ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII

Rozměr: px
Začít zobrazení ze stránky:

Download "ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII"

Transkript

1 ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII

2

3 Lidské oko jako optická soustava dvojvypuklá spojka obraz skutečný, převrácený, mozek ho otočí do správné polohy, zmenšený rozlišovací schopnost oka cca 0.25 mm

4 Světelný mikroskop okulár stativ objektiv hrubé ostření stolek kondenzor jemné ostření optický přístroj p využívaj vající viditelné světlo rozlišovac ovací schopnost (X) závisz visí na vlnové délce (λ)( ) použit itého zářenz ení X min = 0,61. λ / n sin θ viditelné světlo využívan vané v mikroskopii má λ cca 550nm, rozlišovac ovací schopnost světeln telného mikroskopu cca 250nm ( cca ½ λ), maximm aximální užitečné zvětšen ení je x (0,25/0, ) pro vyšší zvětšen ení nutno použít t zářenz ení o kratší vlnové délce

5 Elektromagnetické spektrum

6 Elektronová mikroskopie 1930 Ruska, Knoll Mikroskopická technika využívající paprsku elektronů namísto světelného záření. Fotony jsou nahrazeny elektrony a optické čočky elektromagnetickými čočkami. Proč elektrony? Jsou nositelé záporného náboje a mají nepatrnou hmotnost ve srovnání s protony či neutrony. Záporný náboj umožňuje urychlovat elektron elektrickým napětím U. Vlnová délka urychleného elektronu (60kV) je přibližně 0,005nm (cca stotisíckrát kratší než viditelné světlo). Výhoda EM - možnost mnohem většího zvětšení než u optického mikroskopu (až x, X min = 0,1 0, 5 nm). EM poskytuje komplexní informace o mikrostruktuře, krystalografii, chemickém složení, ale i o dalších vlastnostech zkoumaného vzorku.

7 Proč fungují? Vlnový charakter pohybujících se částic, v tomto případě elektronů h Dualismus λ = mv de Broglieho vlnová délka Svazek elektronů je urychlen napětím v řádu desítek až stovek kv v = 2eU m

8 Elektronová mikroskopie

9 Elektronová mikroskopie Řada společných součástí - zdroje světla nebo elektronů, čočky skleněné nebo elektromagnetické a v obou se preparát umísťuje na mechanický stolek. TEM potřebuje ke své činnosti i mnoho dalších systémů, které u světelného mikroskopu nejsou, např. vysokonapěťové zdroje, elektroniku k řízení mikroskopu a výkonný vakuový systém pro vyčerpání jeho vnitřních prostor mikroskopu na hodnotu, která zabezpečí střední volnou dráhu elektronu alespoň v délce 3 m.

10 Prozařovac ovací mikroskop P - preparát O - objektiv PR - projektiv Z - zdroj S - stínítko tko Zvětšen ení až stovky tisíc c krát

11

12 Elektronové čočky Rotačně symetrická elektrostatická nebo magnetická pole mohou soustřeďovat svazky elektronů. Elektrostatické čočky - systém kruhových clonek nebo válců, které mají vhodný potenciál. Mohou být jako spojky nebo rozptylky Elektromagnetické čočky - sférická vada. Lze je snadno regulovat velikostí protékajícího proudu, ten musí být přesně stabilizován. Lze dosáhnout vyššího zvětšení

13 Elektrostatická čočka

14 Kondenzor - elmag elmag.č. Budic Budicí vinutí Železný elezný pláš ášť MezeraMezera

15 Elektromagnetická čočka Vinutí,, pólovp lové nástavce

16 Interakce PES s hmotou SEM (Scanning Electron Microscopy) rastrovací elektronová mikroskopie zobrazující elektronový paprsek odražený od povrchu vzorku, pohyblivý svazek, zobrazení povrchu vzorku pomocí odražených a sekundárních elektronů. teplo TEM (Transmission Electron Microscopy) transmisní elektronová mikroskopie zobrazující elektronový paprsek procházející tenkým vzorkem, nepohyblivý elektronový svazek, detekce elektronů prošlých vzorkem na fluorescenčním stínítku nebo detektorem.

