Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Rozměr: px
Začít zobrazení ze stránky:

Download "Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování"

Transkript

1 Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1

2 Informační systémy na počátku 3. tisíciletí pro řízení vnitřních procesů back-office aplikace pro podporu základních řídících administrativních operací podniku pro řízení vztahů podniků s okolím front-office aplikace, aplikace s přidanou hodnotou (value-added ) pro rozvoj řízení podniku a podporu rozhodování back-office aplikace Aplikace pro řízení vnitřních procesů podniku - klasické celopodnikové aplikace ERP (Enterprise Resource Planning) Aplikace pro podporu základních řídících a administrativních operací podniku kancelářské systémy řízení pracovních toků (workflow) aplikace a technologie pro správu dokumentů všeobecné informace a instrukce (hlavně na bázi Intranetu Vladimíra ) Zádová, KIN, EF TUL 2

3 Aplikace pro řízení s okolím vztahů organizací mění kooperace mezi podniky CRM (Customer Relationship Management) elektronické podnikání SCM (Supply Chain Management) CRM procesy a aktivity, které souvisí se zákazníkem existujícím či potenciálním podpora prodeje - SFA (Sales Force Automation ) podpora zákazníka - CSS (Customer Service and Support ) podpora marketingu - EMA (Enterprise Marketing Automation) 3

4 Elektronické podnikání elektronický obchod (e-commerce) elektronické zásobování (e-procurement) elektronická tržiště (Marketplaces) Elektronické obchodování rozlišuje realizace obchodních vztahů mezi dvěma organizacemi -B2B, B2C, B2R, B2G, B2E (R - reseller, G - government, E -employee) SCM, SCM/APS koordinuje toky výrobků, služeb, informací a financí mezi dodavateli surovin, jejich zpracovateli, výrobci, obchodníky, zákazníky dvě kategorie aplikace pro plánování optimální způsob směrování množství materiálu a zboží potřebného v místech určení aplikace pro realizaci fyzické zásoby, obrátky zboží, objednávek a dodávky materiálu, finance Pozn.: APS =Advanced Planning and Schedulling (systém pokročilého plánování) 4

5 Aplikace pro podporu rozhodování Business Intelligence EIS (Executive Information Systems - manažerské informační systémy) datové sklady ( Data Warehouse) datová tržiště (Data Mart) dolování dat (Data Mining), OLAP (On-line Analytical Processing), reporting.. Customer Intelligence CRM + BI = CI Aplikace pro podporu rozhodování Business Intelligence EIS (Executive Information Systems - manažerské informační systémy) datové sklady ( Data Warehouse) datová tržiště (Data Mart) dolování dat (Data Mining), OLAP (On-line Analytical Processing), reporting.. Customer Intelligence CRM + BI = CI 5

6 Obecná koncepce architektury BI Zdroj: Novotný, Pour, Slánský: Business Intelligence, Grada 2005 IS/ICT - vztahy mezi daty a procesy OLTP ETL OLAP, DM, Operativní data Datové sklady OLAM, EIS 6

7 Procesy v BI dotazy/reporting dotazy na to CO je v databázi OLAP PROČ jsou některé fakty pravdivé uživatel generuje hypotézu a OLAP slouží k jejímu ověření je závislý na schopnostech analytika, ten se iterací dostává k výsledku DM představuje nástroje, které generují hypotézy a pokračují v provádění objevování - bez navádění uživatelem 7

8 Reporting standardní dotazování jedná se zejména o SQL dotazy v relačním prostředí výstupy standardní předpřipravené dotazy, nepredikovatelné ad hoc dotazy určené zejména pro nižší management OLAP = Online Analytical Processing def. Definovaná řada principů, které poskytují dimenzionální rámec pro podporu rozhodování. Dynamická syntéza, analýza a fúze velkého objemu multidimenzionálních dat. OLAP systémy pracují s analytickými informacemi, primární zdroje dat jsou OLTP systémy, důl. faktor času 8

