Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování"

Transkript

1 Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1

2 Informační systémy na počátku 3. tisíciletí pro řízení vnitřních procesů back-office aplikace pro podporu základních řídících administrativních operací podniku pro řízení vztahů podniků s okolím front-office aplikace, aplikace s přidanou hodnotou (value-added ) pro rozvoj řízení podniku a podporu rozhodování back-office aplikace Aplikace pro řízení vnitřních procesů podniku - klasické celopodnikové aplikace ERP (Enterprise Resource Planning) Aplikace pro podporu základních řídících a administrativních operací podniku kancelářské systémy řízení pracovních toků (workflow) aplikace a technologie pro správu dokumentů všeobecné informace a instrukce (hlavně na bázi Intranetu Vladimíra ) Zádová, KIN, EF TUL 2

3 Aplikace pro řízení s okolím vztahů organizací mění kooperace mezi podniky CRM (Customer Relationship Management) elektronické podnikání SCM (Supply Chain Management) CRM procesy a aktivity, které souvisí se zákazníkem existujícím či potenciálním podpora prodeje - SFA (Sales Force Automation ) podpora zákazníka - CSS (Customer Service and Support ) podpora marketingu - EMA (Enterprise Marketing Automation) 3

4 Elektronické podnikání elektronický obchod (e-commerce) elektronické zásobování (e-procurement) elektronická tržiště (Marketplaces) Elektronické obchodování rozlišuje realizace obchodních vztahů mezi dvěma organizacemi -B2B, B2C, B2R, B2G, B2E (R - reseller, G - government, E -employee) SCM, SCM/APS koordinuje toky výrobků, služeb, informací a financí mezi dodavateli surovin, jejich zpracovateli, výrobci, obchodníky, zákazníky dvě kategorie aplikace pro plánování optimální způsob směrování množství materiálu a zboží potřebného v místech určení aplikace pro realizaci fyzické zásoby, obrátky zboží, objednávek a dodávky materiálu, finance Pozn.: APS =Advanced Planning and Schedulling (systém pokročilého plánování) 4

5 Aplikace pro podporu rozhodování Business Intelligence EIS (Executive Information Systems - manažerské informační systémy) datové sklady ( Data Warehouse) datová tržiště (Data Mart) dolování dat (Data Mining), OLAP (On-line Analytical Processing), reporting.. Customer Intelligence CRM + BI = CI Aplikace pro podporu rozhodování Business Intelligence EIS (Executive Information Systems - manažerské informační systémy) datové sklady ( Data Warehouse) datová tržiště (Data Mart) dolování dat (Data Mining), OLAP (On-line Analytical Processing), reporting.. Customer Intelligence CRM + BI = CI 5

6 Obecná koncepce architektury BI Zdroj: Novotný, Pour, Slánský: Business Intelligence, Grada 2005 IS/ICT - vztahy mezi daty a procesy OLTP ETL OLAP, DM, Operativní data Datové sklady OLAM, EIS 6

7 Procesy v BI dotazy/reporting dotazy na to CO je v databázi OLAP PROČ jsou některé fakty pravdivé uživatel generuje hypotézu a OLAP slouží k jejímu ověření je závislý na schopnostech analytika, ten se iterací dostává k výsledku DM představuje nástroje, které generují hypotézy a pokračují v provádění objevování - bez navádění uživatelem 7

8 Reporting standardní dotazování jedná se zejména o SQL dotazy v relačním prostředí výstupy standardní předpřipravené dotazy, nepredikovatelné ad hoc dotazy určené zejména pro nižší management OLAP = Online Analytical Processing def. Definovaná řada principů, které poskytují dimenzionální rámec pro podporu rozhodování. Dynamická syntéza, analýza a fúze velkého objemu multidimenzionálních dat. OLAP systémy pracují s analytickými informacemi, primární zdroje dat jsou OLTP systémy, důl. faktor času 8

9 drill-down, roll-up Základní operace OLAP snížení, zvýšení stupně agregace slicing (selekce), dicing provedení řezu v multidimenzionální databázi pivoting mění úhel pohledu na data ( jedná se o prezentaci obsahu) drill across spojení tabulek faktů přes tabulky dimenzí ( na stejné úrovni granularity) Operace různě kombinovány v jedné i ve více dimenzích ovlivňují podobu datového skladu Dolování dat, Data Mining Dolování dat je proces výběru, prohledávání a modelování ve velkých objemech dat sloužící k odhalení dříve neznámých vztahů mezi daty za účelem získání obchodní výhody Cíl: obchodní výhoda řešení konkrétního problému nalezení cesty k zlepšení procesu předem definován, na jeho základě připravena data; není jednorázová analýza příprava podnikových procesů - aby umožnily využívání analýz (kontinuálně) a podporovaly zpětné vazby od uživatelů. Zpětné vazby ovlivňují proces sběru dat i definice nových cílů. 9

