blízko i na dálku), proteosyntéza, asimilace živin,... PRO VŠECHNY ROSTLINY UNIVERZÁLNÍ sekundární metabolity nemají obecnou přímou funkci v základních fyziol. funkcích nacházejí se výhradně u některých druhů či čeledí rostlin

72 Tři základní skupiny sekundárních metabolitů alkaloidy (obsahující N) Fenolické látky Terpenoidy

73 Sekundárn rní metabolismus Hlavní skupiny 1.Terpeny 2.Fenolické látky 3.Dusíkaté deriváty

74 Terpenoidy 2 biosyntetick tické dráhy mevalonátov tová (převa evažuje) - metylerytritolfosfátov tová

75 Terpenoidy často mohou být těkavé a za horkých dní se uvolňují jejich syntéza je energeticky drahá může spotřebovat až 2% fixovaného C Základní jednotka isopren Klasifikace: počet jednotek isoprenů 1.Monoterpeny (C10) 2.Seskvitrpeny (C15) 3.Diterpeny (C20) 4.Triterpeny (C30) 5.Tetraterpeny (C40) 6.Polyterpeny (>C40)

76 Terpenoidy některé mají dobře definované funkce v procesech růstu a vývoje všech rostlin...otázka definice primární sekundární metabolit Fytohormony Gibereliny diterpeny Kyselina abscisová (ABA) derivát t karotenoidů Brasinosteroidy deriváty triterpenů Karotenoidy (Žlutá,, oranžov ová, červená barviva) Fytol (součást chlorofylu)

77 Terpenoidy Steroly Deriváty triterpenů Dolichol Hydroxyderivát t polyterpenu Kaučuk uk campesterol většinou toxické pro herbivorní hmyz a savce Monoterpeny chryzantémy Estery monoterpenů pyretroidy insekticidy jak přírodnp rodní,, i komerční; ; bez účinku na savce Monoterpeny jehličnan nanů insekticidní účinky pryskyřice (pryskyřičné kanály) lýkožrout Těkavé monoterpeny (seskviterpeny) (esenciáln lní oleje, repelent proti hmyzu, parfémy, potravinářsk ské využit ití) žláznatý trichóm

78 Terpenoidy Azadirachtin - limonoid Triterpeny Netěkavé limonoidy (ochrana proti herbivorům),, v citrusech (hořká chuť) Azadirachta indica (Asie, Afrika), účinnost při 50 ppb nízká toxicita pro savce využití jako komerční insekticid Steroidy fytoekdyzony (insekticid) -první izolace z osladiče e obecného -narušení vývojových procesů hmyzu Kardenolidy (=gylkosidy gylkosidy) velmi toxické pro živočichyichy ovlivňuj ují K+/Na+ ATPázu a tím t činnost srd.. svalu digitalin, digoxin (ochrana proti herbivorům, léčivo), oleandrigenin, konvalatoxin, adonitoxin digoxin ženšen Saponiny (ochrana proti herbivorům) (ginsenosidy) detergentní účinky: porušov ování membrán mydlice

79

80 Cuscuta (kokotice) hledá hostitele... C1/ _S1.mov B. Runyon et al., Science 313, (2006)

81 klíční rostlina parezitické kokotice Cuscuta pentagona využívá těkavé látky při hledání hostitele je schopna reagovat směrovaným růstem na těkavé látky koho si vybere: rajče nebo pšenici??? PREZETACE NA PŘÍŠTĚ B. Runyon et al., Science 313, (2006)

82 Fenolické látky fenolických látek je v rostlinách až rozpustné i větvené nerozpustné polymery různé funkce: = alelopatie obranná funkce, toxické pro herbivory a houbové patogeny mechanická opora (lignin) filtrace UV zářenz ení,, signalizace opylovačů čům m (flavonoidy( flavonoidy) produkce kořeny, listy i opadem ovlivnění okolních rostlin

83 Fenolické látky látky s hydroxylovou skupinou na funkčním m aromatickém m kruhu Biosyntéza: Vychází z fenylalaninu (většinou) = šikimátová cesta častý cíl herbicidů (např. Round-Up), nevyskytuje se u živočichů, takže inhibice neškodí Přeměna fenylalaninu na kys.. skořicovou - klíčov ový enzym fenylalaninamoniaklyáza (PAL) PAL

84 Fenolické látky fenylalaninamoniaklyáza (PALka ) rozhraní primárního / sekundárního metabolismu indukce transkripce PAL: mnoha vnějšími faktory prostředí živin, světla, houbová infekce...