9 drill-down, roll-up Základní operace OLAP snížení, zvýšení stupně agregace slicing (selekce), dicing provedení řezu v multidimenzionální databázi pivoting mění úhel pohledu na data ( jedná se o prezentaci obsahu) drill across spojení tabulek faktů přes tabulky dimenzí ( na stejné úrovni granularity) Operace různě kombinovány v jedné i ve více dimenzích ovlivňují podobu datového skladu Dolování dat, Data Mining Dolování dat je proces výběru, prohledávání a modelování ve velkých objemech dat sloužící k odhalení dříve neznámých vztahů mezi daty za účelem získání obchodní výhody Cíl: obchodní výhoda řešení konkrétního problému nalezení cesty k zlepšení procesu předem definován, na jeho základě připravena data; není jednorázová analýza příprava podnikových procesů - aby umožnily využívání analýz (kontinuálně) a podporovaly zpětné vazby od uživatelů. Zpětné vazby ovlivňují proces sběru dat i definice nových cílů. 9

10 Dolování dat a objevování znalostí v datech Knowledge Discovery in Databases ( KDD, objevování znalostí v datech ) obecně netriviální proces objevování platných, nových, potenciálně užitečných vzorů z dat. Dolování dat ( Data Mining) pouze krok v procesu KDD založený na aplikaci výpočetních technik, které na základě daných omezení poskytují vzory či modely nad danými daty Dolování dat a objevování znalostí v datech vyhodnocení vzorů data relevantní pro úlohu dolování dat DW selekce čištění dat integrace dat DB 10

11 fáze procesu KDD selekce výběr nebo segmentace dat podle kriteria, výběr vzorků dat předzpracování dat pro efektivní vyhodnocení dotazu čištění dat od nepotřebných dat, úprava formátů dat transformace pro obohacení použitelnosti dat data mohou být rozšířena o další atributy (např. demografické z externích zdrojů) dolování dat extrakce vzorů z dat interpretace a vyhodnocení identifikované vzory jsou interpretovány jako znalosti lze je použít k podpoře rozhodování Dolování dat Není samostatný vědní obor, používané metody patří do statistiky (např. klasifikace, regrese, časové řady, shlukování, asociační analýza, rozhodovací stromy), umělé inteligence (např. genetické algoritmy, neuronové sítě)... 11

12 ETL ETL proces extrakce, filtrování, čištění a vkládání ze zdrojových systémů do DW extrakce transformace restrukturalizace dat do podoby odpovídající DW filtrace (odstranění chybných i neúplných záznamů) standardizace dat odstranění nežádoucích atributů denormalizace dat kombinace datových zdrojů vkládání a indexace konzistence dat samých, konzistence s ostatními daty v DW 12

13 Zdroje dat zdroje důvěryhodnost vše nebo část ( atrib.,..projekce, selekce) porovnat stejné údaje z různých zdrojů (1DW z různých zdrojů) z hlediska obsahu ( m.j. m, cm, dm) formátu (cena zboží jiná přesnost, m/ž 0/1) významově stejné zdroje jsou různě pojmenovány a naopak Zdroje dat pokr. změny zdrojů během let struktura dat ze stejných zdrojů (archiv a současnost) formálně stejný objekt z více zdrojů ( zákazník: zákazník x potenc. zákazník) četnost přenášení zdrojů 13

14 ETL pravidla pro přenos Prosté kopírování Přepočty jednotek Standardizace formátů Odstraňování duplicit v datech z různých zdrojů Rozdělení atributu do několika cíl. atributů ( př. adresa) Slučování atributu do jednoho Odvozování nových atributů (př. datum) Převodní funkce některé použijí pro více atributů, jinde pro atribut samostatná funkce Po přenosu Kontrola kvality a ošetření chybějících údajů Vypuštění záznamů kde chybí Jednotné označení chybějících údajů a upozornění na neúplnost dat Statistika pro každý atribut Rozsah (doména) a četnost hodnot, které může nabývat (lze odhalit chybné hodnoty) 14

15 Zdroje dat pokr. u atributů: identifikátor, název, typ dat, měr.j., doména, význam, vlastník typ atributu (dimenze, fakt), typ indexu, pro měr.j.: konverzní poměry (koeficienty převodu, popř. koeficienty proměnné v čase) pro dimenze klíče, definice hierarchie/hierarchií přiřazení zdrojových atributů cílovým, transformace, změny formátů vazby mezi zdroji ( kdo komu poskytuje data) Data v IS/ICT 15

