Data v informačních systémech

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Data v informačních systémech"

Transkript

1 Data v informačních systémech Vladimíra Zádová, KIN

2 Obsah přednášky informační systémy (IS) vztah dat a informačních systémů databáze, databázový systém základní dělení IS, trendy pojmy (terminologie) v oblasti IS Souvislost s předchozími přednáškami vztah dat, informací, znalostí Semiotické pojetí informace, Shanonovo pojetí informace Programovéprostředky PC, klasifikace, licence, způsoby pořizování, využití

3 Systém Množina prvkůa vazeb mezi nimi, kteráje účelovědefinovanána vymezeném reálném objektu z hlediska reálného cíle Důležité pojmy hledisko (účel), rozlišovací úroveň struktura prvky systému - vnitřní, vnější prvky podstatného okolí synergie v důsledku vazby meziprvkymácelek vlastnosti nové (tj. novou kvalitu) synergický efekt chování systému reakce na určité podněty

4 Informační systémy definice IS jsou systémy tj. soubory prvků ve vzájemných informačních a procesních vztazích (informační procesy), které zpracovávají data a zabezpečují komunikaci informací mezi prvky. Informační systémy se často člení na systém zpracování dat a komunikační systém. (Prof. Pokorný) ISrozumíme soubor lidí, prostředků(hw, komunikačnítechnika, SW), metod zabezpečující sběr, přenos, uchování, zpracování dat za účelem tvorby a prezentace informací pro potřeby uživatelů činných v systémech řízení. (Prof. Molnár)

5 IS x IS/ICT ( IS/IT) Informační systémy IS/ICT programové vybavení( software, SW) aplikační programové vybavení(asw) programovévybavenípro vývoj a implementaci ASW Informační (a komunikační) technologie zahrnuje všechny prostředky pro: pořízení uchování zpracování přenos prezentaci dat/informací?

6 IS, IS/ICT organizací východisko globálnístrategie, součástíje informační strategie integrace jednotlivých aplikací Informace nebo data v IS? Jak vypadáaplikace?

7 Informace nebo data v IS? Moudrost Znalosti Informace Data IS pracují s daty, ty jsou zdrojem informací

8 Aplikace myšlena programová aplikace (aplikační SW) vzájemně provázané programy program je část aplikace, která se spouští na jednom počítači (jedním příkazem či volbou jedné položky menu) je složena ze tří základních oblastí: prezentační aplikační datové

9 Aplikace PRAVIDLA DATA PROCESY Data Datová oblast Aplikační logika (business logika) Prezentační oblast APLIKACE uživatel

10 Aplikace Prezentačnívrstva zprostředkováváuživateli formulář, zprávu o úspěšném/neúspěšném průběhu akce (př. uloženídat-přijetíobjednávky) v požadovaném formátu Aplikační logika přebírádošládata, kontroluje jejich správnost (konzistence dat, integrita dat) a provádí další požadované zpracování( např. porovnává požadovanémnožstvía aktuálnístav) v případě neúspěšnosti (zadaná data nejsou konzistentní, či vstupní data neodpovídají obsaženým pravidlům) vrací řízení prezentační oblasti s informací o chybě, jinak předává řízení datové oblasti

11 Aplikace Datová oblast připravídata do požadovanéstruktury datového úložiště (databáze) provede záznam dat předává řízení prezentační oblasti (ta zajistí předání zprávy o proběhnuté akci)

12 API Rozhraní aplikace aplikačníprogramovérozhraní; Application Programming Interface prostřednictvím API probíhákomunikace mezi aplikacemi a mezi oblastmi uvnitř aplikací mezi daty a oblastídat UI uživatelskérozhraní; User Interface mezi prezentační vrstvou a uživatelem zajišťuje příjem uživatelských požadavků je grafické(ikony, menu), nebo příkazově orientované

13 organizace dat manipulace s daty

14 Organizace dat bit /byte znak písmena, číslice atribut /položka/údaj/pole záznam/věta soubor kolekce vzájemně souvisejících dat databáze kolekce vzájemně souvisejících souborů

15 Na nejhrubší úrovni: Databázový systém IS SŘBD DB DBS DBS = DB + SŘBDS IS... informačnísystém DBS..databázový systém DB...databáze SŘBD..systém řízení báze dat

16 Informační systém data z databáze: využívápřímo zpracovává dalšími aplikačními programy Databáze obsahuje data, obvykle uložena na vnějších paměťových mediích je strukturovaná množina dat základním požadavkem na data perzistence, paralelní přístup (sdílenídat ), spolehlivost dat, neredundance, nezávislost