85 Fenolické látky

86 Fenolické látky Základní deriváty: skořicovn icovník Jednoduché fenylpropanoidy kys.. skořicov icová, kumarová, kávová Fenylpropanoidy s laktonovým kruhem (kumariny) -umbeliferon (miříkovité celer, mrkev) furanokumariny vykazují fototoxicitu (toxické až po ozáření UV) při stresu až 100x zvýšení, může být škodlivé pro člověka dermatitidy apod. -eskuletin (jírovec) rovec), dafnetin (lýkovec) vrba vanilka Deriváty kys.. benzoové vanilin kys.. salicylová - růstový regulátor účastnící se systémov mové odpovědi di po napadení patogenem

87

88 Fenolické látky Lignin 3. nejhojnější org.. sloučenina 3D větvenv tvený polymer fenylpropanoidů Výchozí skořicov icové alkoholy: koniferyl alkohol, kumaroylalkohol, sinapylalkohol Podpůrná a vodivá pletiva (tracheidy( a články cév), c středn ední lamela BS Ochranná funkce nestravitelné,, mechanická bariéra ra

89 Fenolické látky Flavonoidy 2 aromatická jádra spojená 3C můstkemm 4 základnz kladní skupiny Klasifikace podle stupně oxidace podle substituentů Klíčov ový enzym - chalkonsyntáza

90 Fenolické látky Flavonoidy 1)Anthokyany barevné sloučeniny vizuáln lní atraktaty ty pro opylovače -anthokyany (glykosidy) -Anthokyanidiny Barva závislz vislá na - počtu a poloze substituentů -esterifikaci aromat.. kyselinami -ph vakuoly ph violamin

91 Fenolické látky UV světlo Flavonoidy 2 a 3) Flavony a flavonoly Barviva z UV oblasti nejč. žlutá flavon(ol ol), luteolin, kvercetin (ve slupkách cibule, čaje, ve chmelu), primetin glykosid - rutin) primetin (prvosenky), Význam: nectar guides pro opylovače ochrana před p UV symbióza - flavonoly slouží jako atraktans symbiotických N 2 fixujících baktérií 4) Izoflavonoidy 3D flavonoidy Význam: insekticidy antiestrogeny antikarcinogeny (soja) fytoalexiny omezují šířen ení bakteriáln lních a houbových infekcí antiestrogeny - ovce spásající jetel bohatý na izoflavonoidy bývají často sterilní

92 Fenolické látky Taniny 1) Kondenzované třísloviny Polymerace flavonoid.. jednotek hlavně u dřevin d (jádrov drové dřevo x houby...) 2) Hydrolyzovatelné taniny heterogenní deriváty kys. galové Význam: ochrana - toxické pro herbivory (komplexy s proteiny) v nezralých plodech (nežrat, dokud není semeno zralé!!!) třísloviny v potravinách mně taninová strava nevadí taniny vyblokuju slinami bohatými na prolin...

93 Alkaloidy Dusíkat katé sloučeniny Až 15 tisíc sloučenin u 20% vyšších rostlin Heterocyklické sloučeniny N v aromat. jádře Biosyntéza: z AMK (lyzin, tyrozin, tryptofan, příp. ornitin) Význam: ochrana předp predátory farmakologie chinin inovník kávovník tabák Rudodřev koka rulík oměj brambor mák

94 MORFIN -TYPICKÝ ALKALOID Rostinný produkt. Většina alkaloidů je produkována rostlinami basická reakce díky volnému e- páru.. N CH 3 obsahuje N v aromat. kruhu heterocyklus (v ckylu je jiný prvek než C) MeO O OH První identifikovaný alkaloid (1804, Serturner). Found only in the Opium Poppy - papaver somniferum.. obsahy morfinu se velmi liší, v našem maku dost nízké V západních zemích jsou makové produkty často pokládány za nevhodné, protože je částečně mylně předpokládáno, že obsahují návykové látky.