16 OLTP - operativní data zdroje: zejména aplikace Data v OLTP a DW přístup: více současně pracujících uživatelů aktualizace: častá, relativně malých objemů dat Operace INSERT, UPDATE, DELETE dotazy nad daty selektivní ( zejména předpřipravené dotazy) přesnost výstupu - na Kč, haléře,.. četnost stejných dotazů - i vícekrát denně ukládání dat strukturovaně - normalizovaná relační databáze nověji objektově relační, objektová databáze požadavky - nekonfliktní zpracování operací, zajištění integrity dat procesní orientace Vladimíra ( stavy Zádová, procesů, KIN, EF TUL detailní data) Data Warehouse Data v OLTP a DW zdroje: podnikové OLTP, operativní data + externí data přístup: malé množství specializovaných uživatelů - management aktualizace: řídká - jen přidávání dat ze zdrojů, delší časové intervaly dotazy intenzivní na data, složité dotazy, postupná iterace, sumarizace výstupy zaokrouhlené (i na tisíce) ukládání dat strukturovaně speciálně navržená relační databáze multidimenzionální kostka 16

17 DW - definice je subjektově orientovaná, integrovaná, časově variantní a stálá kolekce dat pro podporu rozhodování manažerů subjektová orientace DW je organizován podle hlavních subjektů podniku (zákazníci, prodej, produkt..), ne podle procesů (aplikací) reflektuje potřeby uložení dat pro rozhodování v jedné databázi DW jsou uložena data pouze jednou (např. o produktu, zaměstnanci ) integrovaná do celku jsou vkládána data z různých aplikací - nekonzistentnost, různé formáty integrací těchto dat - prezentace unifikovaného pohledu B. Inmon časově variantní DW data v DW jsou platná a přesná jen v bodech, ne intervalech času uložení historie dat - hodnoty v časových bodech (den, měsíc, Q, rok..) v DW vždy dimenze času stálá data v DW nevznikají, nedají se žádnými nástroji měnit aktualizace DW - jen přidávání dat v pravidelných časových intervalech (jako doplněk), integrace přírustků 17

18 Datová tržiště (Data Mart) příčiny vytváření pro nejčastější analýzy pro skupinu uživatelů - business process, oddělení vytvoření DM s více agregovanými daty, s menším objemem dat - pro zlepšeníčasu odezvy k poskytování vhodněji strukturovaných dat - z hlediska požadavků nástrojů přístupu pro snazší implementaci pro nižší náklady proti DW pro lepší zaměření koncového uživatele Základní představa 18

19 Přístupy k návrhu IS/ICT Vypracovány pro OLTP popisuje konceptuální schémata, která jsou optimalizována pro OLTP systémy Nerespektují specifika datových skladů neposkytuje postačující informace, které má DW poskytovat pro analytické zpracování nepřehlednost, není vidět přímo dimenze a fakty není zřejmé jak jednoduše agregovat data Multidimenzionální modelování 19

20 Dimenzionální modelování speciální technika určená pro logický návrh DW tak, aby vedl k výsledku - multidimenzionálnímu schématu Dimenzionální modelování Požadavky uživatelů Proces návrhu 4 kroky: výběr procesu/ů stanovení granularity výběr dimenzí určení faktů Zdroje dat 20

21 Star schéma (hvězdicové schéma) 21

22 Schéma souhvězdí 22

23 Konceptuální úroveň D 1 D 2 F 1 D 1 D 2 F 1 D 3 D 4 F 2 D 3 D 4 D 5 D 6 Hvězdicové schéma Schéma souhvězdí Obr. 1-P4 Grafické znázornění schéma faktů Zdroj: [5] M. Golfarelli, D. Maio, S. Rizzi. The Dimensional Fact Model: a Conceptual Model for Data Warehouses. International Journal of Cooperative Information Systems,, pp , 23

24 Obr. 2-P4 Grafické znázornění konceptuálního multidimenzionálního schématu Zdroj: [9] Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Design,In Proceedings of the International Workshop on Design and Management of Data Warehouses, DMDW, Stockholm, 2000 Obr. 3-P4 Multidimenzionální doménová struktura E. Thomsen 24