10 Dolování dat a objevování znalostí v datech Knowledge Discovery in Databases ( KDD, objevování znalostí v datech ) obecně netriviální proces objevování platných, nových, potenciálně užitečných vzorů z dat. Dolování dat ( Data Mining) pouze krok v procesu KDD založený na aplikaci výpočetních technik, které na základě daných omezení poskytují vzory či modely nad danými daty Dolování dat a objevování znalostí v datech vyhodnocení vzorů data relevantní pro úlohu dolování dat DW selekce čištění dat integrace dat DB 10

11 fáze procesu KDD selekce výběr nebo segmentace dat podle kriteria, výběr vzorků dat předzpracování dat pro efektivní vyhodnocení dotazu čištění dat od nepotřebných dat, úprava formátů dat transformace pro obohacení použitelnosti dat data mohou být rozšířena o další atributy (např. demografické z externích zdrojů) dolování dat extrakce vzorů z dat interpretace a vyhodnocení identifikované vzory jsou interpretovány jako znalosti lze je použít k podpoře rozhodování Dolování dat Není samostatný vědní obor, používané metody patří do statistiky (např. klasifikace, regrese, časové řady, shlukování, asociační analýza, rozhodovací stromy), umělé inteligence (např. genetické algoritmy, neuronové sítě)... 11

12 ETL ETL proces extrakce, filtrování, čištění a vkládání ze zdrojových systémů do DW extrakce transformace restrukturalizace dat do podoby odpovídající DW filtrace (odstranění chybných i neúplných záznamů) standardizace dat odstranění nežádoucích atributů denormalizace dat kombinace datových zdrojů vkládání a indexace konzistence dat samých, konzistence s ostatními daty v DW 12

13 Zdroje dat zdroje důvěryhodnost vše nebo část ( atrib.,..projekce, selekce) porovnat stejné údaje z různých zdrojů (1DW z různých zdrojů) z hlediska obsahu ( m.j. m, cm, dm) formátu (cena zboží jiná přesnost, m/ž 0/1) významově stejné zdroje jsou různě pojmenovány a naopak Zdroje dat pokr. změny zdrojů během let struktura dat ze stejných zdrojů (archiv a současnost) formálně stejný objekt z více zdrojů ( zákazník: zákazník x potenc. zákazník) četnost přenášení zdrojů 13

14 ETL pravidla pro přenos Prosté kopírování Přepočty jednotek Standardizace formátů Odstraňování duplicit v datech z různých zdrojů Rozdělení atributu do několika cíl. atributů ( př. adresa) Slučování atributu do jednoho Odvozování nových atributů (př. datum) Převodní funkce některé použijí pro více atributů, jinde pro atribut samostatná funkce Po přenosu Kontrola kvality a ošetření chybějících údajů Vypuštění záznamů kde chybí Jednotné označení chybějících údajů a upozornění na neúplnost dat Statistika pro každý atribut Rozsah (doména) a četnost hodnot, které může nabývat (lze odhalit chybné hodnoty) 14

15 Zdroje dat pokr. u atributů: identifikátor, název, typ dat, měr.j., doména, význam, vlastník typ atributu (dimenze, fakt), typ indexu, pro měr.j.: konverzní poměry (koeficienty převodu, popř. koeficienty proměnné v čase) pro dimenze klíče, definice hierarchie/hierarchií přiřazení zdrojových atributů cílovým, transformace, změny formátů vazby mezi zdroji ( kdo komu poskytuje data) Data v IS/ICT 15

16 OLTP - operativní data zdroje: zejména aplikace Data v OLTP a DW přístup: více současně pracujících uživatelů aktualizace: častá, relativně malých objemů dat Operace INSERT, UPDATE, DELETE dotazy nad daty selektivní ( zejména předpřipravené dotazy) přesnost výstupu - na Kč, haléře,.. četnost stejných dotazů - i vícekrát denně ukládání dat strukturovaně - normalizovaná relační databáze nověji objektově relační, objektová databáze požadavky - nekonfliktní zpracování operací, zajištění integrity dat procesní orientace Vladimíra ( stavy Zádová, procesů, KIN, EF TUL detailní data) Data Warehouse Data v OLTP a DW zdroje: podnikové OLTP, operativní data + externí data přístup: malé množství specializovaných uživatelů - management aktualizace: řídká - jen přidávání dat ze zdrojů, delší časové intervaly dotazy intenzivní na data, složité dotazy, postupná iterace, sumarizace výstupy zaokrouhlené (i na tisíce) ukládání dat strukturovaně speciálně navržená relační databáze multidimenzionální kostka 16

17 DW - definice je subjektově orientovaná, integrovaná, časově variantní a stálá kolekce dat pro podporu rozhodování manažerů subjektová orientace DW je organizován podle hlavních subjektů podniku (zákazníci, prodej, produkt..), ne podle procesů (aplikací) reflektuje potřeby uložení dat pro rozhodování v jedné databázi DW jsou uložena data pouze jednou (např. o produktu, zaměstnanci ) integrovaná do celku jsou vkládána data z různých aplikací - nekonzistentnost, různé formáty integrací těchto dat - prezentace unifikovaného pohledu B. Inmon časově variantní DW data v DW jsou platná a přesná jen v bodech, ne intervalech času uložení historie dat - hodnoty v časových bodech (den, měsíc, Q, rok..) v DW vždy dimenze času stálá data v DW nevznikají, nedají se žádnými nástroji měnit aktualizace DW - jen přidávání dat v pravidelných časových intervalech (jako doplněk), integrace přírustků 17