17

18 Rozlišujeme čtyři skupiny elektronů opouštějící povrch vzorku: zpětně odražené elektrony - poskytují informaci o topografii (reliéfu) vzorku a o materiálovém složení. Jejich rozlišovací schopnost je nm. sekundární elektrony - poskytují informaci převážně topografickou. Rozlišovací schopnost je 5-15 nm. augerovy elektrony - jsou vyráženy z materiálu a zjištěním jejich energie lze provádět prvkovou (kvalitativní) analýzu. primární elektrony - detekují se jako u transmisního elektronového mikroskopu (0,5 nm)

19 Elektronová mikroskopie

20 Rozlišovac ovací schopnost struktura

21 Osvětlov tlov.část - zdroje elektronového svazku Zahřátím materiálu na vysokou teplotu, dodáme elektronům dostatečnou energii, aby překonaly přirozenou energetickou bariéru, která jim brání v úniku. Vztah únikové energie elektronu k jejich únikové rychlosti kde v je úniková rychlost elektronu, e je jeho náboj a m hmotnost, E je výstupní energie specifická pro daný kov. žhavené wolframové vlákno E wolframu = 4.52, vysoká úniková rychlost 1.26 x 106 m/s, vysoký bodu tání (cca 3653 K ), nízké hodnoty vakua ( kterou vyžaduje TEM pro svůj provoz), tvarování do tvaru písmene V hrot z boritu lanthanu (LaB 6 ) bod tání 2000 K, lepší vakuum v oblasti trysky, tj. vyšší provozní náklady

22 Osvětlovac tlovací část - elektronové dělo Elektronové dělo (elektronová termoemisní tryska) funkce: vybavení elektronů, směr, rychlost svazku elektronů emitovaných ze žhavené katody a urychlovaných v elektronové trysce tvořené systémem katoda - Wehneltův válec - anoda katoda - nutnost aby elektrony vycházely z co nejmenší plochy fokusační elektroda = Wehneltův válec = (elektrostatická čočka) stlačuje elektronový svazek do křižiště těsně před anodou anoda: potenciální rozdíl mezi katodou a anodou kV (u biologických preparátů obvykle 80 kv),

23 Zobrazovací část elektromagnetické čočky držák preparátu, objektiv, mezičočky, projektivy a pozorovací stínítko Působení magnetického pole na dráhu letícího elektronu lze využít k sestrojení elektromagnetické čočky, které by fungovala přibližně stejně jako skleněná čočka v případě světla. Solenoid - kruhová cívka, ve které a okolo které při průchodu elektrického proudu vzniká magnetické pole, jehož siločáry uvnitř cívky jsou rovnoběžné s osou cívky a vně jsou zakřivené. Magnetické pole solenoidu ovlivňuje dráhy elektronů, které vycházejí z bodového zdroje A a které po zakřivení jejich drah v magnetickém poli cívky, opět protínajíjejíosuv bodě B. Účinnost solenoidu se zvyšuje, obklopením cívky vrstvou měkkého železa. Silnější magnetické pole cívky znamená kratší ohniskovou délku a tedy celkově výkonnější a kvalitnější čočku.

24 Interakce PES s hmotou z pohledu TEM Předpoklad tloušťka preparátu cca 100 nm, nesmí obsahovat vodu část elektronů se absorbuje (teplo!) část elektronů prochází ( prozáření ) beze změny Při průchodu elektron těsně míjí: atomové jádro = velká úchylka směru, malá ztráta energie = elastický (pružný) rozptyl, část elektronů rozptýlených s dostatečně velkým úhlem je zachycena objektivovou clonou a tím vyřazena z tvorby obrazu na stínítku. V důsledku toho se mění intenzita elektronového svazku a vzniká kontrast obrazu zasáhne jiný elektron = malá úchylka ve směru, ztráta velké části rychlosti = neelastický (nepružný) rozptyl = změna vlnové délky = chromatická vada = preparát musí být tenký odstranění uchýlených elektronů =zvětšování kontrastu preparátu = vnášení atomů těžkých kovů (Pb, U, W, Os, ), které mají větší náboj jádra a snáze působí elastický rozptyl.