25 Technologická úroveň D 1 D 2 D 1 D 2 F 1 F 1 D 3 D 4 D 3 D 4 F 1-hierarch1 F 1-hierarch1 D 4-hierch1 D 5 F 1-hierarch2 D 5 F 1-hierarch2 D 4-hierch2 Schéma souhvězdí pro hierarchii faktů Schéma souhvězdí pro hierarchii faktů a dimenzí Zaměstnanec Zam Id Jméno zam Nástup zam Ved Id Čas Den Id Typ dne Teplota dne Týden Měsíc Čtvrtletí Rok F - Prodej Zak Id Zam Id Prod Id Den Id C fakt Qty-prodané Prodej v KČ Zákazník Zak Id Jméno zak Profese Odvětví Typ zak Země Produkt Prod Id Název prod Skupina Kategorie 25

Návrh datového skladu z hlediska zdrojů

Návrh datového skladu z hlediska zdrojů Návrh datového skladu Návrh datového skladu OLTP ETL OLAP, DM Operativní data Datové sklady Zdroje dat Transformace zdroj - cíl Etapy realizace 1 Návrh datového skladu Hlavní úskalí analýzy a návrhu spočívá

Více

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Vladimíra Zádová BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací

Více

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních

Více

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS DATABÁZOVÉ SYSTÉMY Současné aplikace IS/ICT Informační systémy a databázové systémy Databázová technologie Informační systémy Aplikační architektura Vlastníci, management Business Intelligence, manažerské

Více

Datový sklad. Datový sklad

Datový sklad. Datový sklad Datový sklad Postavení v rámci IS/ICT Specifika návrhu Modelování Datový sklad POSTAVENÍ NÁVRH Postavení datového skladu (DW) v IS/ICT z hlediska aplikací jako součást Business Intelligence z hlediska

Více

Datové sklady. Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT. Vladimíra Zádová, KIN, EF, TUL

Datové sklady. Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT. Vladimíra Zádová, KIN, EF, TUL Datové sklady Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT Multidimenzionální modelování (Multi)dimenzionální modelování speciální technika určená pro

Více

Business Intelligence

Business Intelligence Business Intelligence BI jako součást IS/ICT IS/ICT BI v rámci IS/ICT BI architektura, komponenty procesy v BI data v IS/ICT organizace dat v DW (Multi)dimenzionální modelování budování DW Pro další informace

Více

3 zdroje dat. Relační databáze EIS OLAP

3 zdroje dat. Relační databáze EIS OLAP Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování

Více

Podnikové informační systémy Jan Smolík

Podnikové informační systémy Jan Smolík Podnikové informační systémy Jan Smolík Zobecněné schéma aplikační architektury Vlastníci, management Aplikační architektura podnikové informatiky Business Intelligence, manažerské aplikace Obchodní partneři

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

Konceptuální modely datového skladu

Konceptuální modely datového skladu Vladimíra Zádová Katedra informatiky, TU Liberec, e-mail: vladimira.zadova@tul.cz Abstrakt: Příspěvek je zaměřen na modely datového skladu pro konceptuální úroveň návrhu. Existující modely pro tuto úroveň

Více

10. Datové sklady (Data Warehouses) Datový sklad

10. Datové sklady (Data Warehouses) Datový sklad 10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP

Více

Ing. Roman Danel, Ph.D. 2010

Ing. Roman Danel, Ph.D. 2010 Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Informační systémy 2006/2007

Informační systémy 2006/2007 13 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení Informační systémy 2006/2007 Ivan Kedroň 1 Obsah Analytické nástroje SQL serveru. OLAP analýza

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

Data v informačních systémech

Data v informačních systémech Data v informačních systémech Vladimíra Zádová, KIN 6. 5. 2015 Obsah přednášky informační systémy (IS) vztah dat a informačních systémů databáze, databázový systém základní dělení IS, trendy pojmy (terminologie)

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?