17 Databáze - požadavky na data perzistence dat přetrvávánídatpo ukončeníprocesu, který snimi pracuje možnost znovupoužití dat v dalších procesech paralelní přístup - sdílení dat častý přístup více uživatelů ve stejnou dobu aktualizace menšího objemu dat požadavky na transakční zpracování spolehlivost dat = integrity + security integrity- zajištění integrity, konzistence databáze security -autorizace, ochrana před neoprávněným přístupem

18 Databáze - požadavky na data neredundance neopakování prvků dat nezávislost programy přistupujícík datům jsou nezávisléna tom, kde jsou data uložena

19 Databáze DATA, KATALOG DAT katalog dat(slovník dat, data dictionary, systémový katalog) popis dat, uloženýchvdatabázi vytváříschéma databáze(= databázovéschéma);katalog dat je vlastněmetadatabáze, kteráje potřebnájak zhlediska uživatele, tak zhlediska SŘBD databáze konkrétnídata, kteréjetřeba shromažďovat (je třeba ukládat jen ta data, která vedou k informaci) data jsou ukládána ve struktuře, kteráje popsána v katalogu dat

20 SŘBD Database Management System(zkratka DBMS) SŘBD umožňuje definovat a udržovat data v databázi mimo programy, které tato data využívají SW SŘBD realizuje 3 funkce: 1.definice databáze 2.konstrukce databáze 3.manipulace s databází

21 Ukládání dat založeno na databázových modelech databázový model je prostředek pro modelování, nikoli cíl (výsledek) hierarchický síťový relační objektový objektově-relační

22 Relační databázové systémy Oracle (Oracle), Access, MS SQL Server (Microsoft), DB2 (IBM), Progress, Sybase open source: MySQL, PostgreSQL

23 Relační model dat vycházíz toho, že objekty a vztahy v reálném světě se dajímodelovat pomocídvourozměrných tabulek (relací) Rozdíl relationship x relation vztah mezi tabulkami = relationship relace(relation) = tabulka dat

24 Základní pojmy relace vychází z matematické relace zjednodušeně relace = tabulka rozdíl proti tabulce: redukce tabulky na jednoduchou tabulku, kde sloupce určují strukturu, řádky pak záznamy nemohou být vloženy dva totožné záznamy každý sloupec je určen názvem a doménou záznam je uložen teprve tehdy, kdyžhodnoty všech atributů odpovídajídefinici

25 Terminologie Atribut (pole, údaj) je dán názvema doménou; názvy atributů jsou v rámci relace jedinečné Doména= množina hodnot, kterou může atribut nabývat př. text, celočíselný údaj, jen výčet hodnot(př. město: pouze Liberec, Jablonec, Aš), povinnost/nepovinnost(null/not NULL) Primárníklíč(PK) je dán minimálnímnožinou atributů, která zajistí jedinečnost záznamu (řádku) tabulky Schéma relace (= struktura tabulky) je dáno množinou atributů Prvek relace (=záznam)

26 Databáze většinou obsahuje více relací(i kdyžmůže mít jen jednu) pomocírelacíjsou modelovány objekty reálného světa a vztahy mezi nimi (jsou zdrojem informacío stavu procesů, činností v reálném světě) vrelačním modelu tabulky reprezentujíentity reálného světa i vztahy mezi nimi, někdy jen část entity Př. objednávka: hlavička objednávky a položky objednávky jsou uloženy ve 2 tabulkách

27 Vztahy mezi relacemi zajištěny pomocí cizího klíče (Foreign Key, FK) rozlišuje se tabulka nadřazenáa podřízená(master-detail), vztahy mezi nimi 1:N, může být 1:1 Př. zákazník-objednávka PK nadřazené tabulky = FK podřízené tabulky ve správněnavrženédatabázi jsou to jedinéatributy, které se v rámci databáze opakují ve více tabulkách referenční integrita konzistence mezi tabulkami řešípřidánízáznamůdo podřízenétabulky a rušenízáznamův nadřazené tabulce, PK (3 základní typy řešení)

28 Integritní omezení Integritní omezení jsou přídavnp davnátvrzenío objektech, která se po dobu existence konkrétn tní databázov zové aplikace nemění. doménová integrita (vztah k atributům) entitníintegrita (PK ; každárelace májen jeden PK, kandidátů může mít více) referenční integrita (FK) další omezení

29 Dobře navrženádatabáze mákaždý údaj zaznamenán jen jednou, údaje se neopakují s jedinou výjimkou PK-FK řeší se normalizace, funkční závislosti

30 Základní manipulace s daty vkládání nového záznamu (INSERT) aktualizace jednotlivých údajů v záznamech (UPDATE) rušení záznamu (DELETE) SELECT výběr informací z dat

31 Dotazovacíjazyky SQL (Structured Query Language) QBE (Query By Example)

32 MS ACCESS dotazy se zadávajív QBE vkládáním požadavkůdo tabulky lze však zadat dotaz i v SQL každý zadaný dotaz v QBE lze zobrazit v SQL