18 Datová tržiště (Data Mart) příčiny vytváření pro nejčastější analýzy pro skupinu uživatelů - business process, oddělení vytvoření DM s více agregovanými daty, s menším objemem dat - pro zlepšeníčasu odezvy k poskytování vhodněji strukturovaných dat - z hlediska požadavků nástrojů přístupu pro snazší implementaci pro nižší náklady proti DW pro lepší zaměření koncového uživatele Základní představa 18

19 Přístupy k návrhu IS/ICT Vypracovány pro OLTP popisuje konceptuální schémata, která jsou optimalizována pro OLTP systémy Nerespektují specifika datových skladů neposkytuje postačující informace, které má DW poskytovat pro analytické zpracování nepřehlednost, není vidět přímo dimenze a fakty není zřejmé jak jednoduše agregovat data Multidimenzionální modelování 19

20 Dimenzionální modelování speciální technika určená pro logický návrh DW tak, aby vedl k výsledku - multidimenzionálnímu schématu Dimenzionální modelování Požadavky uživatelů Proces návrhu 4 kroky: výběr procesu/ů stanovení granularity výběr dimenzí určení faktů Zdroje dat 20

21 Star schéma (hvězdicové schéma) 21

22 Schéma souhvězdí 22

23 Konceptuální úroveň D 1 D 2 F 1 D 1 D 2 F 1 D 3 D 4 F 2 D 3 D 4 D 5 D 6 Hvězdicové schéma Schéma souhvězdí Obr. 1-P4 Grafické znázornění schéma faktů Zdroj: [5] M. Golfarelli, D. Maio, S. Rizzi. The Dimensional Fact Model: a Conceptual Model for Data Warehouses. International Journal of Cooperative Information Systems,, pp , 23

24 Obr. 2-P4 Grafické znázornění konceptuálního multidimenzionálního schématu Zdroj: [9] Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Design,In Proceedings of the International Workshop on Design and Management of Data Warehouses, DMDW, Stockholm, 2000 Obr. 3-P4 Multidimenzionální doménová struktura E. Thomsen 24

25 Technologická úroveň D 1 D 2 D 1 D 2 F 1 F 1 D 3 D 4 D 3 D 4 F 1-hierarch1 F 1-hierarch1 D 4-hierch1 D 5 F 1-hierarch2 D 5 F 1-hierarch2 D 4-hierch2 Schéma souhvězdí pro hierarchii faktů Schéma souhvězdí pro hierarchii faktů a dimenzí Zaměstnanec Zam Id Jméno zam Nástup zam Ved Id Čas Den Id Typ dne Teplota dne Týden Měsíc Čtvrtletí Rok F - Prodej Zak Id Zam Id Prod Id Den Id C fakt Qty-prodané Prodej v KČ Zákazník Zak Id Jméno zak Profese Odvětví Typ zak Země Produkt Prod Id Název prod Skupina Kategorie 25

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Vladimíra Zádová BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

Ing. Roman Danel, Ph.D. 2010

Ing. Roman Danel, Ph.D. 2010 Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 6. února 2012 T T THINK TOGETHER Think Together 2012 Business Intelligence systémy Business Intelligence systems

Více

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb

Více

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na

Více

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

Modelování a návrh datových skladů

Modelování a návrh datových skladů Modelování a návrh datových skladů Doc. Ing. B. Miniberger, CSc. BIVŠ Obsah 1. Přednáška I. Základy modelování datových skladů (DW) 2. Přednáška II. ETL procesy III. Data Mining IV. Kvalita dat a BI Literatura

Více

In orma I a. O nl Dva. Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky

In orma I a. O nl Dva. Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky I Libor Gála Jan Pour Prokop Toman., O nl Dva.. In orma I a Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky Českó společnost

Více

Management IS. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1

Management IS. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1 Management IS Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1 Učitelé Přednášející: Cvičící: Doc.Ing.Miloš Koch,CSc. Ing.Aleš Klusák Kontakt: koch@fbm.vutbr.cz 22/ 2 Literatura Skripta: Koch,M. Dovrtěl,J.:

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Obsah Úvod 11 Jak být úspěšný Základy IT

Obsah Úvod 11 Jak být úspěšný Základy IT Obsah Úvod 11 Jak být úspěšný 13 Krok 0: Než začneme 13 Krok 1: Vybrat si dobře placenou oblast 14 Krok 2: Vytvořit si plán osobního rozvoje 15 Krok 3: Naplnit osobní rozvoj 16 Krok 4: Osvojit si důležité

Více

Business Intelligence a datové sklady

Business Intelligence a datové sklady Business Intelligence a datové sklady Ing Jan Přichystal, PhD Mendelova univerzita v Brně 2 prosince 2014 Ing Jan Přichystal, PhD Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské

Více

DI3MK_EPP2 Ekonomika Ekono a řízení mika průmyslových podn průmyslových iků podn iků

DI3MK_EPP2 Ekonomika Ekono a řízení mika průmyslových podn průmyslových iků podn iků DI3MK_EPP2 Ekonomika a řízení jaro 2014 Harmonogram předmětu sobota 01. 03. 2014 / 16:40 19:15 / učebna 51 Organizační pokyny Strategický management sobota 15. 03. 2014 / 10:15 12:50 / učebna 51 Provozní

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně Identifikační karta modulu v. 4 Kód modulu Typ modulu profilující Jazyk výuky čeština v jazyce výuky Management informačních systémů česky Management informačních systémů anglicky Information systems management

Více

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák Analýza a návrh datového skladu pro telekomunikační společnost Bc. Josef Jurák Diplomová práce 2006 ABSTRAKT Business Intelligence a Data warehouse jsou základní prostředky pro podporu rozhodování, které

Více

Novinky SQL Serveru 2005 v oblasti Business Intelligence

Novinky SQL Serveru 2005 v oblasti Business Intelligence Novinky SQL Serveru 2005 v oblasti Business Intelligence Seminární práce na předmět Business Intelligence (4IT435) Vypracoval Borek Bernard, leden 2006 1 Abstrakt Microsoft SQL Server 2005 je po mnoha

Více

Moderní metody automatizace a hodnocení marketingových kampaní

Moderní metody automatizace a hodnocení marketingových kampaní Moderní metody automatizace a hodnocení marketingových kampaní SAS CI Roadshow 2014 24/09/2014 Vít Stinka Agenda Představení společnosti Unicorn Systems Aliance Unicorn Systems a SAS Celkový koncept Customer

Více

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o.

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. GIS jako důležitá součást BI Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. ARCDATA PRAHA, s.r.o. THE GEOGRAPHIC ADVANTAGE Motto Sladit operační taktiku s organizační strategií Strategie bez taktiky je

Více

Hospodářská informatika

Hospodářská informatika Hospodářská informatika HINFL, HINFK Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu reg.

Více

Návrh a analýza požadavků na výběr manažerského informačního systému

Návrh a analýza požadavků na výběr manažerského informačního systému Návrh a analýza požadavků na výběr manažerského informačního systému The Design and Analysis of Requirements for the Selection of Business Information Systems Jaroslav Hanák Bakalářská práce 2015 ABSTRAKT

Více

Obsah: Základní pojmy, definice Informační systémy IT architektura Typické aplikační komponenty Implementace aplikací

Obsah: Základní pojmy, definice Informační systémy IT architektura Typické aplikační komponenty Implementace aplikací Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 30 Téma: INFORMAČNÍ SYSTÉMY A ARCHITEKTURA IT V PODNIKU Lektor: Ing. Michal Beránek Třída/y:

Více

E-COMMERCE. Elektronické podnikání a koncepce elektronického obchodování. Petr Suchánek

E-COMMERCE. Elektronické podnikání a koncepce elektronického obchodování. Petr Suchánek E-COMMERCE Elektronické podnikání a koncepce elektronického obchodování Petr Suchánek Recenzenti: prof. Ing. Jiří Dvořák, DrSc. prof. Ing. Jindřich Kaluža, CSc. Vydání knihy bylo schváleno vědeckou radou

Více

KIV/SI. Přednáška č.8. Jan Valdman, Ph.D. jvaldman@dns.cz

KIV/SI. Přednáška č.8. Jan Valdman, Ph.D. jvaldman@dns.cz KIV/SI Přednáška č.8 Jan Valdman, Ph.D. jvaldman@dns.cz 19.4.2011 Business Intelligence (BI) The Top Challenges of Midsize Companies Improve efficiency, reduce costs Strengthen customer relationships,

Více

GIS a Business Intelligence

GIS a Business Intelligence GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních

Více

Nová dimenze rozhodovacího procesu

Nová dimenze rozhodovacího procesu Nová dimenze rozhodovacího procesu Marek Matoušek Pavel Mašek Data, nebo INFORMACE Využití dostupných firemních dat Několik systémů, mnoho různých dat Různé divize, různé potřeby Potřeba integrace dat

Více

TM1 vs Planning & Reporting

TM1 vs Planning & Reporting R TM1 vs Planning & Reporting AUDITOVATELNOST? ZABEZPEČENÍ? SDÍLENÍ? KONSOLIDACE? PROPOJITELNOST???? TM1?? COGNOS PLANNING IBM COGNOS 8 PLANNING Cognos Planning Podpora plánovacího cyklu Jednoduchá tvorba

Více

Strategické řízení firemních IS

Strategické řízení firemních IS Strategické řízení firemních IS Vybrané kategorie IS a SŘ metodou top-down Martin Čížek, 2013 martin.cizek@orchitech.cz MIS: Aim (smysl) Umět se aktivně uplatnit u malé, střední i velké firmy... v oblasti

Více

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19 3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,

Více

Manažerský informační systém na MPSV. Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV

Manažerský informační systém na MPSV. Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV Manažerský informační systém na MPSV Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV Konference ISSS-2009 Hradec Králové Aldis 6. dubna 2009 MIS na MPSV časové údaje projektu Vytvoření MIS MPSV