Více

Multidimenzionální modelování v rámci analýzy a návrhu IS/ICT

Multidimenzionální modelování v rámci analýzy a návrhu IS/ICT Multidimenzionální modelování v rámci analýzy a návrhu IS/ICT Abstrakt: Vladimíra Zádová Katedra informatiky, TU Liberec, e-mail: vladimira.zadova@tul.cz Strukturovaný a objektový přístup jsou klasické

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na

Více

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9 Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

Infor Performance management. Jakub Urbášek

Infor Performance management. Jakub Urbášek Infor Performance management Jakub Urbášek Agenda prezentace Stručně o produktu Infor PM 10 Komponenty Infor PM - PM OLAP a PM Office Plus Reporting Analýza Plánování / operativní plánování Infor Performance

Více

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 6. února 2012 T T THINK TOGETHER Think Together 2012 Business Intelligence systémy Business Intelligence systems

Více

Business Intelligence. Adam Trčka

Business Intelligence. Adam Trčka Business Intelligence Adam Trčka 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda Co se dnes dovíme? Data informace znalost Business

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb

Více

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně PEF MZLU v Brně 1. listopadu 2011 Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské spousty nejrůznějších údajů. Příkladem mohou být informace z obchodování s cennými papíry

Více

Informace v organizaci. Vladimíra Zádová, KIN, EF TUL

Informace v organizaci. Vladimíra Zádová, KIN, EF TUL Informace v organizaci Globální a informační strategie IS/ICT současné aplikace Způsoby tvorby a provozu aplikací Bezpečnost Řízení podnikové informatiky Inovace státní správa, veřejná správa, banky dodavatelé

Více

In orma I a. O nl Dva. Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky

In orma I a. O nl Dva. Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky I Libor Gála Jan Pour Prokop Toman., O nl Dva.. In orma I a Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky Českó společnost

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Datová kvalita základ úspěšného BI. RNDr. Ondřej Zýka, Profinit

Datová kvalita základ úspěšného BI. RNDr. Ondřej Zýka, Profinit Datová kvalita základ úspěšného BI RNDr. Ondřej Zýka, Profinit 1.6.2012 Datová exploze Snižování nákladů o Zdvojnásobení objemu podnikových dat každé dva roky o Konkurenční tlak o Ekonomická krize o V

Více

Management IS. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1

Management IS. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1 Management IS Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1 Učitelé Přednášející: Cvičící: Doc.Ing.Miloš Koch,CSc. Ing.Aleš Klusák Kontakt: koch@fbm.vutbr.cz 22/ 2 Literatura Skripta: Koch,M. Dovrtěl,J.:

Více

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování

Více

KIS A JEJICH BEZPEČNOST-I

KIS A JEJICH BEZPEČNOST-I KIS A JEJICH BEZPEČNOST-I INFORMAČNÍ SYSTÉMY POUŽÍVANÉ V MANAŽERSKÉ PRAXI pplk. Ing. Petr HRŮZA, Ph.D. Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail.:

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází

Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází 1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,

Více

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 AGENDA definice IS, zavedení pojmů možnosti a rozdělení typická struktura technologie nasazení praktická ukázka

Více

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Obsah Úvod 11 Jak být úspěšný Základy IT

Obsah Úvod 11 Jak být úspěšný Základy IT Obsah Úvod 11 Jak být úspěšný 13 Krok 0: Než začneme 13 Krok 1: Vybrat si dobře placenou oblast 14 Krok 2: Vytvořit si plán osobního rozvoje 15 Krok 3: Naplnit osobní rozvoj 16 Krok 4: Osvojit si důležité

Více

Modelování a návrh datových skladů

Modelování a návrh datových skladů Modelování a návrh datových skladů Doc. Ing. B. Miniberger, CSc. BIVŠ Obsah 1. Přednáška I. Základy modelování datových skladů (DW) 2. Přednáška II. ETL procesy III. Data Mining IV. Kvalita dat a BI Literatura

Více

Profitabilita klienta v kontextu Performance management

Profitabilita klienta v kontextu Performance management IBM Technical specialist team Pre Sale 26/10/2010 Profitabilita klienta v kontextu Performance management Co všechno řadíme do PM? Automatická data Běžný reporting Pokročilé statistické modely Včera What

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Úvod do problematiky Doc. RNDr. Iveta Mrázová,

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

Inteligentní zpracování prostorových dat

Inteligentní zpracování prostorových dat ORACLE PRODUCT LOGO 9.11.2011 Praha Inteligentní zpracování prostorových dat Petr Podbraný Business Intelligence Sales Consultant Přibližně 80% veškerých dat uložených v podnikových databázích obsahuje