33 SQL Structured Query Language navržen počátkem 70. let 20. století a používá se dodnes IBM -1.prototyp -SEQUEL od do praxe -ORACLE (1979) IBM - SQL/DS (1981), DB/2 (1983) postupněpřijímán jako standard pro přístup k datům v relačních databázích

34 SQL -normy SQL 86 -DDL, DML, DCL schválena ANSI norma SQL, základem dialekt DB2, přijato mezinárodní standardizační organizacíiso SQL 89 -revize rozšíření o specifikaci IO SQL2 -r revize, SQL3

35 ProstředíMicrosoft Access

36 KNIHOVNA Zadání: sledovánívýpujčky knih může být více exemplářů jedné knihy může si vypůjčit více knih najednou (5) potřebuji evidovat všechny výpujčky po dobu 3 let Tabulka v Excelu Access

37 Tvorba databáze v aplikaci Microsoft Office Access návrh tabulek (relací) a vztahů mezi nimi tvorba dotazů, formulářů a sestav

38 Objekty databáze Microsoft Office Access

39 Příklad návrhu tabulky v aplikaci Microsoft Office Access Návrhové zobrazení

40 Příklad návrhu tabulky v aplikaci Microsoft Office Access Zobrazení datového listu

41 Vztahy mezi relacemi

42 Typy aplikací, ukládánídat

43 OLTP aplikace On-line Transaction Processing; transakční aplikace Business Intelligence: OLAP(On-line Analytical Processing), dolování dat (Data Mining), datové sklady

44 Obecná koncepce architektury BI Zdroj: Novotný, Pour, Slánský: Business Intelligence, Grada 2005

45 DW - definice je subjektově orientovaná, integrovaná, časově variantní a stálá kolekce dat pro podporu rozhodování manažerů subjektová orientace DW je organizován podle hlavních subjektůpodniku (zákazníci, prodej, produkt..), ne podle procesů(aplikací) reflektuje potřeby uložení dat pro rozhodování v jednédatabázi DW jsou uložena data pouze jednou (např. o produktu, zaměstnanci ) integrovaná do celku jsou vkládána data z různých aplikací- nekonzistentnost, různé formáty integracítěchto dat -prezentace unifikovaného pohledu B. Inmon

46 DW časově variantní data v DW jsou platná a přesná jen v bodech, ne intervalech času uložení historie dat - hodnoty v časových bodech ( den, měsíc, Q, rok..) v DW vždy dimenze času stálá data v DW nevznikají, nedají se žádnými nástroji měnit aktualizace DW -jen přidávánídat v pravidelných časových intervalech (jako doplněk), integrace přírustků

47 Vztahy v rámci IS/ICT z hlediska dat a procesů

48 IS/ICT -vztahy mezi daty a procesy OLTP ETL OLAP, DM, Operativní data Datové sklady OLAM, EIS DATAWAREHOUSING

49 Současné trendy

50 Podíl zdrojů informací 80% nestrukturovaných 20 % strukturovaných 80% vnitřní informační zdroje 20% vnější informační zdroje

51 Současný stav Business Intelligence Procesy: dolovánídat (Data Mining) OLAP (On-line Analytical Processing) reporting BI 1.0 Úložištědat: datovésklady (Data Warehouse) datovátržiště(data Mart)

52 Business Intelligence z hlediska zdrojů informací převážně strukturované aktualizace zdrojových aplikací na základě konkrétních událostí, které nejsou příliš časté(jednáse tedy o nespojitou manipulaci s daty)

53 Požadavky a trendy BI ve struktuře zdrojů informací nestrukturované, semistrukturované dynamická data v orientaci v organizaci/analýze zaměřenína pravidla, jejich aktualizaci, řízeníažk procesům využití řízenípravidel v oblasti IS na podporu rozhodování Business Rules přístup

54 Nestrukturovanéa semistrukturovanézdroje informací Požadavek vybudovat sklad dokumentů (Document Warehouse) Procesy vyhledání a dolování textu Propojenís BI 1.0

55 Dynamická data proudy dat, proudy událostí Charakteristika: strukturovaná odlišnosti proti datům v klasických databázích přicházejíneustále (on-line) majíobecněneomezenou velikost nelze předpokládat nic o pořadídat, může být více proudů souběžně nelze je jednoduchým způsobem opětovně získat může se měnit jejich struktura (topologie)

56 Příklady data zbezpečnostních kamer, telefonníhovory, vývoj cen na burze, bankovníoperace Požadavky na Business Intelligence dolování dat nad proudy dat modifikace klasicky používaných metod dolování dat jako jsou shlukování, analýza časových řad na základěstanovených hodnot klíčových indikátorůvýkonu (KPI) a dosahovaných hodnot optimalizovat business procesy