Více

Informační systémy. Jaroslav Žáček jaroslav.zacek@osu.cz

Informační systémy. Jaroslav Žáček jaroslav.zacek@osu.cz Informační systémy Jaroslav Žáček jaroslav.zacek@osu.cz Úvod - co možná umíte z předmětu SWENG Rozdělení IT Architektura IS Klíčový prvek řízení IS z něj vycházejí detailní analytické i plánovací charakteristiky

Více

Podnikové informační systémy. Dana Nejedlová Katedra informatiky 11. 3. 2015

Podnikové informační systémy. Dana Nejedlová Katedra informatiky 11. 3. 2015 Podnikové informační systémy Dana Nejedlová Katedra informatiky 11. 3. 2015 1 Informační systém Systém pomáhající lidem vykonávat práci Komponenty Lidé Technologie Pravidla Informace Představuje konzistentní

Více

Trendy v (mobilní) Business Inteligence v ČR dotazníkové šetření

Trendy v (mobilní) Business Inteligence v ČR dotazníkové šetření Trendy v (mobilní) Business Inteligence v ČR dotazníkové šetření Vytvořil: Distribuce dokumentu: Česká asociace pro finanční řízení Controller Institut elektronicky na finanční a controllingové specialisty

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

CAD/CAM SYSTÉMY V ODĚVNÍ VÝROBĚ

CAD/CAM SYSTÉMY V ODĚVNÍ VÝROBĚ CAD/CAM SYSTÉMY V ODĚVNÍ VÝROBĚ Podmínky úspěšného absolvování CAD získání zápočtu: odevzdání SP č.1 zkouška: písemná + ústní (SP č.2) Přednášky PIS jako podpora plánování a řízení podnikových procesů

Více

Datové sklady a možnosti analýzy a reportování dat ve výuce

Datové sklady a možnosti analýzy a reportování dat ve výuce Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze Datové sklady a možnosti analýzy a reportování dat ve výuce Autor bakalářské práce: David

Více

Zhodnocení architektury podniku. Jiří Mach 28. 8. 2014

Zhodnocení architektury podniku. Jiří Mach 28. 8. 2014 Zhodnocení architektury podniku Jiří Mach 28. 8. 2014 Obsah Zhodnocení architektury podniku Zahájení projektu Metodika/framework Harmonogram projektu 1. fáze: vytvoření popisu AS-IS stavu 2. fáze: analýza

Více

Úvod do informačních a řídicích systémů. lení

Úvod do informačních a řídicích systémů. lení Úvod do informačních a řídicích systémů Základní pojmy a rozdělen lení Informace Pojem vysoce abstraktní Skutečné informace musí být pravdivé, včasné, jednoznačné a relevantní (atributy informace) Základní

Více

Analýza dat skoro zadarmo možnosti rozborů pro malé organizace

Analýza dat skoro zadarmo možnosti rozborů pro malé organizace Analýza dat skoro zadarmo možnosti rozborů pro malé organizace Martin Hess Microsoft Office Specialist Master Certification katedra informačních technologií VŠE Praha hess@vse.cz Abstrakt Článek se zabývá

Více

Software a související služby

Software a související služby Software a související služby Webové technologie, přístup uživatele do systému přes webový prohlížeč Software na zakázku Webové stránky a e-shopy s plnou administrací Intranet, webové aplikace, informační

Více

Management IS1. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Management IS1. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Management IS1 Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 23 1 Proč a jaký IS/IT? Informační systém je pro podnik totéž, co šaty pro člověka. Může mít vlastní, může mít vypůjčené (outsourcing), ale musí

Více

Srovnání SQL serverů. Škálovatelnost a výkon. Express Workgroup Standard Enterprise Poznámky. Počet CPU 1 2 4 bez limitu Obsahuje podporu

Srovnání SQL serverů. Škálovatelnost a výkon. Express Workgroup Standard Enterprise Poznámky. Počet CPU 1 2 4 bez limitu Obsahuje podporu Srovnání SQL serverů Škálovatelnost a výkon Počet CPU 1 2 4 bez limitu Obsahuje podporu RAM 1 GB 3 GB bez limitu bez limitu vícejádrových (multicore) procesorů 64-bit podpora Windows on Windows (WOW) WOW

Více

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc.

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Big Data a oficiální statistika Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Obsah příspěvku Charakteristiky Big Data Výzvy a úskalí z perspektivy statistiky Výzvy z perspektivy computing

Více

Praha 27. 4. 2011. Jan Talášek pit Software, s.r.o. www.pitsoftware.cz. 27.4.2011 CAFM v praxi SW podpora FM

Praha 27. 4. 2011. Jan Talášek pit Software, s.r.o. www.pitsoftware.cz. 27.4.2011 CAFM v praxi SW podpora FM CAFM v praxi Data, Informace, CAFM jako součást podnikového IS, Integrace Jan Talášek pit Software, s.r.o. Praha 27. 4. 2011 OBSAH PŘEDNÁŠKY Data a Informace Statická data pro CAFM pasportizace a pasport

Více

Od klasického reportingu k SAP BO Design studio na BW power by HANA Pavel Strnad

Od klasického reportingu k SAP BO Design studio na BW power by HANA Pavel Strnad Od klasického reportingu k SAP BO Design studio na BW power by HANA Pavel Strnad CIO PIA5 NSC Prague Obsah Představení firmy Migrace BW to HANA BI architektura ve Wincor Nixdorf Migrační varianty z BW

Více

SEGMENTACE ZÁKAZNÍKŮ PRO E-COMMERCE. Jan Matoušek

SEGMENTACE ZÁKAZNÍKŮ PRO E-COMMERCE. Jan Matoušek SEGMENTACE ZÁKAZNÍKŮ PRO E-COMMERCE Jan Matoušek Zaměření prezentace Téma: Proč některé segmentace fungují a jiné ne Žadné ohromující manažerské schéma Praxe a zkušenosti z 9-ti let tvorby segmentací Telco

Více

Tzv. životní cyklus dokumentů u původce (Tematický blok č. 4) 1. Správa podnikového obsahu 2. Spisová služba

Tzv. životní cyklus dokumentů u původce (Tematický blok č. 4) 1. Správa podnikového obsahu 2. Spisová služba Tzv. životní cyklus dokumentů u původce (Tematický blok č. 4) 1. Správa podnikového obsahu 2. Spisová služba 1. 1. Správa podnikového obsahu (Enterprise Content Management ECM) Strategie, metody a nástroje

Více

ZPRACOVÁNÍ A VYUŽITÍ DAT PŘI ŘÍZENÍ PROCESU PLYNULÉHO ODLÉVÁNÍ OCELI

ZPRACOVÁNÍ A VYUŽITÍ DAT PŘI ŘÍZENÍ PROCESU PLYNULÉHO ODLÉVÁNÍ OCELI ZPRACOVÁNÍ A VYUŽITÍ DAT PŘI ŘÍZENÍ PROCESU PLYNULÉHO ODLÉVÁNÍ OCELI Zdeněk FRANĚK 1), Miloš MASARIK 2), René PYSZKO 3), Miroslav PROKEL 4) 1) Slezská univerzita, Obchodně podnikatelská fakulta, Univerzitní

Více

Vysoká škola ekonomická v Praze. Fakulta managementu v Jindřichově Hradci Katedra exaktních metod. Diplomová práce. 2013 Bc.

Vysoká škola ekonomická v Praze. Fakulta managementu v Jindřichově Hradci Katedra exaktních metod. Diplomová práce. 2013 Bc. Vysoká škola ekonomická v Praze Fakulta managementu v Jindřichově Hradci Katedra exaktních metod Diplomová práce 2013 Bc. Pavel Stejskal Vysoká škola ekonomická v Praze Fakulta managementu v Jindřichově

Více

Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer

Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer Mgr. Jan Folbrecht Senior softwarový inženýr, softwarový architekt, manažer SPECIALIZACE Konzultace a školení v oblastech softwarového inženýrství Zavádění vývojových metodik do projektů a vývojových týmů

Více

STRATEGIE A PROJEKTY ODBORU INFORMATIKY MHMP

STRATEGIE A PROJEKTY ODBORU INFORMATIKY MHMP STRATEGIE A PROJEKTY ODBORU INFORMATIKY MHMP Ing. Ivan Seyček Vedoucí oddělení realizace řešení a provozu Odbor informatiky MHMP 1 / 30. dubna 2009 AGENDA PREZENTACE 1. Strategie Odboru informatiky MHMP

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

Obr. 1 Plochý soubor s daty

Obr. 1 Plochý soubor s daty 2. Databáze 2.1 Relační databáze V prehistorii databází byla data ukládána v jednom velkém plochém souboru (tzv. flat file) ke kterému se přistupovalo indexsekvenčními metodami (ISAM). Soubor byl indexován

Více

Business Intelligence nástroje a plánování

Business Intelligence nástroje a plánování Business Intelligence nástroje a plánování pro snadné reportování a vizualizaci Petr Mlejnský Business Intelligence pro reporting, analýzy a vizualizaci Business Intelligence eporting Dashboardy a vizualizace

Více

Řízení vztahů se zákazníky

Řízení vztahů se zákazníky Řízení vztahů se zákazníky Řízení vztahů se zákazníky Vychází z představy, že podnik je řízen zákazníkem Používanými nástroji jsou: Call Centra Customer Relationship Management (CRM) Základní vazby v řízení

Více

Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D.

Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D. Distanční opora předmětu: Databázové systémy Tématický blok č. 3: OLAP, operátory CUBE a ROLLUP Autor: RNDr. Jan Lánský, Ph.D. Obsah kapitoly 1 OLTP a OLAP 1.1 Datový sklad 1.2 Datová kostka 2 OLAP dotazy

Více

S M Ě R N I C E č. 6/2014 ministra financí ------------------------------------------------------------------------

S M Ě R N I C E č. 6/2014 ministra financí ------------------------------------------------------------------------ MINISTERSTVO FINANCÍ Praha 1, Letenská 15 V Praze dne 12. prosince 2014 Č.j.: MF 69 949/2014/4703-2 S M Ě R N I C E č. 6/2014 ministra financí ------------------------------------------------------------------------