Více

Úvodní přednáška. Význam a historie PIS

Úvodní přednáška. Význam a historie PIS Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích

Více

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně

Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně Identifikační karta modulu v. 4 Kód modulu Typ modulu profilující Jazyk výuky čeština v jazyce výuky Management informačních systémů česky Management informačních systémů anglicky Information systems management

Více

Databázové a informační systémy

Databázové a informační systémy Databázové a informační systémy doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Obsah Jak ukládat a efektivně zpracovávat

Více

Získávání dat z databází 1 DMINA 2010

Získávání dat z databází 1 DMINA 2010 Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou

Více

2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování

2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování 1. Teoretické základy modelování na počítačích 1.1 Lambda-kalkul 1.1.1 Formální zápis, beta-redukce, alfa-konverze 1.1.2 Lambda-výraz jako data 1.1.3 Příklad alfa-konverze 1.1.4 Eta-redukce 1.2 Základy

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Moderní metody automatizace a hodnocení marketingových kampaní

Moderní metody automatizace a hodnocení marketingových kampaní Moderní metody automatizace a hodnocení marketingových kampaní SAS CI Roadshow 2014 24/09/2014 Vít Stinka Agenda Představení společnosti Unicorn Systems Aliance Unicorn Systems a SAS Celkový koncept Customer

Více

Business Intelligence a datové sklady

Business Intelligence a datové sklady Business Intelligence a datové sklady Ing Jan Přichystal, PhD Mendelova univerzita v Brně 2 prosince 2014 Ing Jan Přichystal, PhD Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské

Více

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o.

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. GIS jako důležitá součást BI Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. ARCDATA PRAHA, s.r.o. THE GEOGRAPHIC ADVANTAGE Motto Sladit operační taktiku s organizační strategií Strategie bez taktiky je

Více

DI3MK_EPP2 Ekonomika Ekono a řízení mika průmyslových podn průmyslových iků podn iků

DI3MK_EPP2 Ekonomika Ekono a řízení mika průmyslových podn průmyslových iků podn iků DI3MK_EPP2 Ekonomika a řízení jaro 2014 Harmonogram předmětu sobota 01. 03. 2014 / 16:40 19:15 / učebna 51 Organizační pokyny Strategický management sobota 15. 03. 2014 / 10:15 12:50 / učebna 51 Provozní

Více

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty

Více

Systémy pro podporu rozhodování. Datové sklady, OLAP

Systémy pro podporu rozhodování. Datové sklady, OLAP Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické

Více

BA_EM Electronic Marketing. Pavel

BA_EM Electronic Marketing. Pavel BA_EM Electronic Marketing Pavel Kotyza @VŠFS Agenda Efektivní data mining jako zdroj relevantních dat o potřebách zákazníků Co je data mining? Je absolutní Je předem neznámý Je užitečný Co jsou data?

Více

Využití IT nástrojů pro měření a řízení výkonnosti. Michal Kroutil 22.11.2005

Využití IT nástrojů pro měření a řízení výkonnosti. Michal Kroutil 22.11.2005 Využití IT nástrojů pro měření a řízení výkonnosti Michal Kroutil 22.11.2005 1 Obsah 1 2 3 4 5 Představení Ciber Novasoft Klíčové ukazatele výkonnosti Zdroje dat SAP SEM Implementační projekt 2 Představení

Více

Nová dimenze rozhodovacího procesu

Nová dimenze rozhodovacího procesu Nová dimenze rozhodovacího procesu Marek Matoušek Pavel Mašek Data, nebo INFORMACE Využití dostupných firemních dat Několik systémů, mnoho různých dat Různé divize, různé potřeby Potřeba integrace dat

Více

Na co se můžete s Oracle BI těšit

<Insert Picture Here> Na co se můžete s Oracle BI těšit Na co se můžete s Oracle BI těšit Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014 Oracle BI Ukázka Oracle BI Možnosti platformy Oracle Business

Více

ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ

ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ 18.11.2012 Radim Tvardek, Petr Bulava, Daniel Mašek U&SLUNO a.s. I Sadová 28 I 702 00 Ostrava I Czech Republic PŘEDPOKLADY PRO ANALÝZU NÁKUPNÍHO KOŠÍKU 18.11.2012 Daniel

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák Analýza a návrh datového skladu pro telekomunikační společnost Bc. Josef Jurák Diplomová práce 2006 ABSTRAKT Business Intelligence a Data warehouse jsou základní prostředky pro podporu rozhodování, které

Více

Hospodářská informatika

Hospodářská informatika Hospodářská informatika HINFL, HINFK Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu reg.