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS DATABÁZOVÉ SYSTÉMY Současné aplikace IS/ICT Informační systémy a databázové systémy Databázová technologie Informační systémy Aplikační architektura Vlastníci, management Business Intelligence, manažerské

Více

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty

Více

Databázové systémy trocha teorie

Databázové systémy trocha teorie Databázové systémy trocha teorie Základní pojmy Historie vývoje zpracování dat: 50. Léta vše v programu nevýhody poměrně jasné Aplikace1 alg.1 Aplikace2 alg.2 typy1 data1 typy2 data2 vytvoření systémů

Více

Databáze II. 1. přednáška. Helena Palovská palovska@vse.cz

Databáze II. 1. přednáška. Helena Palovská palovska@vse.cz Databáze II 1. přednáška Helena Palovská palovska@vse.cz Program přednášky Úvod Třívrstvá architektura a O-R mapování Zabezpečení dat Role a přístupová práva Úvod Co je databáze Mnoho dat Organizovaných

Více

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19 3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,

Více

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009

Více

Databázové systémy úvod

Databázové systémy úvod Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2012 BI-DBS, ZS 2012/13 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal

Více

Úvod do databází. Modelování v řízení. Ing. Petr Kalčev

Úvod do databází. Modelování v řízení. Ing. Petr Kalčev Úvod do databází Modelování v řízení Ing. Petr Kalčev Co je databáze? Množina záznamů a souborů, které jsou organizovány za určitým účelem. Jaké má mít přínosy? Rychlost Spolehlivost Přesnost Bezpečnost

Více

Databáze v MS ACCESS

Databáze v MS ACCESS 1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

předměty: ukončení: Zápočet + Zkouška / 5kb např. jméno, název, destinace, město např. student Jan Novák, narozen 18.5.1974

předměty: ukončení: Zápočet + Zkouška / 5kb např. jméno, název, destinace, město např. student Jan Novák, narozen 18.5.1974 základní informace Databázové systémy Úvodní přednáška předměty: KI/DSY (B1801 Informatika - dvouoborová) KI/P502 (B1802 Aplikovaná informatika) ukončení: Zápočet + Zkouška / 5kb ki.ujep.cz termínovník,

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

Databázové a informační systémy Jana Šarmanová

Databázové a informační systémy Jana Šarmanová Databázové a informační systémy Jana Šarmanová Obsah Úloha evidence údajů, způsoby evidování Databázové technologie datové modely, dotazovací jazyky. Informační systémy Datové sklady Metody analýzy dat

Více

RELAČNÍ DATABÁZOVÉ SYSTÉMY

RELAČNÍ DATABÁZOVÉ SYSTÉMY RELAČNÍ DATABÁZOVÉ SYSTÉMY VÝPIS KONTROLNÍCH OTÁZEK S ODPOVĚDMI: Základní pojmy databázové technologie: 1. Uveďte základní aspekty pro vymezení jednotlivých přístupů ke zpracování hromadných dat: Pro vymezení

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

Databázové systémy I. 1. přednáška

Databázové systémy I. 1. přednáška Databázové systémy I. 1. přednáška Vyučující a cvičení St 13:00 15:50 Q09 Pavel Turčínek St 16:00 18:50 Q09 Oldřich Faldík Čt 10:00 12:50 Q09 Jan Turčínek Pá 7:00 9:50 Q08 Pavel Turčínek Pá 10:00 12:50

Více

Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS

Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS Relační databázový model Databázové (datové) modely základní dělení klasické databázové modely relační databázový model relační databázový model Základní konstrukt - relace relace, schéma relace atribut,

Více

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

Použití databází na Webu

Použití databází na Webu 4IZ228 tvorba webových stránek a aplikací Jirka Kosek Poslední modifikace: $Date: 2010/11/18 11:33:52 $ Obsah Co nás čeká... 3 Architektura webových databázových aplikací... 4 K čemu se používají databázové

Více

2. přednáška. Databázový přístup k datům (SŘBD) Možnost počítání v dekadické aritmetice - potřeba přesných výpočtů, např.

2. přednáška. Databázový přístup k datům (SŘBD) Možnost počítání v dekadické aritmetice - potřeba přesných výpočtů, např. 2 přednáška 2 října 2012 10:32 Souborově orientované uchování dat Slabý HW Není možné uchovávat "velká data" - maximálně řádově jednotky MB Na každou úlohu samostatná aplikace, která má samostatná data

Více

8.2 Používání a tvorba databází

8.2 Používání a tvorba databází 8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních

Více

Business Intelligence. Adam Trčka

Business Intelligence. Adam Trčka Business Intelligence Adam Trčka 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda Co se dnes dovíme? Data informace znalost Business

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

Podíl zdrojů informací

Podíl zdrojů informací Podíl zdrojů informací 80% nestrukturovaných (10 -) 20 % strukturovaných 80% vnitřní informační zdroje 20% vnější informační zdroje Současný stav Business Intelligence Procesy: dolování dat (Data Mining)