25 Interakce PES s hmotou z pohledu REM Předpoklad masivnější preparát (do 100 nm) část elektronů se absorbuje (= teplo) část se odrazí odražené elektrony, (informace o topografii (reliéfu) vzorku a o materiálovém složení, rozlišovací schopnost je nm, materiálový kontrast signál odražených elektronů závisí na průměrném atomovém (protonovém) čísle Z. Pro větší Z je intenzivnější. sekundární elektrony s malou energií (předávání energie primárních elektronů atomům vzorku, poskytují informaci převážně topografickou. Rozlišovací schopnost je 5-15 nm.) používá se mnohem nižší urychlovací napětí než u TEM (SEM obvykle 20 kv, TEM obvykle 80kV)

26 Oblast interakce

27 Rastrovací elektronový mikroskop Činnost je založena na použití úzkého svazku elektronů emitovaných ze žhavené katody a urychlovaných v elektronové trysce tvořené systémem katoda - Wehneltův válec - anoda. Paprsek je dále zpracován elektromagnetickými čočkami a je rozmítán po povrchu pozorovaného objektu. Synchronně s tímto svazkem elektronů je rozmítán elektronový svazek paprsku v pozorovací obrazovce. Elektronový paprsek urychlený v elektrickém poli je velmi dobře stabilizován a může být vychylován systémem elektromagnetických cívek v osách x, y. Povrch je postupným vychylováním snímán řádek po řádku a takto je postupně skládán obraz vzorku (princip známý z televize). SEM pracuje s vakuem min [Pa] a proto je nutno použít speciální přípravy preparátů, zejména jeho naprášení kovem.

28 Princip SEM

29

30 Faktory ovlivňuj ující kvalitu obrazu volba (velikost) urychlovacího napětí náklon vzorku nabíjení vzorku kvalita pokovení preparátu

31 Příprava preparátu pro TEM

32 Vliv velikosti urychlovacího ho napětí

33 Vliv náklonu n vzorku

34 Vliv velikosti urychlovacího ho napětí

35 Vliv velikosti urych.nap.napětí Vliv nabíjen jení vzorku

36 Rastrovací elektronový mikroskop Povrch vlněného vlákna HV: 20.0 kv Zoom: 1 Au coated, detector A Vacuum degree: 20 Pa

37 Rastrovací elektronový mikroskop Ledové krystaly na povrchu skleněného vlákna HV: 15.0 kv Zoom: 1.00 UncoatedDetector ID + A + B Vacuum degree 480 Pa

38 Augerovy elektrony

39 AE

40 Energie AE

41 Lidský vlas Pix: ľm Mag: HV: 15.0 kv Zoom: 1.00 Uncoated Detector ID + A + B Vacuum degree 480 Pa

42 Mikroskop atomárn rních sil (AFM) Japonsko, Španělsko, Česko AFM umožňuje zobrazovat nejen elektricky vodivé látky, ale také polovodiče a biologické materiály. 3D obraz Využití charakterizace mechanických vlastností bílkovin nebo pro popisování struktury buněčných membrán Hrot tvořený jedním atomem křemíku kmitá na raménku. Když se hrot přiblíží k povrchu desky s chemickými prvky (asi deseti miliontin milimetru ), nastane interakce (vzájemné působení prvků), která změní kmitání, na základě které je stanovena síla chemické vazby mezi jednotlivými atomy. Tak lze zobrazit všechny atomy na ploše, ale nepozná se, o jaké prvky jde (viz černobílý snímek ). Řešení - výkonnější nanotranzistory Měřením chemických vazeb vznikajících mezi atomem na hrotu a atomem z nějaké chemikálie na destičce lze přesně identifikovat jednotlivé prvky.

