Elektronová Mikroskopie SEM
|
|
- Eva Machová
- před 8 lety
- Počet zobrazení:
Transkript
1 Elektronová Mikroskopie SEM 26. listopadu 2012
2 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986
3 Historie elektronové mikroskopie První SEM Manfred von Ardenne (1937)
4 Historie elektronové mikroskopie První komerční SEM Cambridge Scientific Instrument Company 1965
5 Průřez elektronovým tubusem ovládání zvětšení rastrový generátor vzorek vývěva detektor zesilovač počítač
6 Elektronová tryska - typy emitorů 1. Wolfram - Termoemise 2. LaB6 - Termoemise 3. Wolfram - Schottkyho emise
7 Elektronová tryska - typy emitorů 1. Wolfram - Termoemise Nejnižší rozlišení 2. LaB6 - Termoemise 3. Wolfram - Schottkyho emise
8 Elektronová tryska - typy emitorů 1. Wolfram - Termoemise Nejnižší rozlišení Nenáročné na vakuum 2. LaB6 - Termoemise 3. Wolfram - Schottkyho emise
9 Elektronová tryska - typy emitorů 1. Wolfram - Termoemise Nejnižší rozlišení Nenáročné na vakuum 2. LaB6 - Termoemise Vyšší rozlišení 3. Wolfram - Schottkyho emise
10 Elektronová tryska - typy emitorů 1. Wolfram - Termoemise Nejnižší rozlišení Nenáročné na vakuum 2. LaB6 - Termoemise Vyšší rozlišení Potřeba čerpat prostor katody iontovou vývěvou 3. Wolfram - Schottkyho emise
11 Elektronová tryska - typy emitorů 1. Wolfram - Termoemise Nejnižší rozlišení Nenáročné na vakuum 2. LaB6 - Termoemise Vyšší rozlišení Potřeba čerpat prostor katody iontovou vývěvou 3. Wolfram - Schottkyho emise Nejvyšší rozlišení
12 Elektronová tryska - typy emitorů 1. Wolfram - Termoemise Nejnižší rozlišení Nenáročné na vakuum 2. LaB6 - Termoemise Vyšší rozlišení Potřeba čerpat prostor katody iontovou vývěvou 3. Wolfram - Schottkyho emise Nejvyšší rozlišení Potřeba čerpat prostor katody a tubusu 2 iontovými vývěvami
13 Elektronová tryska - typy emitorů
14 Schottkyho emise Ohmický ohřev velmi ostrého hrotu Typicky wolfram
15 Schottkyho emise Ohmický ohřev velmi ostrého hrotu Typicky wolfram Na povrchu hrotu vrstva ZrO Vysoká intenzita elektrického pole u povrchu hrotu
16 Schottkyho emise Ohmický ohřev velmi ostrého hrotu Typicky wolfram Na povrchu hrotu vrstva ZrO Vysoká intenzita elektrického pole u povrchu hrotu Snížení výstupní práce elektronů z materiálu katody
17 Schottkyho emitor
18 Schottkyho emitor
19 Elektromagnetická čočka
20 Interakce elektronů se vzorkem X - Ray BSE PE BSE SE AE SE Dosah elektronů R
21 Signální elektrony - energiové spektrum SE BSE LLE N (E) AE 0 50 ev 2 kev E = eu Energie elektronů
22 Sekundární elektrony Nesou topografický kontrast Intuitivní iterpretace δ (θ) = δ 0 cosθ E < 50 ev
23 Sekundární elektrony - Everhard-Thornely detektor
24 Topgrafický kontrast - Obrázky Obrázek: Zrnka pylu v signálu sekundárních elektronů.
25 Topgrafický kontrast - Obrázky Obrázek: Povrch ledvinového kamene v signálu sekundárních elektronů.
26 Zpětně odražené elektrony Nesou materiálový kontrast Čím výšší Z, tím vyšší výtěžek E > 50 ev Také kanálovací kontrast
27 BSE detektor
28 Materiálový kontrast - Obrázky Obrázek: Srovnání topografického a materiálového kontrastu.
29 Kanálovací kontrast (BSE) Naklánění svazkem v incidenčním bodu BSE signál na dvojici úhlů Výtěžek závisí na úhlu svazku a krystalografické roviny Obrázek: Kanálovací kontrast na c-si.