Více

Roční periodická zpráva projektu

Roční periodická zpráva projektu WAK-1F44C-2005-2 WAK System Název projektu: Automatizovaná výměna dat mezi informačními systémy krizového řízení v dopravě s jednotným univerzálním a implementovaným rozhraním založeným na standardu webových

Více

Úvod do MS Access. Modelování v řízení. Ing. Petr Kalčev

Úvod do MS Access. Modelování v řízení. Ing. Petr Kalčev Úvod do MS Access Modelování v řízení Ing. Petr Kalčev Postup při tvorbě aplikace Vytvoření tabulek Vytvoření relací Vytvoření dotazů Vytvoření formulářů Vytvoření sestav Tabulky Slouží k definování polí,

Více

Relační databáze. V dnešní době existuje řada komerčních DBMS, nejznámější jsou:

Relační databáze. V dnešní době existuje řada komerčních DBMS, nejznámější jsou: Relační databáze Pojem databáze, druhy databází Databází se myslí uložiště dat. V době začátků využívání databází byly tyto členěny hlavně hierarchicky, případně síťově (rozšíření hierarchického modelu).

Více

Databázové systémy. Cvičení 6: SQL

Databázové systémy. Cvičení 6: SQL Databázové systémy Cvičení 6: SQL Co je SQL? SQL = Structured Query Language SQL je standardním (ANSI, ISO) textovým počítačovým jazykem SQL umožňuje jednoduchým způsobem přistupovat k datům v databázi

Více

Datový sklad. Datový sklad

Datový sklad. Datový sklad Datový sklad Postavení v rámci IS/ICT Specifika návrhu Modelování Datový sklad POSTAVENÍ NÁVRH Postavení datového skladu (DW) v IS/ICT z hlediska aplikací jako součást Business Intelligence z hlediska

Více

Databáze SQL SELECT. David Hoksza http://siret.cz/hoksza

Databáze SQL SELECT. David Hoksza http://siret.cz/hoksza Databáze SQL SELECT David Hoksza http://siret.cz/hoksza Osnova Úvod do SQL Základní dotazování v SQL Cvičení základní dotazování v SQL Structured Query Language (SQL) SQL napodobuje jednoduché anglické

Více

Databáze MS-Access. Obsah. Co je to databáze? Doc. Ing. Radim Farana, CSc. Ing. Jolana Škutová

Databáze MS-Access. Obsah. Co je to databáze? Doc. Ing. Radim Farana, CSc. Ing. Jolana Škutová Databáze MS-Access Doc. Ing. Radim Farana, CSc. Ing. Jolana Škutová Obsah Principy a možnosti databází. Uložení dat v databázi, formáty dat, pole, záznamy, tabulky, vazby mezi záznamy. Objekty databáze

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?

Více

Správa dat v podniku. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu

Správa dat v podniku. MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Správa dat v podniku MI-DSP 2013/14 RNDr. Ondřej Zýka, ondrej.zyka@profinit.eu Obsah o Důležité oblasti pro správu, uchovávání a využívání dat v podniku Něco z historie Řízení dat na úrovni podniku Data

Více

Databázové systémy úvod

Databázové systémy úvod Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze Michal.Valenta@fit.cvut.cz c Michal Valenta, 2010 BIVŠ DBS I, ZS 2010/11 https://users.fit.cvut.cz/

Více

Marketingová komunikace. 1. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 1. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 1. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká I. Úvod do teorie DB systémů

Více

Operátory ROLLUP a CUBE

Operátory ROLLUP a CUBE Operátory ROLLUP a CUBE Dotazovací jazyky, 2009 Marek Polák Martin Chytil Osnova přednášky o Analýza dat o Agregační funkce o GROUP BY a jeho problémy o Speciální hodnotový typ ALL o Operátor CUBE o Operátor

Více

POKROČILÉ POUŽITÍ DATABÁZÍ

POKROČILÉ POUŽITÍ DATABÁZÍ POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a

Více

Návrh datového skladu z hlediska zdrojů

Návrh datového skladu z hlediska zdrojů Návrh datového skladu Návrh datového skladu OLTP ETL OLAP, DM Operativní data Datové sklady Zdroje dat Transformace zdroj - cíl Etapy realizace 1 Návrh datového skladu Hlavní úskalí analýzy a návrhu spočívá

Více

KIS A JEJICH BEZPEČNOST-I

KIS A JEJICH BEZPEČNOST-I KIS A JEJICH BEZPEČNOST-I INFORMAČNÍ SYSTÉMY POUŽÍVANÉ V MANAŽERSKÉ PRAXI pplk. Ing. Petr HRŮZA, Ph.D. Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail.:

Více

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat

Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Vladimíra Zádová BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Marketingová komunikace. 1. a 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 1. a 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 1. a 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká I. Úvod do teorie DB systémů

Více

Kurz Databáze. Obsah. Dotazy. Zpracování dat. Doc. Ing. Radim Farana, CSc.