Techniky mikroskopie povrchů

Techniky mikroskopie povrchů Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko

Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko VŠCHT - Forenzní analýza, 2012 RNDr. M. Kotrlý, KUP Mikroskopie Rozlišovací schopnost lidského oka cca 025 0,25mm Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko

Více

Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček

Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Druhy mikroskopie Podle druhu použitého paprsku nebo sondy rozeznáváme tyto základní druhy mikroskopie: Světelná mikrokopie

Více

Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka

Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka Elektronová mikroskopie a RTG spektroskopie Pavel Matějka Elektronová mikroskopie a RTG spektroskopie 1. Elektronová mikroskopie 1. TEM transmisní elektronová mikroskopie 2. STEM řádkovací transmisní elektronová

Více

Charakterizace materiálů I KFY / P224. Martin Kormunda

Charakterizace materiálů I KFY / P224. Martin Kormunda Charakterizace materiálů I KFY / P224 Přednáška 3 SEM (Scanning Electron Microscopy) TEM (Transmition Electron Microscopy) Mikroskopy http://www.paru.cas.cz/lem/book/podkap/pic/7.1/1.gif Konstrukční princip

Více

Elektronová mikroskopie a mikroanalýza-2

Elektronová mikroskopie a mikroanalýza-2 Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství

Více

Analýza vrstev pomocí elektronové spektroskopie a podobných metod

Analýza vrstev pomocí elektronové spektroskopie a podobných metod 1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek

Více

Laboratoř charakterizace nano a mikrosystémů: Elektronová mikroskopie

Laboratoř charakterizace nano a mikrosystémů: Elektronová mikroskopie : Jitka Kopecká ÚVOD je užitečný nástroj k pozorování a pochopení nano a mikrosvěta. Nachází své uplatnění jak v teoretickém výzkumu, tak i v průmyslu (výroba polovodičových součástek, solárních panelů,

Více

Elektronová Mikroskopie SEM

Elektronová Mikroskopie SEM Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Testování nanovlákenných materiálů

Testování nanovlákenných materiálů Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů

Více

SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE

SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, Olomouc 4.12. Workshop: Mikroskopické techniky SEM a TEM Obsah historie mikroskopie proč právě elektrony

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní

Více

Typy světelných mikroskopů

Typy světelných mikroskopů Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE

TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE TENTO MATERIÁL SLOUŽÍ JAKO PRACOVNÍ TEXT (DOPLNĚK K PRAKTICKÝM ÚLOHÁM) TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Transmisní elektronová mikroskopie je jednou z experimentálních metod, bez kterých se v současné

Více

Difrakce elektronů v krystalech a zobrazení atomů

Difrakce elektronů v krystalech a zobrazení atomů Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit

Více

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Zobrazovací metody v nanotechnologiích

Zobrazovací metody v nanotechnologiích Zobrazovací metody v nanotechnologiích Optická mikroskopie Z vlnové povahy světla plyne, že není možné detekovat menší podrobnosti než polovina vlnové délky světla. Viditelné světlo má asi 500 nm, nejmenší

Více

Transmisní elektronová mikroskopie (TEM)

Transmisní elektronová mikroskopie (TEM) Historie vývoje elektronové mikroskopie Transmisní elektronová mikroskopie (TEM) 1897 J.J. Thomson objevil a popsal částici elektron při studiu vlastností katodového záření. Nobelova cena za fyziku v r.

Více

Testování nanovlákenných materiálů. Eva Košťáková KNT, FT, TUL

Testování nanovlákenných materiálů. Eva Košťáková KNT, FT, TUL Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů

Více

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 1. SVĚTELNÁ MIKROSKOPIE A PREPARÁTY V MIKROSKOPII TEORETICKÝ ÚVOD: Mikroskopie je základní metoda, která nám umožňuje pozorovat velmi malé biologické objekty. Díky

Více

Princip rastrovacího konfokálního mikroskopu

Princip rastrovacího konfokálního mikroskopu Konfokální mikroskop Obsah: Konfokální mikroskop... 1 Princip rastrovacího konfokálního mikroskopu... 1 Rozlišovací schopnost... 2 Pozorování povrchů ve skutečných barvách... 2 Konfokální mikroskop Olympus