Více

SEMINÁŘ MANAŢERSKÉ SYSTÉMY

SEMINÁŘ MANAŢERSKÉ SYSTÉMY 22.10.2008 SEMINÁŘ MANAŢERSKÉ SYSTÉMY S PŘÍVLASKEM Prezentace zajímavých projektů BUSINESS INTELLIGENCE 16.10.2008 Ing. Jan Klimeš, ORTEX 1 & Hyman K*A*P*L*A*N Mapa semináře (aneb co Vám chci říci ) Obsah

Více

Efektívne riadenie financií v ISS Facility Services Prípadová štúdia BI

Efektívne riadenie financií v ISS Facility Services Prípadová štúdia BI Efektívne riadenie financií v ISS Facility Services Prípadová štúdia BI Logo partnera Efektívne riadenie financií v ISS Facility Services Prípadová štúdia BI Agenda Ciele prezentácie prípadovej štúdie

Více

Problémové domény a jejich charakteristiky

Problémové domény a jejich charakteristiky Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 02 1/16 Problémové domény a jejich charakteristiky Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta

Více

METODICKÝ RÁMEC IS/ICT

METODICKÝ RÁMEC IS/ICT METODICKÝ RÁMEC IS/ICT Alena Buchalcevová Katedra informačních technologií, VŠE Praha Abstrakt Příspěvek popisuje metodický rámec pro budování informačního systému firmy, tedy metametodiku, která zahrnuje

Více

Zahraničně obchodní politika

Zahraničně obchodní politika Zahraničně obchodní politika Vzdělávací materiál ke kurzu Zahraniční obchod Slezská univerzita v Opavě Okresní hospodářská komora Karviná 2010-2013 Výukový materiál je výstupem projektu Posílení konkurenceschopnosti

Více

(aneb Jaké informace manažeři potřebují?) "Vzdělání je schopnost porozumět druhým. J. W. Goethe

(aneb Jaké informace manažeři potřebují?) Vzdělání je schopnost porozumět druhým. J. W. Goethe VŠSS HAVÍŘOV (aneb Jaké informace manažeři potřebují?) "Vzdělání je schopnost porozumět druhým. J. W. Goethe Co se změnilo v podnikovém řízení? Co se změnilo v podnikovém řízení? Jsou úspory nejlepším

Více

Marketingový informační systém

Marketingový informační systém Marketingový informační systém Vazba mezi MIS a marketingovým výzkumem. Algoritmus MV. Ing. Lucie Vokáčov ová, vokacova@pef.czu.cz Marketingový informační systém MIS zahrnuje pracovníky, zařízení a informační

Více

Znalostní báze pro obor organizace informací a znalostí

Znalostní báze pro obor organizace informací a znalostí Znalostní báze pro obor organizace informací a znalostí Představení projektu Programu aplikovaného výzkumu a vývoje národní a kulturní identity (NAKI) DF13P01OVV013 2013 2015 Helena Kučerová ÚISK FF UK

Více

POKROČILÉ POUŽITÍ DATABÁZÍ

POKROČILÉ POUŽITÍ DATABÁZÍ POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a

Více

Databáze v MS ACCESS

Databáze v MS ACCESS 1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,

Více

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1)

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1) Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1 2005-12-31 1.12.2009 Your Daniel Name Vojtek Jakub Your Valčík Title Your Organization (Line #1) Your Organization Query Languages (Line #2) I Agenda

Více

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY metodický list č. 1 Úvodem: Protože předmětu manažerské informační systémy (MIS) je vyhrazeno ve studijním plánu kombinovaného studia pouze 10 prezenční hodin (5 dvouhodinových bloků), je nezbytné, abyste

Více

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material,

Více

Představuje. Technický Informační Systém nové generace

Představuje. Technický Informační Systém nové generace Představuje Technický Informační Systém nové generace Nový náhled na položky Sjednocení typů položek - položky nejsou striktně dělené na vyráběné a nakupované. Do tohoto typu je zahrnuté i nakupované a

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice PROCES STRATEGICKÉHO ŘÍZENÍ, HIERARCHIE STRATEGIE (KOMPLEXNÍ PODNIKOVÁ STRATEGIE CORPORATE STRATEGY,, OBCHODNÍ STRATEGIE, DÍLČÍ STRATEGIE) Vysoká škola technická a ekonomická v Českých Budějovicích Institute

Více

Leady & MERK Integrace Microsoft Dynamics CRM s aplikacemi Leady a MERK

Leady & MERK Integrace Microsoft Dynamics CRM s aplikacemi Leady a MERK Integrace Microsoft Dynamics CRM s aplikacemi Leady a MERK Strana 1 z 12 Obsah 1. Leady... 3 a. Shrnutí... 3 b. Popis modulu... 3 c. Technické podrobnosti o modulu... 5 2. MERK... 6 a. Shrnutí... 6 b.