Kurz Databáze. Obsah. Dotazy. Zpracování dat. Doc. Ing. Radim Farana, CSc. 1 Kurz Databáze Zpracování dat Doc. Ing. Radim Farana, CSc. Obsah Druhy dotazů, tvorba dotazu, prostředí QBE (Query by Example). Realizace základních relačních operací selekce, projekce a spojení. Agregace

Více

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR):

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR): Mezi příkazy pro manipulaci s daty (DML) patří : 1. SELECT 2. ALTER 3. DELETE 4. REVOKE Jaké vlastnosti má identifikující relace: 1. Je relace, která se využívá pouze v případě modelovaní odvozených entit

Více

Úvodní přednáška. Význam a historie PIS

Úvodní přednáška. Význam a historie PIS Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích

Více

Stručný obsah. K2118.indd 3 19.6.2013 9:15:27

Stručný obsah. K2118.indd 3 19.6.2013 9:15:27 Stručný obsah 1. Stručný obsah 3 2. Úvod 11 3. Seznamy a databáze v Excelu 13 4. Excel a externí data 45 5. Vytvoření kontingenční tabulky 65 6. Využití kontingenčních tabulek 81 7. Kontingenční grafy

Více

SQL - trigger, Databázové modelování

SQL - trigger, Databázové modelování 6. přednáška z předmětu Datové struktury a databáze (DSD) Ústav nových technologií a aplikované informatiky Fakulta mechatroniky, informatiky a mezioborových studií Technická univerzita v Liberci jan.lisal@tul.cz

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

Ukázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia

Ukázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia Ukázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia 1. Databázový jazyk SQL obsahuje příkaz SELECT. Příkaz SELECT slouží pro: a. definici dat v tabulkách či pohledech b.

Více

Hospodářská informatika

Hospodářská informatika Hospodářská informatika HINFL, HINFK Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu reg.

Více

Databázový systém označuje soubor programových prostředků, které umožňují přístup k datům uloženým v databázi.

Databázový systém označuje soubor programových prostředků, které umožňují přístup k datům uloženým v databázi. Databáze Základní pojmy Pojem databáze označuje obecně souhrn informací, údajů, dat o nějakých objektech. Úkolem databáze je hlídat dodržení všech omezení a dále poskytovat data při operacích. Objekty

Více

7. Integrita a bezpečnost dat v DBS

7. Integrita a bezpečnost dat v DBS 7. Integrita a bezpečnost dat v DBS 7.1. Implementace integritních omezení... 2 7.1.1. Databázové triggery... 5 7.2. Zajištění bezpečnosti dat... 12 7.2.1. Bezpečnostní mechanismy poskytované SŘBD... 13

Více

7. Integrita a bezpečnost dat v DBS

7. Integrita a bezpečnost dat v DBS 7. Integrita a bezpečnost dat v DBS 7.1. Implementace integritních omezení... 2 7.1.1. Databázové triggery... 5 7.2. Zajištění bezpečnosti dat... 12 7.2.1. Bezpečnostní mechanismy poskytované SŘBD... 13

Více

Semináˇr Java X J2EE Semináˇr Java X p.1/23

Semináˇr Java X J2EE Semináˇr Java X p.1/23 Seminář Java X J2EE Seminář Java X p.1/23 J2EE Složitost obchodních aplikací robusní, distribuované, spolehlivé aplikace s transakcemi na straně serveru, klientské aplikace co nejjednodušší Snaha : Návrh,

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PEDAGOGICKÁ FAKULTA Bakalářská práce 2014 Lenka Koutná UNIVERZITA PALACKÉHO V OLOMOUCI PEDAGOGICKÁ FAKULTA Katedra technické a informační výchovy Bakalářská práce Lenka

Více

3 zdroje dat. Relační databáze EIS OLAP

3 zdroje dat. Relační databáze EIS OLAP Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování

Více

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz Vývoj moderních technologií při vyhledávání Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz INFORUM 2007: 13. konference o profesionálních informačních zdrojích Praha, 22. - 24.5. 2007 Abstrakt Vzhledem

Více

01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980

01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980 01. Kdy se začala formovat koncept relačních databází (Vznik relačního modelu, první definice SQL)? a) 1950 b) 1960 c) 1970 d) 1980 02. Kdy přibližně vznikly první komerční relační databázové servery?