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

GIS a Business Intelligence

GIS a Business Intelligence GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních

Více

Zhodnocení architektury podniku. Jiří Mach 28. 8. 2014

Zhodnocení architektury podniku. Jiří Mach 28. 8. 2014 Zhodnocení architektury podniku Jiří Mach 28. 8. 2014 Obsah Zhodnocení architektury podniku Zahájení projektu Metodika/framework Harmonogram projektu 1. fáze: vytvoření popisu AS-IS stavu 2. fáze: analýza

Více

Produkty třídy BYZNYS

Produkty třídy BYZNYS Produkty třídy BYZNYS - jistota, spolehlivost a dynamika ve Vašich datech Jiří Rákosník, obchodní ředitel ing. Vlastimil Fousek, vedoucí analytického a vývojového oddělení Produkty třídy BYZNYS informační

Více

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19 3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,

Více

Přehled systému Microsoft SQL Server. Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy

Přehled systému Microsoft SQL Server. Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy Konvence Další prvky Požadavky na systém Ukázkové databáze Ukázky kódu Použití ukázek kódu Další

Více

Modelování procesů s využitím MS Visio.

Modelování procesů s využitím MS Visio. Modelování procesů s využitím MS Visio jan.matula@autocont.cz Co je to modelování procesů? Kreslení unifikovaných či standardizovaných symbolů, tvarů a grafů, které graficky znázorňují hlavní, řídící nebo

Více

04 - Databázové systémy

04 - Databázové systémy 04 - Databázové systémy Základní pojmy, principy, architektury Databáze (DB) je uspořádaná množina dat, se kterými můžeme dále pracovat. Správa databáze je realizována prostřednictvím Systému pro správu

Více

Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

On line analytical processing (OLAP) databáze v praxi

On line analytical processing (OLAP) databáze v praxi On line analytical processing (OLAP) databáze v praxi Lukáš Matějovský Lukas.Matejovsky@CleverDecision.com Jan Zajíc Jan.Zajic@CleverDecision.com Obsah Představení přednášejících Základy OLAP Příklady

Více

E-COMMERCE. Elektronické podnikání a koncepce elektronického obchodování. Petr Suchánek

E-COMMERCE. Elektronické podnikání a koncepce elektronického obchodování. Petr Suchánek E-COMMERCE Elektronické podnikání a koncepce elektronického obchodování Petr Suchánek Recenzenti: prof. Ing. Jiří Dvořák, DrSc. prof. Ing. Jindřich Kaluža, CSc. Vydání knihy bylo schváleno vědeckou radou

Více

INFORMAČNÍ SYSTÉMY. 03. 01. 2006, Ing. Jiří Mráz

INFORMAČNÍ SYSTÉMY. 03. 01. 2006, Ing. Jiří Mráz INFORMAČNÍ SYSTÉMY 03. 01. 2006, Ing. Jiří Mráz PŘEDNÁŠEJÍCÍ Jiří Mráz Production Coordinator UNICORN jiri.mraz@unicorn.cz AGENDA Informační a komunikační technologie (ICT) podniku Informační systémy Zakázkový

Více

Moderní přístupy tvorby datových skladů

Moderní přístupy tvorby datových skladů Mendelova univerzita v Brně Provozně ekonomická fakulta Moderní přístupy tvorby datových skladů Diplomová práce Vedoucí práce: Ing. Jan Přichystal, Ph.D. Bc. Luboš Bednář Brno, 2010 Rád bych touto cestou

Více

MBI - technologická realizace modelu

MBI - technologická realizace modelu MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,

Více

Performance Management What if?