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO ELEKTRONOVÁ MIKROSKOPIE PRO PŘEDMĚT INSTRUMENTÁLNÍ ANALYTICKÉ METODY VE FARMACEUTICKÉ TECHNOLOGII

VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO ELEKTRONOVÁ MIKROSKOPIE PRO PŘEDMĚT INSTRUMENTÁLNÍ ANALYTICKÉ METODY VE FARMACEUTICKÉ TECHNOLOGII VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO FARMACEUTICKÁ FAKULTA ÚSTAV TECHNOLOGIE LÉKŮ ELEKTRONOVÁ MIKROSKOPIE PRO PŘEDMĚT INSTRUMENTÁLNÍ ANALYTICKÉ METODY VE FARMACEUTICKÉ TECHNOLOGII Studijní materiál

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

Difrakce elektronů v krystalech, zobrazení atomů

Difrakce elektronů v krystalech, zobrazení atomů Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,

Více

Mikroskopické techniky

Mikroskopické techniky Mikroskopické techniky Světelná mikroskopie Elektronová mikroskopie Mikroskopie skenující sondou Zkráceno z přednášky doc. RNDr. R. Kubínka, CSc. Zdroj informací: http://apfyz.upol.cz/ucebnice/elmikro.html

Více

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková Mikroskopie I M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz MIKROSVĚT nano Poměry velikostí mikro 9 10 10 8 10 7 10 6 10 5 10 4 10 3 size m 2 9 7 5 3 4 8 1 micela virus světlo 6 písek molekula

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_12 Název materiálu: Elektrický proud v plynech. Tematická oblast: Fyzika 2.ročník Anotace: Prezentace slouží k výkladu elektrického proudu v plynech. Očekávaný

Více

Mikroskopie rastrující sondy

Mikroskopie rastrující sondy Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE

TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, UP Olomouc 4.12.2009 Workshop: Mikroskopické techniky SEM a TEM Obsah konstrukce transmisního elektronového mikroskopu

Více

Testování nanovlákenných materiálů

Testování nanovlákenných materiálů Testování nanovlákenných materiálů Vizualizace Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Mikroskopické techniky MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Slouží k vizualizaci mikroorganismů Antoni van Leeuwenhoek (1632-1723) Čočka zvětšující 300x Různé druhy mikroskopů, které se liší

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Moderní mikroskopické techniky

Moderní mikroskopické techniky Moderní mikroskopické techniky Roman Kubínek a Josef Půlkrábek V současnosti existuje řada mikroskopických technik a jejich aplikací, které mají nezastupitelné uplatnění v mnoha vědeckých oborech a které

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

Elektronová mikroskopie II

Elektronová mikroskopie II Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní

Více

CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ

CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ Aleš LIGAS 1, Jakub PIŇOS 1, Dagmar JANDOVÁ 2, Josef KASL 2, Šárka MIKMEKOVÁ 1 1 Ústav přístrojové techniky AV ČR, v.v.i.,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Ionizační detektor pro ESEM Ionization detector for ESEM DIPLOMOVÁ PRÁCE MASTER S THESIS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Ionizační detektor pro ESEM Ionization detector for ESEM DIPLOMOVÁ PRÁCE MASTER S THESIS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

J = S A.T 2. exp(-eφ / kt)

J = S A.T 2. exp(-eφ / kt) Vakuové součástky typy a využití Obrazovky: - osciloskopické - televizní + monitory Elektronky: - vysokofrekvenční (do 1 GHz, 1MW) - mikrovlnné elektronky ( až do 20 GHz, 10 MW) - akustické zesilovače

Více

Jak měřit NANO Nástroje pro měření a vyhodnocování nanostruktur

Jak měřit NANO Nástroje pro měření a vyhodnocování nanostruktur Roman Kubínek Jak měřit NANO Nástroje pro měření a vyhodnocování nanostruktur Projedeme li se nanotechnologickou laboratoří, nalezneme celou řadu přístrojů, které slouží k detailnímu popisu, zpravidla