Více

GIS a Business Intelligence

GIS a Business Intelligence GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních

Více

Služby Microsoft Office 365

Služby Microsoft Office 365 Cena: 2000 Kč + DPH Služby Microsoft Office 365 Kurz je určen všem, kteří se chtějí ponořit do tajů Cloud služeb a chtějí naplno využít možnosti Office 365, jako komunikačního nástroje i prostředí pro

Více

Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu:

Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_01_ACCESS_P2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Inovace a zkvalitnění výuky prostřednictvím ICT. Základní seznámení s MySQL Ing. Kotásek Jaroslav

Inovace a zkvalitnění výuky prostřednictvím ICT. Základní seznámení s MySQL Ing. Kotásek Jaroslav Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Databáze Základní seznámení s MySQL

Více

Business Intelligence nástroje a plánování

Business Intelligence nástroje a plánování Business Intelligence nástroje a plánování pro snadné reportování a vizualizaci Petr Mlejnský Business Intelligence pro reporting, analýzy a vizualizaci Business Intelligence eporting Dashboardy a vizualizace

Více

Microsoft Access tvorba databáze jednoduše

Microsoft Access tvorba databáze jednoduše Microsoft Access tvorba databáze jednoduše Časový rozsah: 2 dny (9:00-16:00) Cena: 3300 Kč + DPH Úvod do relačních databází. Funkce databázových objektů Microsoft Access. Návrh tabulek, definice základních

Více

Databáze. Velmi stručný a zjednodušený úvod do problematiky databází pro programátory v Pythonu. Bedřich Košata

Databáze. Velmi stručný a zjednodušený úvod do problematiky databází pro programátory v Pythonu. Bedřich Košata Databáze Velmi stručný a zjednodušený úvod do problematiky databází pro programátory v Pythonu Bedřich Košata K čemu jsou databáze Ukládání dat ve strukturované podobě Možnost ukládat velké množství dat

Více

Databázové systémy, MS Access. Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1130_Databázové systémy, MS Access_PWP

Databázové systémy, MS Access. Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1130_Databázové systémy, MS Access_PWP Databázové systémy, MS Access Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1130_Databázové systémy, MS Access_PWP Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity:

Více

PostgreSQL jako platforma pro datové sklady

PostgreSQL jako platforma pro datové sklady PostgreSQL jako platforma pro datové sklady Vratislav Beneš benes@optisolutions.cz 1. Co to jsou datové sklady? 2. Požadavky na datový sklady 3. Technické řešení datového skladu 4. PostgreSQL a datové

Více

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_038.ICT.34 Tvorba webových stránek SQL stručné minimum OA a JŠ Jihlava, VY_32_INOVACE_038.ICT.34 Číslo

Více

T1 Vybrané kapitoly z počítačových sítí 01 P1 Síťové modely Úvod, pojmy Základní rozdělení, charakteristika Referenční model ISO/OSI a TCP/IP

T1 Vybrané kapitoly z počítačových sítí 01 P1 Síťové modely Úvod, pojmy Základní rozdělení, charakteristika Referenční model ISO/OSI a TCP/IP T1 Vybrané kapitoly z počítačových sítí 01 P1 Síťové modely Úvod, pojmy. Co je počítačová síť. Základní součásti. Co umožňují počítačové sítě. Problém komunikace uzlů. Pojmy. Základní rozdělení, charakteristika.

Více

Popisné systémy a databáze

Popisné systémy a databáze Popisné systémy a databáze Databáze v archeologii přístup k použití databází - dva způsoby aplikace databáze - databázové programy (jejich přednosti a omezení) databáze v archeologii - databáze jako výstup

Více

Wonderware Information Server 4.0 Co je nového

Wonderware Information Server 4.0 Co je nového Wonderware Information Server 4.0 Co je nového Pavel Průša Pantek (CS) s.r.o. Strana 2 Úvod Wonderware Information Server je výrobní analytický a reportní informační portál pro publikaci výrobních dat

Více

10. Datové sklady (Data Warehouses) Datový sklad

10. Datové sklady (Data Warehouses) Datový sklad 10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP

Více

Integrace podnikových Open Source aplikací v praxi. RNDr. Petr Novák, Open Source Conference Praha, 19. duben 2011

Integrace podnikových Open Source aplikací v praxi. RNDr. Petr Novák, Open Source Conference Praha, 19. duben 2011 Integrace podnikových Open Source aplikací v praxi RNDr. Petr Novák, Open Source Conference Praha, 19. duben 2011 Partneři řešení Business Systems, a.s. www.bsys.cz MULTIMAGE, s.r.o. www.multimageweb.com

Více

Úvod do informačních a řídicích systémů. lení

Úvod do informačních a řídicích systémů. lení Úvod do informačních a řídicích systémů Základní pojmy a rozdělen lení Informace Pojem vysoce abstraktní Skutečné informace musí být pravdivé, včasné, jednoznačné a relevantní (atributy informace) Základní

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Přehled systému Microsoft SQL Server. Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy

Přehled systému Microsoft SQL Server. Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy Konvence Další prvky Požadavky na systém Ukázkové databáze Ukázky kódu Použití ukázek kódu Další

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Jazyk SQL

Informační systémy 2008/2009. Radim Farana. Obsah. Jazyk SQL 4 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Jazyk SQL, datové typy, klauzule SELECT, WHERE, a ORDER BY. Doporučená

Více

Databáze Databázové systémy MS Access

Databáze Databázové systémy MS Access Databáze Databázové systémy MS Access Nasazení databází Databáze evidence nějakých údajů Databázové aplikace obsahují konkrétní specifické funkce pro práci s určitými daty (tyto funkce jsou v jiných DB

Více

RELAČNÍ DATABÁZE ACCESS

RELAČNÍ DATABÁZE ACCESS RELAČNÍ DATABÁZE ACCESS 1. Úvod... 2 2. Základní pojmy... 3 3. Vytvoření databáze... 5 4. Základní objekty databáze... 6 5. Návrhové zobrazení tabulky... 7 6. Vytváření tabulek... 7 6.1. Vytvoření tabulky

Více

Databázové a informační systémy Informační systém prodejny nábytku. Jakub Kamrla, KAM087

Databázové a informační systémy Informační systém prodejny nábytku. Jakub Kamrla, KAM087 Databázové a informační systémy Informační systém prodejny nábytku Jakub Kamrla, KAM087 1. část Funkční a nefunkční požadavky 1. K čemu má systém sloužit Jedná se o informační systém pro jednu nejmenovanou

Více

Hierarchický databázový model

Hierarchický databázový model 12. Základy relačních databází Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace. Z matematického

Více

Okruhy k absolutoriu specializace Podniková informatika

Okruhy k absolutoriu specializace Podniková informatika Okruhy k absolutoriu specializace Podniková informatika 1. Data informace znalosti Definice a vzájemné vztahy pojmů data informace znalosti Jednotky informace (bit, byte), dvojková soustava Vysvětlete

Více

Aplikace počítačů v provozu vozidel 9

Aplikace počítačů v provozu vozidel 9 Aplikace počítačů v provozu vozidel 9 2 Databázové systémy Rozvoj IS je spjatý s rozvojem výpočetní techniky, především počítačů. V počátcích se zpracovávaly velké objemy informací na jednom počítači,

Více

Informační systémy. Jaroslav Žáček jaroslav.zacek@osu.cz

Informační systémy. Jaroslav Žáček jaroslav.zacek@osu.cz Informační systémy Jaroslav Žáček jaroslav.zacek@osu.cz Úvod - co možná umíte z předmětu SWENG Rozdělení IT Architektura IS Klíčový prvek řízení IS z něj vycházejí detailní analytické i plánovací charakteristiky

Více

Datové modelování II

Datové modelování II Datové modelování II Atributy Převod DM do schématu SŘBD Dotazovací jazyk SQL Multidimenzionální modelování Principy Doc. Miniberger, BIVŠ Atributy Atributem entity budeme rozumět název záznamu či informace,

Více

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně PEF MZLU v Brně 1. listopadu 2011 Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské spousty nejrůznějších údajů. Příkladem mohou být informace z obchodování s cennými papíry

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 1 1 4 5 Oracle průvodce správou,

Více

Stručný obsah. část III Aktualizace dat Kapitola 10: Aktualizace databáze 257 Kapitola 11: Integrita dat 275 Kapitola 12: Zpracování transakcí 307

Stručný obsah. část III Aktualizace dat Kapitola 10: Aktualizace databáze 257 Kapitola 11: Integrita dat 275 Kapitola 12: Zpracování transakcí 307 Stručný obsah část I Přehled jazyka SQL Kapitola 1: Úvod 27 Kapitola 2: Stručný úvod do jazyka SQL 37 Kapitola 3: Jazyk SQL z širšího pohledu 45 Kapitola 4: Relační databáze 69 Část II Získávání dat Kapitola

Více

Data v počítači EIS MIS TPS. Informační systémy 2. Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50

Data v počítači EIS MIS TPS. Informační systémy 2. Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50 Informační systémy 2 Data v počítači EIS MIS TPS strategické řízení taktické řízení operativní řízení a provozu Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50 18.3.2014

Více

Ing. Roman Danel, Ph.D. 2010

Ing. Roman Danel, Ph.D. 2010 Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci

Více

Aplikace je program určený pro uživatele. Aplikaci je možné rozdělit na části:

Aplikace je program určený pro uživatele. Aplikaci je možné rozdělit na části: Aplikace Aplikace je program určený pro uživatele. Aplikaci je možné rozdělit na části: prezentační vrstva vstup dat, zobrazení výsledků, uživatelské rozhraní, logika uživatelského rozhraní aplikační vrstva

Více