95 Alkaloidy Jedy: strychnin, atropin, koniin Léčiva: morfin, kodein, skopolamin Stimulans a sedativa: kokain, nikotin, kofein

96 Alkaloidy Syntéza nikotinu Dusíkat katé sloučeniny Inducibilní toxicita -senecionin x herbivorní hmyz...recyklace k vlastní obraně přástevník starčkový...a kukačka

97 Dusíkat katé sloučeniny Kyanogenní glykosidy Produkce HCN až po zásahu herbivora (prostorové oddělení) Štěpení: glykosidáza - kyanohydrin spontánní uvolnění HCN Význam: ochrana předp herbivory (čirok, maniok, trávy, růžr ůžovité,, bobovité) Hořč řčičné glykosidy bez černý - sambunigrin Produkty - charakteristická vůně a chuť, uvolněny až po napadení herbivorem (prostorové oddělení) mandloň - amygdalin Štěpení: myrosináza odstraní cukr spontánní uvolnění sulfátu Význam: (Brassicaceae) ochrana předp herbivory adaptace těkavé atraktans

98 škrob z Tesco brambory Děkuji za pozornost

Fotosyntéza III. Přednáška Fyziologie rostlin MB130P74

Fotosyntéza III.  Přednáška Fyziologie rostlin MB130P74 http://www.microbehunter.com/2009/01/18/potato-stach-grains/ Fotosyntéza III faktory ovlivňující fotosyntézu transport asimilátů floémem - vkládání a vykládání do/z floému další využití produktů primární

Více

Doučování IV. Ročník CHEMIE

Doučování IV. Ročník CHEMIE 1. Chemie přírodních látek Biochemie a) LIPIDY 1. Triacylglyceroly se štěpí účinkem: a) ligas b) lyas c) lipas d) lihlas Doučování IV. Ročník CHEMIE 2. Žluknutí tuků je z chemického hlediska: a) polymerace

Více

IZOPRENOIDY. Řízení. Dělení: 1) Terpeny 2) Steroidy 1

IZOPRENOIDY. Řízení. Dělení: 1) Terpeny 2) Steroidy 1 IZOPRENOIDY Přírodní látky vznikající v rostlinných a živočišných organismech základní stavební jednotka: IZOPREN = 2-methylbut-1,3-dien Jednotky se spojují do různých řetězců Význam: v tělech organismů

Více

AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN

AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN Otázka: Výživa rostlin, vodní režim rostlin, růst a pohyb rostlin Předmět: Biologie Přidal(a): Cougee AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN 1. autotrofní způsob

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující

Více

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy

Více

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

Fotosyntéza III. faktory ovlivňující fotosyntézu sacharidy transport asimilátů další využití produktů primární fáze fotosyntézy

Fotosyntéza III. faktory ovlivňující fotosyntézu sacharidy transport asimilátů další využití produktů primární fáze fotosyntézy http://www.microbehunter.com/2009/01/18/potato-stach-grains/ Fotosyntéza III faktory ovlivňující fotosyntézu sacharidy transport asimilátů další využití produktů primární fáze fotosyntézy Přednáška Fyziologie

Více

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola 4. Eukarya - plastidy, mitochondrie, cytoskelet, vakuola Plastidy odděleny dvojitou membránou (u vyšších rostlin) - bezbarvé leukoplasty (heterotrofní pletiva) funkce: zásobní; proteinoplasty, - barevné

Více

Struktura a funkce lipidů

Struktura a funkce lipidů Struktura a funkce lipidů Lipidy přítomnost mastných kyselin a alkoholů (estery) hydrofóbnost = nerozpustnost v H 2 O syntéza acetyl-coa glukosa 1100mg/ml vody kys. laurová C12:0 0,063 mg/ml vody palivo

Více

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je? Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

Isoprenoidy. Terpeny. Dělení: pravidelné a nepravidelné (uspořádání isoprenových jednotek) terpeny a steroidy

Isoprenoidy. Terpeny. Dělení: pravidelné a nepravidelné (uspořádání isoprenových jednotek) terpeny a steroidy Isoprenoidy Charakteristika: Přírodní látky, jejichž molekuly se skládají ze dvou nebo více isoprenových jednotek (C 5 H 8 ) n o různém seskupení. Jsou odvozeny od isoprenu Dělení: pravidelné a nepravidelné

Více

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.

Více

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.