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SCINTILAČNÍ DETEKTOR SEKUNDÁRNÍCH ELEKTRONŮ PRO REM PRACUJÍCÍ PŘI VYŠŠÍM TLAKU V KOMOŘE VZORKU BAKALÁŘSKÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SCINTILAČNÍ DETEKTOR SEKUNDÁRNÍCH ELEKTRONŮ PRO REM PRACUJÍCÍ PŘI VYŠŠÍM TLAKU V KOMOŘE VZORKU BAKALÁŘSKÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka Optická konfokální mikroskopie a Pavel Matějka 1. Konfokální mikroskopie 1. Princip metody - konfokalita 2. Instrumentace metody zobrazování 3. Analýza obrazu 2. Konfokální 1. Luminiscenční 2. Ramanova

Více

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických

Více

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Zobrazení čočkami Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Spojky schematická značka (ekvivalentní

Více

Přednášky z lékařské přístrojové techniky

Přednášky z lékařské přístrojové techniky Přednášky z lékařské přístrojové techniky Masarykova univerzita v Brně - Biofyzikální centrum Wilhelm Conrad Roentgen 1845-1923 Klasické metody rentgenové diagnostiky Rengenka Coolidgeova trubice Schématický

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Optické metody a jejich aplikace v kompozitech s polymerní matricí

Optické metody a jejich aplikace v kompozitech s polymerní matricí Optické metody a jejich aplikace v kompozitech s polymerní matricí Doc. Ing. Eva Nezbedová, CSc. Polymer Institute Brno Ing. Zdeňka Jeníková, Ph.D. Ústav materiálového inženýrství, Fakulta strojní, ČVUT

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY KONTRAST V OBRAZE ZÍSKANÉM POMOCÍ IONIZAČNÍHO DETEKTORU VE VP SEM

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY KONTRAST V OBRAZE ZÍSKANÉM POMOCÍ IONIZAČNÍHO DETEKTORU VE VP SEM VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Transmisní elektronová mikroskopie Skenovací elektronová mikroskopie Mikroskopie skenující sondou. Mikroskopické metody SEM, TEM, AFM

Transmisní elektronová mikroskopie Skenovací elektronová mikroskopie Mikroskopie skenující sondou. Mikroskopické metody SEM, TEM, AFM Mikroskopické metody SEM, TEM, AFM Rozlišení v optické mikroskopii důvod pro vyvíjení nových technik omezení rozlišení světelné mikroskopie nejmenší vzdálenost dvou bodů, kterou ještě rozlišíme závisí

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

Moderní mikroskopie Elektronová mikroskopie (TEM, SEM) Mikroskopie skenující sondou

Moderní mikroskopie Elektronová mikroskopie (TEM, SEM) Mikroskopie skenující sondou Moderní mikroskopie Elektronová mikroskopie (TEM, SEM) Mikroskopie skenující sondou Doc.RNDr. Roman Kubínek, CSc. Katedra experimentální fyziky Přírodovědecké fakulty, Univerzita Palackého v Olomouci Elektronová

Více

Klíčová slova TEM, transmisní elektronový mikroskop, zlato, germanium, nanočástice, nanovlákna

Klíčová slova TEM, transmisní elektronový mikroskop, zlato, germanium, nanočástice, nanovlákna Abstrakt Diplomová práce se zabývá strukturní analýzou polovodičových nanovláken za pomocí transmisní elektronové mikroskopie. Představena je konstrukce mikroskopu, jeho základní módy zobrazování a funkce

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

akustika zvuk, zdroj zvuku šíření zvuku odraz zvuku tón, výška tónu kmitočet tónu hlasitost zvuku světlo, zdroj světla přímočaré šíření světla

akustika zvuk, zdroj zvuku šíření zvuku odraz zvuku tón, výška tónu kmitočet tónu hlasitost zvuku světlo, zdroj světla přímočaré šíření světla - určí, co je v jeho okolí zdrojem zvuku, pozná, že k šíření zvuku je nezbytnou podmínkou látkové prostředí - chápe odraz zvuku jako odraz zvukového vzruchu od překážky a dovede objasnit vznik ozvěny -