30 Kanálovací kontrast - Obrázky Obrázek: Kanálovací kontrast - různá orientace krystalových zrn (Al+Cu).
31 X-Ray mikroanalýza Vyražení elektronu z atomu terče Charakteristické rentgenové záření Prvková analýza Poměrně velký informační objem Detektory EDX a WDX
32 EDX spektrum Obrázek: Typický příklad zaznamenaného EDX spektra.
33 Kontaminace Obrázek: Kontaminace vzorku.
34 Kontaminace Kontaminace je organická vrstva deponovaná pod elektronovým svazkem Kontaminaci se dá předcházet Maximální čistota práce uvnitř vakuové komory Plazmové dekontaminátory Pro vyšší urychlovací napětí kontaminace průhledná
35 Nabíjení vzorku Nevodivé vzorky se v elektronovém mikroskopu zpravidla nabíjí Obrázek: Pozorování nabité kovové mikrotečky svazkem na 2keV.
36 U vod Pra ce se SEM Nabı jenı vzorku - r es enı I Pokovenı vzorku I Ztra ta jemne topograficke informace I Nepohodlne Martin Hanic inec Rastrovacı Elektronova Mikroskopie
37 Nabíjení vzorku - řešení Práce v nízkém vakuu Ionizovaný plyn odvádí náboj ze vzorku Potřeba přívodu čistého dusíku nebo vodních par Potřeba speciálního detektoru SE Nižší rozlišení kvůli skirt efektu Časově a psychicky náročnější
38 Nabíjení vzorku - řešení Vyladění urychlovacího napětí Na nízkých HV přestává být nabíjení vzorku problém
39 Nabíjení vzorku - řešení Obrázek: Nabíjení fotorezistu je eliminováno zvolením správného urychlovacího napětí.
40 Typické proměnné při práci se SEM Urychlovací napětí (HV - high voltage) Pracovní vzdálenost (WD - working distance) Proud svazkem (BI - beam intensity)
41 Efekt změny HV
42 Efekt změny HV Proč je na vyšším HV vyšší rozlišení? Chromatická vada: ( ) d c = C c α E E 0
43 Efekt změny HV Obrázek: Efekt změny HV na dvou vzorcích (zlato na uhĺıku a papír).
44 Efekt změny HV Obrázek: Efekt změny HV na obrázcích toneru.
45 Efekt změny WD
46 Efekt změny WD Obrázek: Malá WD, malá apertura, vysoká Obrázek: Velká WD, velká apertura, nízká hloubka ostrosti. hloubka ostrosti.