Více

ontogeneze listu zpočátku všechny buňky mají meristematický charakter, růst všemi směry (bazální, marginální a apikální meristémy listu)

ontogeneze listu zpočátku všechny buňky mají meristematický charakter, růst všemi směry (bazální, marginální a apikální meristémy listu) Anatomie listu ontogeneze listu epidermis mezofyl vaskularizace vliv ekologických podmínek na stavbu listů listy jehličnanů listy suchomilných rostlin listy vlhkomilných rostlin listy vodních rostlin opadávání

Více

FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ

FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ Petr Soudek Ústav experimentální botaniky Akademie věd ČR Centralizovaný rozvojový projekt MŠMT č. C29: Integrovaný systém vzdělávání v oblasti výskytu a eliminace

Více

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z : Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj

Více

Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK

Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK Rostlinná cytologie MB130P30 Přednášející: RNDr. Kateřina Schwarzerová,PhD. RNDr. Jindřiška Fišerová, Ph.D. Přijďte na katedru experimentální biologie rostlin vypracovat svou bakalářskou nebo diplomovou

Více

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin

6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin 1. Základní úvod do problematiky Historie studia minerální výživy rostlin, obecné mechanismy příjmu minerálních živin, transportní procesy na membránách. 2. Příjem minerálních živin kořeny rostlin a jejich

Více

Zemědělská botanika. Vít Joza joza@zf.jcu.cz

Zemědělská botanika. Vít Joza joza@zf.jcu.cz Zemědělská botanika Vít Joza joza@zf.jcu.cz Botanika: její hlavní obory systematická botanika popisuje, pojmenovává a třídí rostliny podle jejich příbuznosti do botanického systému anatomie zabývá se vnitřní

Více

Sacharidy: Přírodní organické látky v rostlinách i živočiších Ve struktuře: C, H, O (N, F, S)

Sacharidy: Přírodní organické látky v rostlinách i živočiších Ve struktuře: C, H, O (N, F, S) SACHARIDY (cukry) 1 Sacharidy: Přírodní organické látky v rostlinách i živočiších Ve struktuře: C, H, O (N, F, S) Dle počtu základních monosacharidových jednotek vázaných v jejich molekulách cukry 2 Biologický

Více

SACHARIDY. mono- + di- sacharidy -> jednoduché cukry hnědý cukr, melasa rafinovaný cukr, med,...

SACHARIDY. mono- + di- sacharidy -> jednoduché cukry hnědý cukr, melasa rafinovaný cukr, med,... SACHARIDY 50-80 % energetického příjmu funkce využitelných sacharidů: 1. zdroj energie - l g ~ 4kcal 2. stavební jednotky mono- + di- sacharidy -> jednoduché cukry hnědý cukr, melasa rafinovaný cukr, med,...

Více

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1. Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Autor: Katka www.nasprtej.cz Téma: pletiva Ročník: 1.

Autor: Katka www.nasprtej.cz Téma: pletiva Ročník: 1. Histologie pletiva - soubory buněk v rostlinách Pletiva = trvalé soubory buněk, které konají stejnou funkci a mají přibliţně stejný tvar a stavbu rozdělení podle vzniku: - pravá kdyţ se 1 buňka dělí dceřiné

Více

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide

Více

Sacharidy. Sacharidy. z jednoduchých monosacharidů kondenzací vznikají polysacharidy

Sacharidy. Sacharidy. z jednoduchých monosacharidů kondenzací vznikají polysacharidy Sacharidy 1. Monosacharidy 2. Disacharidy 3. Polysacharidy Sacharidy nesprávně nazývány uhlovodany n ( 2 ) n - platí to pouze pro některé cukry přítomné ve všech rostlinných a živočišných buňkách vznik

Více

Princip tvoření nákresů složitých struktur, orgánů:

Princip tvoření nákresů složitých struktur, orgánů: Princip tvoření nákresů složitých struktur, orgánů: Příklad preparát: příčný řez stonkem Kukuřice (Zea mays L. ) Při zhotovování nákresů složitých struktur, skládajících se z více pletiv a buněčných typů,

Více

BUNĚČNÁ STĚNA - struktura a role v rostlinné buňce

BUNĚČNÁ STĚNA - struktura a role v rostlinné buňce BUNĚČNÁ STĚNA - struktura a role v rostlinné buňce Buněčná stěna O buněčné stěně: Buněčná stěna je nedílnou součástí každé rostlinné buňky a je jednou z charakteristických struktur odlišujících buňku rostlinnou

Více

a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů

a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů Otázka: Minerální výživa rostlin Předmět: Biologie Přidal(a): teriiiiis MINERÁLNÍ VÝŽIVA ROSTLIN - zahrnuje procesy příjmu, vedení a využití minerálních živin - nezbytná pro život rostlin Jednobuněčné

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Orgány rostlin II. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis anatomie, morfologie a funkce