Více

5.3.5 Ohyb světla na překážkách

5.3.5 Ohyb světla na překážkách 5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se

Více

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM Pracovní listy teoretická příprava Úloha 1: První nahlédnutí do nanosvěta Novou část dějin mikroskopie otevřel německý elektroinženýr, laureát Nobelovy ceny

Více

Elektromagnetické vlnění

Elektromagnetické vlnění Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

EM, aneb TEM nebo SEM?

EM, aneb TEM nebo SEM? EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Chemie a fyzika pevných látek l

Chemie a fyzika pevných látek l Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie

Více

VÍCEELEKTRODOVÝ SYSTÉM IONIZAČNÍHO DETEKTORU PRO ENVIRONMENTÁLNÍ RASTROVACÍ ELEKTRONOVÝ MIKROSKOP

VÍCEELEKTRODOVÝ SYSTÉM IONIZAČNÍHO DETEKTORU PRO ENVIRONMENTÁLNÍ RASTROVACÍ ELEKTRONOVÝ MIKROSKOP VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

Skenovací tunelová mikroskopie a mikroskopie atomárních sil

Skenovací tunelová mikroskopie a mikroskopie atomárních sil Skenovací tunelová mikroskopie a mikroskopie atomárních sil M. Vůjtek Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu Vzdělávání výzkumných

Více

SCINTILAČNÍ DETEKTOR SE PRO EREM

SCINTILAČNÍ DETEKTOR SE PRO EREM VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Elektron elektronová sekundární emise

Elektron elektronová sekundární emise Elektron elektronová sekundární emise V analytické formě neexistuje úplná teorie popisující SEEE zohledňující všechny děje, které nastávají během excitace a transportu elektronu pevnou látkou. Umíme popsat

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

DETEKCE SIGNÁLNÍCH ELEKTRONŮ V ENVIRONMENTÁLNÍM RASTROVACÍM ELEKTRONOVÉM MIKROSKOPU

DETEKCE SIGNÁLNÍCH ELEKTRONŮ V ENVIRONMENTÁLNÍM RASTROVACÍM ELEKTRONOVÉM MIKROSKOPU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Neživá příroda I. Optické vlastnosti minerálů

Neživá příroda I. Optické vlastnosti minerálů Neživá příroda I Optické vlastnosti minerálů 1 Charakter světla Světelný paprsek definuje: vlnová délka (λ): vzdálenost mezi následnými vrcholy vln, amplituda: výchylka na obě strany od rovnovážné polohy,

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Vladimír Drahoš; Armin Delong Elektronová interferometrie a fázový kontrast Pokroky matematiky, fyziky a astronomie, Vol. 7 (1962), No. 2, 80--90 Persistent URL:

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy Kvarta 2 hodiny týdně

Více

Videosignál. A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer. Před. A3M38VBM, 2015 J. Fischer, kat. měření, ČVUT FEL, Praha

Videosignál. A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer. Před. A3M38VBM, 2015 J. Fischer, kat. měření, ČVUT FEL, Praha Videosignál A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer 1 Základ CCTV Základ - CCTV (uzavřený televizní okruh) Řetězec - snímač obrazu (kamera) zobrazovací jednotka (CRT monitor) postupné

Více

Základy mikroskopování

Základy mikroskopování Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen

Více

IAM SMART F7.notebook. March 01, : : : :23 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY. tuna metr

IAM SMART F7.notebook. March 01, : : : :23 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY. tuna metr FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY Sada interaktivních materiálů pro 7. ročník Fyzika CZ.1.07/1.1.16/02.0079 plocha čas délka hmotnost objem teplota Interaktivní materiály slouží k procvičování, upevňování

Více

RTG difraktometrie 1.

RTG difraktometrie 1. RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat

Více