Performance Management What if? Performance Management What if? Ondřej Bothe, IT Specialist ondrej_bothe@cz.ibm.com Agenda: Koncept PM s What if nástroji Ukázka tvorby What if modelu (Ukázka pokročilejší What if aplikace) Performance

Více

Novinky SQL Serveru 2005 v oblasti Business Intelligence

Novinky SQL Serveru 2005 v oblasti Business Intelligence Novinky SQL Serveru 2005 v oblasti Business Intelligence Seminární práce na předmět Business Intelligence (4IT435) Vypracoval Borek Bernard, leden 2006 1 Abstrakt Microsoft SQL Server 2005 je po mnoha

Více

Řízení vztahů se zákazníky

Řízení vztahů se zákazníky Řízení vztahů se zákazníky Řízení vztahů se zákazníky Vychází z představy, že podnik je řízen zákazníkem Používanými nástroji jsou: Call Centra Customer Relationship Management (CRM) Základní vazby v řízení

Více

TM1 vs Planning & Reporting

TM1 vs Planning & Reporting R TM1 vs Planning & Reporting AUDITOVATELNOST? ZABEZPEČENÍ? SDÍLENÍ? KONSOLIDACE? PROPOJITELNOST???? TM1?? COGNOS PLANNING IBM COGNOS 8 PLANNING Cognos Planning Podpora plánovacího cyklu Jednoduchá tvorba

Více

Dolování asociačních pravidel

Dolování asociačních pravidel Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních

Více

D Podniky. Poznámky: Více o informačních technologií v podnicích naleznete na:

D Podniky. Poznámky: Více o informačních technologií v podnicích naleznete na: Již od roku 2002 sleduje Český statistický úřad (ČSÚ) pravidelně rozvoj a využívání informačních technologií v podnikatelském sektoru prostřednictvím samostatného ročního statistického zjišťování: Šetření

Více

Kapitola 1: Úvod. Systém pro správu databáze (Database Management Systém DBMS) Účel databázových systémů

Kapitola 1: Úvod. Systém pro správu databáze (Database Management Systém DBMS) Účel databázových systémů - 1.1 - Kapitola 1: Úvod Účel databázových systémů Pohled na data Modely dat Jazyk pro definici dat (Data Definition Language; DDL) Jazyk pro manipulaci s daty (Data Manipulation Language; DML) Správa

Více

Manažerský informační systém na MPSV. Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV

Manažerský informační systém na MPSV. Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV Manažerský informační systém na MPSV Mgr. Karel Lux, vedoucí oddělení koncepce informatiky MPSV Konference ISSS-2009 Hradec Králové Aldis 6. dubna 2009 MIS na MPSV časové údaje projektu Vytvoření MIS MPSV

Více

Projekt SEPIe - Datový sklad a analytická nadstavba MIS - manažerský informační systém pro vedoucí zaměstnance resortu MV (konference)

Projekt SEPIe - Datový sklad a analytická nadstavba MIS - manažerský informační systém pro vedoucí zaměstnance resortu MV (konference) Projekt SEPIe - Datový sklad a analytická nadstavba MIS - manažerský informační systém pro vedoucí zaměstnance resortu MV (konference) Ing. Petr Pechar (vedoucí řešitelského týmu), Praha, 27.11.2013 Úvod

Více

STÁTNÍ POKLADNA. Integrovaný informační systém Státní pokladny (IISSP)

STÁTNÍ POKLADNA. Integrovaný informační systém Státní pokladny (IISSP) POKLADNA Integrovaný informační systém Státní pokladny (IISSP) Ing. Miroslav Kalousek ministr financí Praha 17.12.2012 Page 1 Integrovaný informační systém Státní pokladny (IISSP) Centrální systém účetních

Více

Informace a znalosti v organizaci

Informace a znalosti v organizaci Informace a znalosti v organizaci Vladimíra Zádová Postavení informací a znalostí z hlediska úspěšnosti firmy Vnitřní faktory Rámec 7S faktorů úspěchu firmy [ Mc Kinsey ] Struktura Strategie Systémy Spolupracovníci

Více

Návrh a analýza požadavků na výběr manažerského informačního systému

Návrh a analýza požadavků na výběr manažerského informačního systému Návrh a analýza požadavků na výběr manažerského informačního systému The Design and Analysis of Requirements for the Selection of Business Information Systems Jaroslav Hanák Bakalářská práce 2015 ABSTRAKT

Více

Problémové domény a jejich charakteristiky

Problémové domény a jejich charakteristiky Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 02 1/16 Problémové domény a jejich charakteristiky Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta

Více