Více

Vodní režim rostlin. Obsah vody, RWC, vodní potenciál a jeho komponenty: Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy,

Vodní režim rostlin. Obsah vody, RWC, vodní potenciál a jeho komponenty: Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, Vodní režim rostlin Úvod Klima, mikroklima Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho

Více

Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich

Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich Vakuola Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich objemu. Je ohraničená na svém povrchu membránou zvanou tonoplast. Tonoplast je součástí endomembránového systému buňky

Více

10. Minerální výživa rostlin na extrémních půdách

10. Minerální výživa rostlin na extrémních půdách 10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin

Více

dodržování zásad pro uchování zdraví (dnes synonymum pro dodržování čistoty)

dodržování zásad pro uchování zdraví (dnes synonymum pro dodržování čistoty) Otázka: Hygiena a toxikologie Předmět: Chemie Přidal(a): dan 1. Definice, základní poznatky HYGIENA = dodržování zásad pro uchování zdraví (dnes synonymum pro dodržování čistoty) vnějším znakem hygieny

Více

Nutrienty v potravě Energetická bilance. Mgr. Jitka Pokorná Mgr. Veronika Březková

Nutrienty v potravě Energetická bilance. Mgr. Jitka Pokorná Mgr. Veronika Březková Nutrienty v potravě Energetická bilance Mgr. Jitka Pokorná Mgr. Veronika Březková Energetická bilance energetický příjem ve formě chemické energie živin (sacharidů 4kcal/17kJ, tuků 9kcal/38kJ, bílkovin

Více

Chemické složení dřeva

Chemické složení dřeva Dřevo a jeho ochrana Chemické složení dřeva cvičení strana 2 Dřevo a jeho ochrana 2 Dřevo Znalost chemického složení je nezbytná pro: pochopení submikroskopické stavby dřeva pochopení činnosti biotických

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216. Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

člověk vždy u rostliny objevil jako první její neduh současné zemědělství využívá něco málo přes 10% souše člověk využívá pouhá 4% vyšších semenných

člověk vždy u rostliny objevil jako první její neduh současné zemědělství využívá něco málo přes 10% souše člověk využívá pouhá 4% vyšších semenných Začněme historií člověk vždy u rostliny objevil jako první její neduh současné zemědělství využívá něco málo přes 10% souše člověk využívá pouhá 4% vyšších semenných rostlin První zprávy v knize Pen king

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

Rostlinné orgány. Kořen (radix)

Rostlinné orgány. Kořen (radix) - jsou tvořeny soubory pletiv - vyznačují se určitou funkcí a stavbou Rostlinné orgány Rostlinné orgány vegetativní (vyživovací) kořen, stonek, list - funkce : zajištění výživy, růstu a výměny látek s

Více

RNDr.Bohuslava Trnková ÚKBLD 1.LF UK. ls 1

RNDr.Bohuslava Trnková ÚKBLD 1.LF UK. ls 1 Sacharidy RNDr.Bohuslava Trnková ÚKBLD 1.LF UK ls 1 sákcharon - cukr, sladkost cukry mono a oligosacharidy (2-10 jednotek) ne: uhlohydráty, uhlovodany, karbohydráty polysacharidy (více než 10 jednotek)

Více

7) Dormance a klíčení semen

7) Dormance a klíčení semen 2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive

Více

Vodní režim rostlin. Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické.

Vodní režim rostlin. Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Vodní režim rostlin Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho komponenty: charakteristika,

Více

1. nevznikají de novo, vznikají pouze ze stávajících organel stejného typu. 3. mají vlastní proteosyntetický aparát (ribosomy prokaryotního typu)

1. nevznikají de novo, vznikají pouze ze stávajících organel stejného typu. 3. mají vlastní proteosyntetický aparát (ribosomy prokaryotního typu) Semiautonomní organely plastidy a mitochondrie 1. nevznikají de novo, vznikají pouze ze stávajících organel stejného typu 2. mají vlastní DNA prokaryotního typu 3. mají vlastní proteosyntetický aparát

Více

Pletiva krycí, vodivá, zpevňovací a základní. 2/27

Pletiva krycí, vodivá, zpevňovací a základní. 2/27 Pletiva krycí, vodivá, zpevňovací a 1. Pletiva krycí (pokožková) rostlinné tělo vyšších rostlin kryje pokožka (epidermis) je tvořená dlaždicovitými buňkami těsně k sobě přiléhajícími, bez chlorofylu vnější

Více

Laboratoř růstových regulátorů Miroslav Strnad. rní metabolismus a obranné reakce rostlin [kap 13]

Laboratoř růstových regulátorů Miroslav Strnad. rní metabolismus a obranné reakce rostlin [kap 13] Laboratoř růstových regulátorů Miroslav Strnad Sekundárn rní metabolismus a obranné reakce rostlin [kap 13] Olomouc Univerzita Palackého & Ústav experimentální botaniky AV CR Sekundárn rní metabolismus

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Chemické složení buňky Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Seznámení s chemickým složením

Více

Dýchací řetězec (DŘ)

Dýchací řetězec (DŘ) Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html

Více

Metabolismus aminokyselin. Vladimíra Kvasnicová

Metabolismus aminokyselin. Vladimíra Kvasnicová Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších

Více

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV a) Chemické složení a. biogenní prvky makrobiogenní nad 0,OO5% (C, O, N, H, S, P, Ca.) - mikrobiogenní pod 0,005%(Fe,Zn, Cu, Si ) b. voda 60 90% každého organismu - 90% příjem

Více

Transport v rostlinách. Kateřina Schwarzerová Olga Votrubová

Transport v rostlinách. Kateřina Schwarzerová Olga Votrubová Transport v rostlinách Kateřina Schwarzerová Olga Votrubová Transport v rostlinách Rostlinou jsou transportovány především následující látky: Voda: přijímána většinou kořeny Minerální látky: obvykle přijímány

Více

Fyziologie rostlin. 8. Minerální výživa rostlin část 3. Ca, Mg a mikroelementy. Alena Dostálová, Ph.D.

Fyziologie rostlin. 8. Minerální výživa rostlin část 3. Ca, Mg a mikroelementy. Alena Dostálová, Ph.D. Fyziologie rostlin 8. Minerální výživa rostlin část 3. Ca, Mg a mikroelementy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Min. výživa rostl. Ca, Mg, mikroelementy - vápník,

Více

Clivia miniata, Acorus calamus)

Clivia miniata, Acorus calamus) Apoplastické bariéry pro transport iontů a vody v kořeni Kateřina Macháčová Dráhy centripetálního transportu vody a minerálních látek kořenem (http://www.unibayreuth.de/department s/planta/research/steudle/steu3.htm)

Více

Hydrochemie přírodní organické látky (huminové látky, AOM)

Hydrochemie přírodní organické látky (huminové látky, AOM) Hydrochemie přírodní organické látky (huminové látky, AM) 1 Přírodní organické látky NM (Natural rganic Matter) - významná součást povrchových vod dělení podle velikosti částic: rozpuštěné - DM (Dissolved

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

Intermediární metabolismus CYKLUS SYTOST-HLAD. Vladimíra Kvasnicová

Intermediární metabolismus CYKLUS SYTOST-HLAD. Vladimíra Kvasnicová Intermediární metabolismus CYKLUS SYTOST-HLAD Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP

Více

BUNĚČNÁ STĚNA doplňkový text k přednáškám z Anatomii rostlin David Reňák

BUNĚČNÁ STĚNA doplňkový text k přednáškám z Anatomii rostlin David Reňák BUNĚČNÁ STĚNA doplňkový text k přednáškám z Anatomii rostlin David Reňák Funkce: strukturní a mechanická opora buňky, udržování tvaru, usměrňování buněčného dělení a celkové architektury rostliny, zásoba

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Lipidy, Izoprenoidy, polyketidy a jejich metabolismus

Lipidy, Izoprenoidy, polyketidy a jejich metabolismus Lipidy, Izoprenoidy, polyketidy a jejich metabolismus Lipidy = estery alkoholů + karboxylových kyselin Jsou nerozpustné v H 2 O, ale rozpustné v organických rozpouštědlech Nejčastější alkoholy v lipidech:

Více

Chemické složení organism? - maturitní otázka z biologie

Chemické složení organism? - maturitní otázka z biologie Chemické složení organism? - maturitní otázka z biologie by Biologie - Sobota,?ervenec 27, 2013 http://biologie-chemie.cz/chemicke-slozeni-organismu/ Otázka: Chemické složení organism? P?edm?t: Biologie

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_162 Jméno autora: Ing. Kateřina Lisníková Třída/ročník:

Více

Otázka: Dvouděložné rostliny. Předmět: Biologie. Přidal(a): Jarys. Dvouděložné rostliny. ČELEĎ: ŠÁCHOLANOVITÉ (Magnoliaceae)

Otázka: Dvouděložné rostliny. Předmět: Biologie. Přidal(a): Jarys. Dvouděložné rostliny. ČELEĎ: ŠÁCHOLANOVITÉ (Magnoliaceae) Otázka: Dvouděložné rostliny Předmět: Biologie Přidal(a): Jarys Dvouděložné rostliny ČELEĎ: ŠÁCHOLANOVITÉ (Magnoliaceae) Jsou to dřeviny, patří k vývojově nejstarším, v pletivech mají jedovaté látky, květní

Více

kvasinky x plísně (mikromycety)

kvasinky x plísně (mikromycety) Mikroskopické houby o eukaryotické organizmy o hlavně plísně a kvasinky o jedno-, dvou-, vícejaderné o jedno-, vícebuněčné o kromě zygot jsou haploidní o heterotrofní, symbiotické, saprofytické, parazitické

Více

Dusík. - nejdůležitější minerální živina (2-5% SH)

Dusík. - nejdůležitější minerální živina (2-5% SH) Dusík - nejdůležitější minerální živina (2-5% SH) - dostupnost dusíku ovlivňuje: - produkci biomasy a její distribuci - ontogenetický vývoj - hormonální rovnováhu (cytokininy, ABA) - rychlost fotosyntézy

Více

Obsah vody v rostlinách

Obsah vody v rostlinách Transpirace 1/39 Obsah vody v rostlinách Obsah vody v protoplazmě (její hydratace) je nezbytný pro normální průběh životních funkcí buňky. Snížení obsahu vody má za následek i omezení životních dějů (pozorovatelné

Více

FOTOSYNTÉZA Správná odpověď:

FOTOSYNTÉZA Správná odpověď: FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází

Více

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

OBECNÁ FYTOTECHNIKA 1. BLOK: VÝŽIVA ROSTLIN A HNOJENÍ Ing. Jindřich ČERNÝ, Ph.D. FAKULTA AGROBIOLOGIE, POTRAVINOVÝCH A PŘÍRODNÍCH ZDROJŮ KATEDRA AGROCHEMIE A VÝŽIVY ROSTLIN MÍSTNOST Č. 330 Ing. Jindřich

Více

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA AGROBIOLOGIE, POTRAVINOVÝCH A PŘÍRODNÍCH ZDROJŮ KATEDRA MIKROBIOLOGIE, VÝŽIVY A DIETETIKY VÝŽIVA ZVÍŘAT

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA AGROBIOLOGIE, POTRAVINOVÝCH A PŘÍRODNÍCH ZDROJŮ KATEDRA MIKROBIOLOGIE, VÝŽIVY A DIETETIKY VÝŽIVA ZVÍŘAT ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA AGROBIOLOGIE, POTRAVINOVÝCH A PŘÍRODNÍCH ZDROJŮ KATEDRA MIKROBIOLOGIE, VÝŽIVY A DIETETIKY VÝŽIVA ZVÍŘAT 1. přednáška DOC. ING. ALOIS KODEŠ, CSc. VÝŽIVA ZVÍŘAT

Více

Mendělejevova tabulka prvků

Mendělejevova tabulka prvků Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých

Více

Heterocyklické sloučeniny, puriny a pyrimidiny

Heterocyklické sloučeniny, puriny a pyrimidiny Heterocyklické sloučeniny, puriny a pyrimidiny Heterocyklické sloučeniny jsou organické látky, které obsahují v cyklickém řetězci mimo atomů uhlíku také atomy jiných prvků (N, O, P, S), kterým říkáme heteroatomy.

Více

STAVBA ROSTLINNÉHO TĚLA

STAVBA ROSTLINNÉHO TĚLA STAVBA DŘEVA STAVBA ROSTLINNÉHO TĚLA JEDNODĚLOŽNÉ ROSTLINY X DVOJDĚLOŽNÉ ROSTLINY JEDNODĚLOŽNÉ ROSTLINY palmy, bambus Nemohou druhotně tloustnout (přirůstat)!! DVOUDĚLOŽNÉ ROSTLINY mají sekundární dělivé

Více

Biologická olympiáda

Biologická olympiáda Česká zemědělská univerzita v Praze Ústřední komise Biologické olympiády Biologická olympiáda 46. ročník školní rok 2011-2012 Autorská řešení soutěžních úloh školní kolo kategorií A a B Praha 2011 Biologická