47 Efekt změny BI
48 Efekt změny BI
49 Efekt změny BI Obrázek: Proud svazkem 10 pa. Obrázek: Proud svazkem 1 na.
50 DĚKUJI ZA POZORNOST
Elektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
Proč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko
VŠCHT - Forenzní analýza, 2012 RNDr. M. Kotrlý, KUP Mikroskopie Rozlišovací schopnost lidského oka cca 025 0,25mm Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Druhy mikroskopie Podle druhu použitého paprsku nebo sondy rozeznáváme tyto základní druhy mikroskopie: Světelná mikrokopie
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX
/ 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)
Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II
Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka
Elektronová mikroskopie a RTG spektroskopie Pavel Matějka Elektronová mikroskopie a RTG spektroskopie 1. Elektronová mikroskopie 1. TEM transmisní elektronová mikroskopie 2. STEM řádkovací transmisní elektronová
Elektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek
/ 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní
SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE
SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, Olomouc 4.12. Workshop: Mikroskopické techniky SEM a TEM Obsah historie mikroskopie proč právě elektrony
Techniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní
Laboratoř charakterizace nano a mikrosystémů: Elektronová mikroskopie
: Jitka Kopecká ÚVOD je užitečný nástroj k pozorování a pochopení nano a mikrosvěta. Nachází své uplatnění jak v teoretickém výzkumu, tak i v průmyslu (výroba polovodičových součástek, solárních panelů,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SCINTILAČNÍ DETEKTOR SEKUNDÁRNÍCH ELEKTRONŮ PRO REM PRACUJÍCÍ PŘI VYŠŠÍM TLAKU V KOMOŘE VZORKU BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII
ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII Lidské oko jako optická soustava dvojvypuklá spojka obraz skutečný, převrácený, mozek ho otočí do správné polohy, zmenšený rozlišovací schopnost oka cca 0.25
Spektroskopie Augerových elektronů AES. KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE
Spektroskopie Augerových elektronů AES KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE Spektroskopie Augerových elektronů AES Jev Augerových elektronů objeven 1923 - Lise Meitner
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Difrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY KONTRAST V OBRAZE ZÍSKANÉM POMOCÍ IONIZAČNÍHO DETEKTORU VE VP SEM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
DETEKCE SIGNÁLNÍCH ELEKTRONŮ V ENVIRONMENTÁLNÍM RASTROVACÍM ELEKTRONOVÉM MIKROSKOPU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
VÍCEELEKTRODOVÝ SYSTÉM IONIZAČNÍHO DETEKTORU PRO ENVIRONMENTÁLNÍ RASTROVACÍ ELEKTRONOVÝ MIKROSKOP
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ
CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ Aleš LIGAS 1, Jakub PIŇOS 1, Dagmar JANDOVÁ 2, Josef KASL 2, Šárka MIKMEKOVÁ 1 1 Ústav přístrojové techniky AV ČR, v.v.i.,
METODA NAPĚŤOVÉHO KONTRASTU PŘI DETEKCI SEKUNDÁRNÍCH ELEKTRONŮ SCINTILAČNÍM DETEKTOREM VE VP SEM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, UP Olomouc 4.12.2009 Workshop: Mikroskopické techniky SEM a TEM Obsah konstrukce transmisního elektronového mikroskopu
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
F6450. Vakuová fyzika 2. Vakuová fyzika 2 1 / 32
F6450 Vakuová fyzika 2 Pavel Slavíček email: ps94@sci.muni.cz Vakuová fyzika 2 1 / 32 Osnova Vázané plyny Sorpční vývěvy kryogenní zeolitové sublimační iontové getrové - vypařované, nevypařované (NEG)
Zobrazovací metody v nanotechnologiích
Zobrazovací metody v nanotechnologiích Optická mikroskopie Z vlnové povahy světla plyne, že není možné detekovat menší podrobnosti než polovina vlnové délky světla. Viditelné světlo má asi 500 nm, nejmenší
Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.
Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Ionizační detektor pro ESEM Ionization detector for ESEM DIPLOMOVÁ PRÁCE MASTER S THESIS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Electron BackScatter Diffraction (EBSD)
Electron BackScatter Diffraction (EBSD) Informace o xtalografii objemových vzorků získané pomocí SEM + EBSD a) základní součásti systému EBSD 1. Základy EBSD Vzorek Detektor EBSD Fluorescenční stínítko
2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.