Více

KAPITOLA 2. Architektura, modelování a implementace Business Intelligence procesů v SQL Serveru 2008. V této kapitole:

KAPITOLA 2. Architektura, modelování a implementace Business Intelligence procesů v SQL Serveru 2008. V této kapitole: KAPITOLA 2 Architektura, modelování a implementace Business Intelligence procesů v SQL Serveru 2008 V této kapitole: Architektura Business Intelligence na platformě SQL Serveru 2008 Modelování procesů

Více

Databáze v praxi. RNDr. Ondřej Zýka Principal Consultant

Databáze v praxi. RNDr. Ondřej Zýka Principal Consultant Databáze v praxi RNDr. Ondřej Zýka Principal Consultant Agenda Obsah Představení Teradata Teradata Databáze Doménové logické modely MS SQL Server Databáze Podpora BI Aktuální směry ve vývoji databází Profinit

Více

Ukládání a vyhledávání XML dat

Ukládání a vyhledávání XML dat XML teorie a praxe značkovacích jazyků (4IZ238) Jirka Kosek Poslední modifikace: $Date: 2014/12/04 19:41:24 $ Obsah Ukládání XML dokumentů... 3 Ukládání XML do souborů... 4 Nativní XML databáze... 5 Ukládání

Více

MIS. Manažerský informační systém. pro. Ekonomický informační systém EIS JASU CS. Dodavatel: MÚZO Praha s.r.o. Politických vězňů 15 110 00 Praha 1

MIS. Manažerský informační systém. pro. Ekonomický informační systém EIS JASU CS. Dodavatel: MÚZO Praha s.r.o. Politických vězňů 15 110 00 Praha 1 MIS Manažerský informační systém pro Ekonomický informační systém EIS JASU CS Dodavatel: MÚZO Praha s.r.o. Politických vězňů 15 110 00 Praha 1 Poslední aktualizace dne 5.8.2014 MÚZO Praha s.r.o. je certifikováno

Více

Chytrá systémová architektura jako základ Smart Administration

Chytrá systémová architektura jako základ Smart Administration Chytrá systémová architektura jako základ Smart Administration Ing. Petr Škvařil, Pardubický kraj Dipl. Ing.Zdeněk Havelka PhD. A-21 s.r.o. 1 Nepříjemné dotazy Jsme efektivní v provozování veřejné správy?

Více

Databázové patterny. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu

Databázové patterny. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Databázové patterny MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Obsah o Co je databázový pattern o Pattern: Přiřazení rolí o Pattern: Klasifikace Databázové patterny o Odzkoušené a doporučené

Více

powerful SAP-Solutions

powerful SAP-Solutions We deliver powerful SAP-Solutions to the World! Praktický průvodce novými SAP technologiemi Září 2015 Martin Chmelař itelligence, a.s. Milníky: 2002: založení společnosti 2008: společnost členem itelligence

Více

EXTRAKT z mezinárodní normy

EXTRAKT z mezinárodní normy EXTRAKT z mezinárodní normy Extrakt nenahrazuje samotnou technickou normu, je pouze informativním materiálem o normě ICS 03.220.01;35.240.60 Inteligentní dopravní systémy (ITS) Rozšíření specifikací mapové

Více

Dobývání a vizualizace znalostí

Dobývání a vizualizace znalostí Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich

Více

8.2 Používání a tvorba databází

8.2 Používání a tvorba databází 8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam

Více

PowerPivot pro Microsoft Excel 2013

PowerPivot pro Microsoft Excel 2013 Časový rozsah: 1 den (9:00-16:00) Cena: 2500 Kč + DPH PowerPivot pro Microsoft Excel 2013 Kurz je určen uživatelům Microsoft Excel 2013, kteří se chtějí naučit využívat doplněk PowerPivot pro Excel 2013

Více

Příprava dat v softwaru Statistica

Příprava dat v softwaru Statistica Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,

Více

Dotazovací jazyky I. Datová krychle. Soběslav Benda

Dotazovací jazyky I. Datová krychle. Soběslav Benda Dotazovací jazyky I Datová krychle Soběslav Benda Obsah Úvod do problematiky Varianty přístupu uživatelů ke zdrojům dat OLTP vs. OLAP Datová analýza Motivace Vytvoření křížové tabulky Datová krychle Teorie

Více

Business Intelligence 2015. Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb.

Business Intelligence 2015. Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb. Business Intelligence 2015 Hlavní témata, která budou v roce 2015 určovat vývoj business intelligence řešení a služeb. Leden 2015 Téma č. 1: Cloudové služby budou využívat lokální data V roce 2015 se zvýší

Více

200 x 270 mm 59 000 Kč. II. a III. obálka 200 x 270 mm 65 000 Kč IV. obálka (zadní strana) 200 x 270 mm 104 000 Kč. 11. 5. 2015 (Euro) 3. 6.

200 x 270 mm 59 000 Kč. II. a III. obálka 200 x 270 mm 65 000 Kč IV. obálka (zadní strana) 200 x 270 mm 104 000 Kč. 11. 5. 2015 (Euro) 3. 6. Co je Professional Computing? IT časopis pro uživatele ze segmentu enterprise, midrange a SMB. Zabývá se potřebami a nákupními zvyklostmi těchto uživatelů, zveřejňuje redakční články, rozhovory a případové

Více

Maturitní témata Školní rok: 2015/2016

Maturitní témata Školní rok: 2015/2016 Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní

Více