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: Vzdělávací materiál vytvořený v projektu VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro

Více

Sešit pro laboratorní práci z biologie

Sešit pro laboratorní práci z biologie Sešit pro laboratorní práci z biologie téma: Kořen morfologie autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační číslo

Více

živé organismy získávají energii ze základních živin přeměnou látek v živinách si syntetizují potřebné sloučeniny, dochází k uvolňování energie některé látky organismy nedovedou syntetizovat, proto musí

Více

Základy světelné mikroskopie

Základy světelné mikroskopie Základy světelné mikroskopie Kotrba, Babůrek, Knejzlík: Návody ke cvičením z biologie, VŠCHT Praha, 2006. zvětšuje max. 2000 max. 1 000 000 cca 0,2 mm stovky nm až desetiny nm rozlišovací mez = nejmenší

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Vyjádření fotosyntézy základními rovnicemi

Vyjádření fotosyntézy základními rovnicemi FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických

Více

Stonek. Stonek příčný řez nahosemenná rostlina borovice (Pinus)

Stonek. Stonek příčný řez nahosemenná rostlina borovice (Pinus) Stonek Stonek příčný řez nahosemenná rostlina borovice (Pinus) Legenda: 1 dřeň, 2 dřevo (xylém), 3 dřeňový paprsek, 4 pryskyřičný kanálek v xylému, 5 lýko (floém), 6 primární kůra, 7 pryskyřičný kanálek

Více

Vápník. Deficience vápníku: - 0,4-1,5% DW. - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM)

Vápník. Deficience vápníku: - 0,4-1,5% DW. - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM) Vápník - 0,4-1,5% DW - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM) - stavební, signální funkce, stabilizace membrán - vápnomilné x vápnostřežné druhy Deficience vápníku: - poškození meristemů,

Více

Sekundární produkty rostlinného metabolismu

Sekundární produkty rostlinného metabolismu Sekundární produkty rostlinného metabolismu Jihočeská univerzita Přírodovědecká fakulta České Budějovice Ústav molekulární Biologie rostlin AV ČR České Budějovice Jiří Šantrůček jsan@umbr.cas.cz Socha

Více

Klinická fyziologie a farmakologie jater a ledvin. Eva Kieslichová KARIP, Transplantcentrum

Klinická fyziologie a farmakologie jater a ledvin. Eva Kieslichová KARIP, Transplantcentrum Klinická fyziologie a farmakologie jater a ledvin Eva Kieslichová KARIP, Transplantcentrum 2 5% tělesné hmotnosti 25 30% srdečního výdeje játra obsahují 10-15% celkového krevního objemu játra hepatocyty

Více

Průduchy regulace příjmu CO 2

Průduchy regulace příjmu CO 2 Průduchy regulace příjmu CO 2 Průduchy: regulace transpiračního proudu / výměny plynů transpiration photosynthesis eartamerica.com Průduchy svěrací buňky - zavírání při ztrátě vody (poklesu turgoru) -

Více

IZOPRENOIDY TERPENY

IZOPRENOIDY TERPENY IZOPRENOIDY - organické sloučeniny rostlinného (i živočišného) původu - nezmýdelnitelné lipidy - odvozeny od izoprenu (2-methylbuta-1,3-dien) H 2 C - obsahují 2 a více izoprenových jednotek( vždy 5 atomů

Více

Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková. Tematická oblast. Biologie 22 Pletiva. Ročník 1. Datum tvorby 26.12.2012

Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková. Tematická oblast. Biologie 22 Pletiva. Ročník 1. Datum tvorby 26.12.2012 Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 22 Pletiva Ročník 1. Datum tvorby 26.12.2012 Anotace -pro učitele -stavba

Více

H 2 O, H + H 2 O, H + oligosacharidy. Příklad: hydrolýza škrobu (polysacharid) přes maltosu (disacharid) na glukosu (monosacharid).

H 2 O, H + H 2 O, H + oligosacharidy. Příklad: hydrolýza škrobu (polysacharid) přes maltosu (disacharid) na glukosu (monosacharid). Sacharidy Definice a klasifikace sacharidů Výraz karbohydráty (uhlovodany, atd.) vznikl na základě molekulového složení těchto sloučenin, neboť to může být vyjádřeno vzorcem C n (H 2 O) n, tedy jako hydráty

Více