1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Pedagogická fakulta. Katedra fyziky. Diplomová práce
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Pedagogická fakulta Katedra fyziky Diplomová práce Rozptyl primárních elektronů na atomech zalévacího média biologického materiálu u nízkonapěťového transmisního
Příloha č. 1 - Technické podmínky Rastrovací elektronový mikroskop pro aktivní prostředí
Příloha č. 1 - Technické podmínky Rastrovací elektronový mikroskop pro aktivní prostředí 1. Kupující v zadávacím řízení poptal dodávku zařízení vyhovujícího následujícím technickým požadavkům: Číslo Technické
Difrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_12 Název materiálu: Elektrický proud v plynech. Tematická oblast: Fyzika 2.ročník Anotace: Prezentace slouží k výkladu elektrického proudu v plynech. Očekávaný
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ NÁVRH A TESTOVÁNÍ VHODNÉ METODIKY PRO ČIŠTĚNÍ POVRCHŮ PREPARÁTŮ IN SITU PRO ELEKTRONOVOU MIKROSKOPII POMALÝMI ELEKTRONY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV FYZIKÁLNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PHYSICAL ENGINEERING NÁVRH A TESTOVÁNÍ
Metody povrchové analýzy založené na detekci iontů. Pavel Matějka
Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů
Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev
Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná
Dodávka analytického rastrovacího elektronového mikroskopu s vysokým rozlišením vč. zařízení na přípravu vzorků pro projekt NTIS
Název veřejné zakázky: Dodávka analytického rastrovacího elektronového mikroskopu s vysokým rozlišením vč. zařízení na přípravu vzorků pro projekt NTIS Odůvodnění vymezení technických podmínek veřejné
SCINTILAČNÍ DETEKTOR SE PRO EREM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
INTERPRETACE HMOTNOSTNÍCH SPEKTER
INTERPRETACE HMOTNOSTNÍCH SPEKTER Hmotnostní spektrometrie hmotnostní spektrometrie = fyzikálně chemická metoda založená na rozdělení hmotnosti iontů v plynné fázi podle jejich poměru hmotnosti a náboje
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Techniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
Auger Electron Spectroscopy (AES)
Auger Electron Spectroscopy (AES) Přehledná tabulka a. tech. Princip Obvyklý popis hladin viz diagram čísla komponent KLM.. např. L23 representuje L2 i L3 spin. štěpení Nelze pro H a He, ale lze hydridy
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Základní pojmy. Je násobkem zvětšení objektivu a okuláru
Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).
Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku
STUDIUM KOVOVÝCH MATERIÁLŮ POMOCÍ NÍZKONAPĚŤOVÉ ELEKTRONOVÉ MIKROSKOPIE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING
VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO ELEKTRONOVÁ MIKROSKOPIE PRO PŘEDMĚT INSTRUMENTÁLNÍ ANALYTICKÉ METODY VE FARMACEUTICKÉ TECHNOLOGII
VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO FARMACEUTICKÁ FAKULTA ÚSTAV TECHNOLOGIE LÉKŮ ELEKTRONOVÁ MIKROSKOPIE PRO PŘEDMĚT INSTRUMENTÁLNÍ ANALYTICKÉ METODY VE FARMACEUTICKÉ TECHNOLOGII Studijní materiál
J = S A.T 2. exp(-eφ / kt)
Vakuové součástky typy a využití Obrazovky: - osciloskopické - televizní + monitory Elektronky: - vysokofrekvenční (do 1 GHz, 1MW) - mikrovlnné elektronky ( až do 20 GHz, 10 MW) - akustické zesilovače
Fotoelektronová spektroskopie ESCA, UPS spektroskopie Augerových elektronů. Pavel Matějka
Fotoelektronová spektroskopie ESCA, UPS spektroskopie Augerových elektronů Pavel Matějka Fotoelektronová spektroskopie 1. XPS rentgenová fotoelektronová spektroskopie 1. Princip metody 2. Instrumentace
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment
RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se
Fyzikální metody nanášení tenkých vrstev
Fyzikální metody nanášení tenkých vrstev Vakuové napařování Příprava tenkých vrstev kovů některých dielektrik polovodičů je možné vytvořit i epitaxní vrstvy (orientované vrstvy na krystalické podložce)
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce
Konfokální XRF. Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze
Konfokální XRF Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze Obsah Od klasické ke konfokální XRF Princip konfokální XRF Polykapilární
Svařování svazkem elektronů
Svařování svazkem elektronů RNDr.Libor Mrňa, Ph.D. 1. Princip 2. Interakce elektronů s materiálem 3. Konstrukce elektronové svářečky 4. Svařitelnost materiálů, svařovací parametry 5. Příklady 6. Vrtání
Vakuové metody přípravy tenkých vrstev
Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD
Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)
Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION ÚSTAV ELEKTROTECHNOLOGIE DEPARTMENT OF
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
APPLICATION OF LOW VOLTAGE SEM FOR STUDY OF BLASTED SURFACES
APPLICATION OF LOW VOLTAGE SEM FOR STUDY OF BLASTED SURFACES Aleš LIGAS 1, Šárka MIKMEKOVÁ 1, Dagmar DRAGANOVSKÁ 2 1 Ústav přístrojové techniky AV ČR, v.v.i., Královopolská 147, 612 64 Brno, ales.ligas@isibrno.cz
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
EM, aneb TEM nebo SEM?
EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21
LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ
LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ IONIZAČNÍ DETEKTOR PRO EREM DIPLOMOVÁ PRÁCE FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
40 Přístup do komory mikroskopu pro velké vzorky odsunutím či odklopením jedné stěny komory. Musí být možné bez použití nářadí.
Příloha č. 1 - Technické podmínky - část 1 Řádkovací elektronový mikroskop SEM s EDS, EBSD detektorem a zkušebním zařízením pro mechanické a tepelné zatěžování vzorků 1. Kupující v zadávacím řízení poptal
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů
Elektronová mikroskopie v materiálovém výzkumu
Elektronová mikroskopie v materiálovém výzkumu Kristina Hakenová Gymnázium Turnov kikihak@seznam.cz Karel Vlachovský Masarykovo gymnázium, Plzeň maoap1@gmail.com Abstrakt: Práce seznamuje čtenáře s elektronovým
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Program XPS XRD XRF. Martin Kormunda
Program XPS XRD XRF XPS Základní rovnice X-Ray photoelectron spectroscopy nebo také někdy ESCA (Electron spectroscopy for chemical analyses) ( E W ) E = E + binding photon kinetic W výstupní práce Princip
Elektron elektronová sekundární emise
Elektron elektronová sekundární emise V analytické formě neexistuje úplná teorie popisující SEEE zohledňující všechny děje, které nastávají během excitace a transportu elektronu pevnou látkou. Umíme popsat
V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron
V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron Údaje o provozu urychlovačů v ÚJF AV ČR ( hodiny 2009/hodiny 2008) Urychlovač Celkový počet hodin Analýzy Implantace
Typy světelných mikroskopů
Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS
RBS Jaroslav Král, katedra fyzikální elektroniky FJFI, ČVUT. ÚVOD Spektroskopie Rutherfordova zpětného rozptylu (RBS) umožňuje stanovení složení a hloubkové struktury tenkých vrstev. Na základě energetického
Urychlovače nabitých částic
Urychlovače nabitých částic Osnova přednášky 1. Úvod, základní třídění urychlovačů, historie, 2. Pohyb částice v elektrickém a magnetickém poli, vedení svazků částic 3. Lineární urychlovače elektrostatické,
Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008
Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD
Transmisní elektronová mikroskopie Skenovací elektronová mikroskopie Mikroskopie skenující sondou. Mikroskopické metody SEM, TEM, AFM
Mikroskopické metody SEM, TEM, AFM Rozlišení v optické mikroskopii důvod pro vyvíjení nových technik omezení rozlišení světelné mikroskopie nejmenší vzdálenost dvou bodů, kterou ještě rozlišíme závisí
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Slitiny titanu pro použití (nejen) v medicíně
Slitiny titanu pro použití (nejen) v medicíně Josef Stráský a spol. Katedra fyziky materiálů MFF UK Obsah Vývoj slitin Ti pro použití v ortopedii Spolupráce: Beznoska s.r.o., Kladno Ultrajemnozrnné slitiny
Příloha č. 1 - technické podmínky - část 2 Řádkovací elektronový mikroskop SEM-FIB s detektory EDS, WDS a EBSD
Příloha č. 1 - technické podmínky - část 2 Řádkovací elektronový mikroskop SEM-FIB s detektory EDS, WDS a EBSD 1. Kupující v zadávacím řízení poptal dodávku zařízení vyhovujícího následujícím technickým
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických