Dokumentace programu ATENA Část 4-1. Průvodce programem ATENA 2D. Napsali: Jan Červenka, Václav Veselý

Rozměr: px
Začít zobrazení ze stránky:

Download "Dokumentace programu ATENA Část 4-1. Průvodce programem ATENA 2D. Napsali: Jan Červenka, Václav Veselý"

Transkript

1 Červenka Consulting s.r.o. Na Hřebenkách Praha 5 Tel.: cervenka@cervenka.cz Web: Dokumentace programu ATENA Část 4-1 Průvodce programem ATENA 2D Napsali: Jan Červenka, Václav Veselý Praha, 2. únor 2005

2 Copyright by Cervenka Consulting. Obchodní značky: ATENA je registrovaná značka Vladimíra Červenky. Microsoft a Microsoft Word a Microsoft Windows jsou registrované obchodní značky společnosti Microsoft.

3 Obsah 1. PŘEDMLUVA 1 2. SPUŠTĚNÍ PROGRAMU 1 3. PRE-PROCESSING Úvod Materiálové parametry Styčníky Linie Makroprvky Generování sítě Poznámky k síťování Prutová výztuž Podpory a zatížení Historie zatížení a parametry výpočtu Monitorovací body NELINEÁRNÍ MKP ANALÝZA Úvod Spuštění výpočtu Interaktivní okno Přidávání dalších zatěžovacích kroků POST-PROCESSING Úvod Okno post-processingu Zatěžovací diagramy Textový výstup Informace o průběhu výpočtu ZÁVĚR DISTRIBUTOŘI A TVŮRCI PROGRAMU LITERATURA 46

4

5 1. Předmluva Tento tutoriál představuje úvod k používání programu ATENA 2D a je především určen začínajícím uživatelům ATENA 2D. Krok po kroku osvětluje způsob provádění nelineární analýzy na příkladu betonového trámu vyztuženého podélnou výztuží. Geometrie prvku a jeho materiálové parametry jsou ve shodě s experimentem prováděným Leonhardem v roce Další podrobnosti a detaily k tomuto problému je možno nalézt v originální zprávě [5] nebo získat od tvůrců či distributorů programu. Pro názorné předvedení práce s programem je použit příklad prostě podepřeného trámu zatíženého dvěmi silami. Situace je zobrazena na Obr.1. Problém je symetrický podle svislé osy, proto bude analyzována pouze jedna symetrická polovina trámu. Kroky potřebné k přípravě dat, spuštění nelineární analýzy a vyhodnocení výsledků v postprocessingu jsou objasněny na následujících obrázcích, které ukazují obrazovku počítače se spuštěným programem pro každý krok či akci uživatele. Ke každému obrázku je připojen také krátký popis. V pasáži vyhodnocení výsledků jsou popsány pouze některé základní metody post-processingu. ATENA nabízí mnoho možností, jak zobrazit výsledky nelineární MKP analýzy. Všechny jsou jednoduše přístupné z okna Výsledky pomocí samovysvětlujících tlačítek a nástrojových lišt. Další detaily doporučujeme vyhledat v uživatelském manuálu ATENA 2D nebo konzultovat přímo na horké lince tvůrců či distributorů programu. Obr. 1: Geometrie konstrukce. 2. Spuštění programu ATENA 2D se nastartuje spuštěním programu CCATENAGUIX.EXE z adresáře, kde je balík programů nainstalován, písmeno X je označením verze programu, nebo jednodušeji přímo z nabídky START PROGRAMY pracovní plochy vašeho počítače. 1

6 3. Pre-processing 3.1 Úvod Tato kapitola popisuje základní kroky, které je třeba provést pro definování kompletního geometrického a poté konečněprvkového modelu pro nelineární MKP analýzu programem ATENA. Smyslem geometrického modelu je popsat geometrii konstrukce, její materiálové vlastnosti a okrajové podmínky. Analytický model pro výpočet metodou konečných prvků se vytvoří během pre-processingu pomocí plně automatického generátoru MKP sítě. Geometrický model je vytvářen následujícím postupem. Nejdříve jsou definovány geometrické body styčníky. Tyto body jsou poté spojeny do čar ohraničujících konstrukci resp. její části. Je možno vytvořit tyto linie přímé nebo jako části kružnice. Následuje definování makroprvků (regionů) určením hraničních linií, které makroprvek obklopují. Před započetím tvorby geometrického modelu je vhodné se seznámit s grafickým uživatelským prostředím pre-procesoru programu ATENA 2D. Okno pre-procesoru je zobrazeno na Obr. 2. hlavní menu Tlačítko pro nastavení zobrazení Roleta pro zobrazení podpor a zatížení Nástrojové lišty Lišta pro grafické zadávání a editaci Výběr aktuálního zatěžovacího stavu Hlavní okno obsahující pohled na vytvořený geometrický a MKP model Přístupové menu Tabulky pro vkládání a modifikaci dat. Zobrazena je tabulka pro aktivní položku z přístupového menu. Obr. 2: Grafické uživatelské prostředí pre-procesoru programu ATENA 2D. 2

7 ATENA 2D obsahuje čtyři hlavní nástrojové lišty: Lišta Soubory: Nový soubor Otevřít soubor Uložit data do souboru Textový tisk Grafický tisk Lišta Výpočty: Spuštění generátoru sítě KP Spuštění výpočtu Přepnutí do módu Zadávání Přepnutí do módu Výsledky Lišta Měřítko a posun: Předchozí pohled Zvětšení měřítka se zachováním bodu pod osovým křížem Zmenšení měřítka se zachováním bodu pod osovým křížem Zobrazení označené oblasti Posun zobraz. výřezu Zvětšení měřítka se zachováním středu výřezu Zmenšení měřítka se zachováním středu výřezu Celkový pohled zobrazení všech objektů 3

8 Lišta Výběry: Ukončení režimu výběr Vybírat linie Vybírat pruty výztuže Vybírat makroprvky Výběr protnutím entity Výběr kosodélníkovým oknem Objekt přidat do výběru Rušit výběr označ. objektů Invertovat výběr označ. objektů Vybírat styčníky Nastavení výběru na jednotlivě Zapne/vypne přesahy při výběru oknem Zrušit výběr všech objektů se zap. výběry Vybírat monitory Vybírat otvory Výběr obdélníkovým oknem Vybrat všechny objekty se zapnutými výběry Invertovat výběr objektů se zap výběry Zrušit výběr všech objektů Po prozkoumání rozložení uživatelského prostředí je možno začít vytvářet geometrický model analyzované konstrukce. Bývá dobrým zvykem opatřit zkoumaný problém krátkým popisem, abychom si usnadnili práci a vyhnuli případným chybám či zmatkům v pozdějším vyhodnocování. V programu ATENA 2D to můžeme zajistit výběrem položky Obecná data v přístupovém menu. Tato položka otevře následující tabulku. Obr 3: Tabulka Obecná data obsahuje obecné informace o zkoumané konstrukci. 4

9 Obr. 4: Dialogové okno pro editování obecných údajů se objeví po stisknutí tlačítka Editovat z tabulky Obecná data. 3.2 Materiálové parametry Dalším krokem může být zadávání materiálových skupin a materiálových vlastností. Volbou položky Materiály v přístupovém menu se otevře tabulka Materiály. Obr. 5: Tabulka Materiály, ve které je možno zadávat nové nebo editovat, resp. mazat, již existující materiály. Kliknutím na tlačítko Přidat v tabulce materiálů vytvoříme novou materiálovou skupinu. V našem případě je nutno vytvořit tři materiálové typy: elastický materiál ve stavu rovinné napjatosti pro ocelové desky v podporách a pod přiloženým zatížením, betonový materiál pro trám a materiál výztuže. Obr. 6: Volba pružného materiálu ve stavu rovinné napjatosti pro ocelové desky. 5

10 Obr 7: Dialog pro definování materiálových vlastností ocelových desek. Obr. 8: Výběr materiálového modelu pro prutovou výztuž. 6

11 Obr 9: Dialogové okno pro určování materiálových parametrů výztuže. Pro tento problém byl zvolen bilineární pružnoplastický pracovní diagram bez zpevnění. Obr. 10: Volba SBETA materiálového modelu pro betonový trám. SBETA materiálový model odpovídá materiálovému vyjádření, které bylo implementováno v programu SBETA. SBETA je dřívější DOS-ovská verze ATENY. Obr. 11: Defaultní hodnoty materiálových parametrů jsou automaticky generovány na základě krychelné pevnosti. Pro tento případ je krychelná pevnost 33,5 MPa. 7

12 Obr. 12: Dialogové okno pro zadávání základních vlastností SBETA materiálu. Tyto parametry byly vygenerovány na základě znalosti krychelné pevnosti betonu. Pro trám Leonhardova experimentu je třeba změnit pevnost betonu v tahu na 1,64 MPa. Obr. 12: Dialogové okno s tahovými vlastnostmi SBETA materiálu. 8

13 Obr. 13: Dialogové okno s tlakovými vlastnostmi SBETA materiálu. Obr. 14: Dialogové okno se smykovými vlastnostmi SBETA materiálu. 9

14 Obr. 15: Dialogové okno pro definování dalších parametrů SBETA materiálu. Obr. 16: Materiály, které byly zadány, je možno si prohlédnout nebo editovat z tabulky Materiály. 10

15 3.3 Styčníky Dalším krokem při přípravě vstupních dat je zadávání geometrických bodů styčníků. Styčníky budou později spojeny do geometrických čar a makroprvků (regionů). Volbou příslušné položky (tj. Styčníky) v přístupovém menu můžeme začít s jejich zadáváním. Pak je možno pokračovat dvěmi způsoby: buď kliknutím na tlačítko, po kterém bude následovat určování nových poloh bodů myší, nebo kliknutím na tlačítko Přidej v okně tabulky Styčníky. Obr. 17: Dialog pro specifikaci souřadnic a vlastností nově vytvářených bodů. Tabulka 1 obsahuje souřadnice styčníků, které jsou potřeba pro úplné určení geometrie Leonhardova smykového trámu. 11

16 Tabulka 1: Souřadnice styčníků. Číslo bodu Souřadnice X [m] Souřadnice Y [m] Jestliže během vkládání souřadnic uděláme chybu, je možno souřadnice špatně zadaných styčníků editovat. Máme dvě možnosti, jak se dostat k souřadnicím bodů a jejich dalším vlastnostem. První je použití okna tabulky Styčníky. V tomto případě se geometrický bod, který má být editován, vybere dvojitým kliknutím na jeho souřadnici v tabulce, nebo stisknutím tlačítka Editovat. Druhou možností je vybrat bod v okně obsahujícím model konstrukce. V tomto případě musí být vysvícena položka Styčníky v přístupovém menu a je třeba stisknout tlačítko z nástrojové lišty pro grafické zadávání a editaci. Pak mohou být modifikovány vlastnosti styčníků kliknutím na příslušný bod. Stejná filosofie je použita i pro editaci ostatních geometrických entit, například linií, makroprvků a prutů výztuže. 12

17 Stisknutím tohoto tlačítka vyplní obrysy naší konstrukce celé okno Obr. 18: Pracovní plocha po zadání všech geometrických bodů. Tlačítko, které upraví měřítko tak, aby byly vidět všechny objekty Obr. 20: Pracovní plocha po stisknutí tlačítka pro zobrazení všech objektů. 13

18 3.4 Linie Po určení polohy styčníků je možno přistoupit k definování linií, které budou spojovat dříve specifikované body. Obr. 21: Definování geometrických linií začíná volbou položky Linie v přístupovém menu. Grafické zadávání lze spustit kliknutím na tlačítko. Lze zadat pružné podepření linie V případě potřeby lze síť podél vybraných linií zjemnit Obr. 22: Dialogový box pro specifikaci prototypu linií se objeví po kliknutí na tlačítko. V tomto dialogu může být zadána metoda zjemňování sítě nebo pružné podepření linie. Pro všechny následně zadané linie bude použita tato sada vlastností specifikovaných jako prototyp. 14

19 Obr. 23: V grafickém módu se linie určí výběrem počátečního a koncového styčníku myší. Pořadí koncových bodů není v ATENĚ důležité. Obr. 24: Vzhled displeje programu po definování první okrajové linie. 15

20 Obr. 25: Vzhled displeje programu po definování všech linií. 3.5 Makroprvky Dalším krokem po definici linií je spojování těchto čar, čímž se vytvoří regiony. V programu ATENA 2D jsou tyto regiony nazývány makroprvky. Regiony mohou být opět definovány dvěma způsoby: buď z okna tabulky Makroprvky volbou tlačítka Editovat a určením seznamu okrajových linií nebo graficky výběrem okrajových linií makroprvku pomocí myši. Druhá a pohodlnější metoda začíná vysvícením položky Makroprvky v přístupovém menu. Potom se stiskne tlačítko. Následně se objeví dialogové okno, které je zobrazeno na Obr. 27, pro specifikaci vlastností makroprvku. Tyto vlastnosti budou přiřazeny také všem následně vytvořeným regionům. Začneme vytvářením makroprvků pro ocelové desky, jež jsou umístěny v oblastech přiložení zatížení a svislých podpor. Klikáním myší vybereme linie tvořící makroprvek. Poznamenejme, že tvar kurzoru myši se změní, když se přiblíží k jednotlivým čarám. Pro editaci vlastností makroelementu lze použít tlačítko. Tlačítko je pro odstranění makroprvků, tlačítka resp. slouží k získávání informací o vlastnostech prototypu regionu resp. zadávání nových prototypů. 16

21 Obr. 26: Displej programu na začátku zadávání makroelementů. Výběr čtyř-, trojúhelníkové nebo smíšené sítě Touto hodnotou specifikujeme požadovanou velikost prvku pro automatickou generaci sítě Materiálový model pro nový makroprvek Typ prvku pro čtyřúhelníkovou síť konečných Obr. 27: Dialogové okno, které se objeví po stisknutí tlačítka z nástrojové lišty pro grafické zadávání a editaci. Tento dialog se používá pro definici prototypu makroprvku, vlastností, které budou přiřazeny následně vytvořeným makroelementům. V tomto případě začínáme určováním makroprvků podporových roznášecích ocelových desek. 17

22 Obr. 28: Výběr okrajových linií pro první makroprvek reprezentující ocelovou roznášecí desku svislé podpory. Obr. 29: Displej programu po zadání první ocelové desky během vytváření makroelementu druhé ocelové roznášecí desky v místě vnášení zatížení. 18

23 Po zadání makroprvků ocelových desek je nutno změnit vlastnosti prototypu makroelementu, protože pro trám je vhodnější betonový materiál, než elastický izotropní zadávaný ocelovým deskám. Volbou tlačítka změníme vlastnosti prototypu. Obr. 30: Dialog pro editaci vlastností prototypu makroprvku pro betonový region, kde bude použit materiálový model betonu. Obr. 31: Displej programu po zadání posledního makroprvku s materiálovým modelem betonu. 19

24 3.6 Generování sítě Po dokončení definice makroelementů lze přikročit k automatické generaci sítě konečných prvků. Plně automatický generátor sítě v programu ATENA 2D se spouští tlačítkem. Na základě velikostí prvků zadaných pro každý makroprvek je vytvořena síť konečných prvků, jejíž velikost lze ovládat případným lokálním zjemňováním kolem linií a styčníků. Je vhodné poznamenat, že když generátor rozpozná, že makroelement je tvořen čtyřmi stranami, kde vždy protější jsou rozděleny na stejný počet dílků, pokusí se vytvořit síť mapovací technikou. Tento způsob se dá využít v případech, kdy požadujeme přesnou a rovnoměrnou síť. V našem případě ovšem této možnosti využívat nebudeme a spolehneme se na schopnosti plně automatické tvorby sítě. Obr. 32: Vygenerovaná síť s velikostí konečných prvků 0,08 m Poznámky k síťování Kvalita sítě konečných prvků má podstatný vliv na kvalitu výsleků výpočtu, jeho rychlost a paměťovou náročnost. Zjemnění pouze důležitých oblastí může ušetřit množství procesorového času a diskového prostoru. Špatná síť, jako například jedna vrstva objemových prvků v oblasti významně namáhané ohybem, může vést k velmi chybným výsledkům viz ATENA Engineering Example 20

25 Manual, příklad "Mesh Study". Pro alespoň kvalitativní výsledky v ohybu je doporučeno minimálně 4-6 prvků na tloušťku. 3.7 Prutová výztuž V dalším kroku definujeme pruty podélné výztuže. Poznamenejme, že výztuž může být definována kdykoliv během přípravy vstupních dat. Není nutno čekat na vytvoření makroprvků či sítě konečných prvků. Zadávání výztuže započneme aktivací položky Prutové výztuže z přístupového menu. Potom je opět možno zadávat geometrii prutů myší nebo číselnými hodnotami. Grafický input je aktivován tlačítkem. V tomto příkladě použijeme číselné zadávání, které spustíme tlačítkem Editovat v okně tabulky Prutové výztuže. Tato tlačítka použijeme pro grafické zadávání a editaci Tímto tlačítkem aktivujeme numerické zadání prutů výztuže Obr. 33: Okno programu na počátku zadávání prutů výztuže. V našem příkladě je vytvořen pouze jeden prut podél spodního okraje trámu. Vzdálenost středu prutu od dolního povrchu trámu je 0,05 m. Ve skutečnosti modeluje tento prut dvě vložky o průměru 26 mm. Kroky potřebné k vytvoření nového prutu výztuže v programu ATENA 2D jsou osvětleny na následujících obrázcích. 21

26 Obr. 34: Dialog pro definici výztužných prutů obsahuje dva listy. Na záložce Charakteristiky se zadává materiálový model a průřezová plocha výztuže. Kliknutím na tlačítko Přidat definujeme souřadnice konců prutu. Obr. 35: Na záložce Topologie se zadává geometrie prutu. Prut výztuže se skládá ze segmentů, což mohou být úsečky, oblouky a kružnice. 22

27 Vybereme typ segmentu Úsečka a zadáme souřadnice koncových bodů Obr. 36: Tento obrázek představuje zadávání koncových bodů prutů výztuže. Obr. 37: Displej programu po zadání výztuže. 23

28 3.8 Podpory a zatížení Tato část popisuje zadávání podpor a zatížení pro náš příklad. Analyzovaný trám je podepřen na spodním líci ocelovými podložkami. Protože analyzujeme pouze symetrickou polovinu konstrukce, je nutno umístit osu symetrie do linie 5. Horizontální posuny bodů této čáry musí být nulové. Trám je zatížen přes ocelovou desku na horním líci. Zajímá nás maximální únosnost trámu a chceme sledovat také odezvu konstrukce po dosažení maximálního zatížení. Nejjednodušší způsob, jak toho dosáhnout, je zatěžovat trám vnuceným posunem na vrchní ocelové desky. Je možno zatěžovat konstrukci také svislými silami, které by se zvětšovaly po přírůstcích v každém zatěžovacím kroku. V tomto případě by ovšem bylo nutno pro sledování odezvy po dosažení maximálního zatížení zvolit vyspělé strategie nelineárního řešení jako např. metodu Arc-lenght (metoda délky oblouku). Tato technika v programu ATENA 2D k dispozici je, ale nebude v našem příkladě použita. Metoda řešení Newton- Raphson a zatížení přírůstkem přetvoření je zde zcela dostačující. Historie zatížení v ATENĚ 2D je zadávána stejným způsobem jako v předchozí verzi SBETĚ. To znamená, že nejdříve jsou definovány zatěžovací stavy, jejichž kombinací je vytvořena historie zatížení analyzované konstrukce. Pro náš příklad budou definovány dva zatěžovací stavy: První obsahující svislou a vodorovnou složku podepření a druhý s předepsaným posunem v oblasti horní ocelové desky. Obr. 38: Zadávání zatěžovacích stavů začíná aktivací položky Zatěžovací stavy v přístupovém menu a kliknutím na tlačítko Přidat v tabulce Zatěžovací stavy. 24

29 Obr. 39: První zatěžovací stav obsahuje podepření ve svislém a vodorovném směru. Obr. 40: Druhý zatěžovací stav sestává z vnucené deformace v místě horní ocelové desky. Obr. 41: Výpis vytvořených zatěžovacích případů v tabulce Zatěžovací stavy. 25

30 Nastavení aktivního zatěžovacího stavu Obr. 42: Před zadáním podepření musí být zvolen příslušný aktivní zatěžovací stav. Podepření je pro nás zatěžovací stav 1. 2) Nastavíme mód výběru na styčníky a linie 3) Zvolíme jednotlivé vybírání entit 1) Aktivujeme položku Styčníky 4) Vybereme styčník č. 5 pro přiřazení vazby 5) Klikneme na tlačítko Nahradit a zvolíme pevnou vazbu ve směru Y Obr. 43: Definice podpory ve svislém směru v oblasti dolní roznášecí ocelové desky. 26

31 2) Vybereme linii č. 5 pro aplikaci vazby 1) Aktivujeme položku Linie v přístupovém menu 3) Klikneme na Nahradit a zadáme pevnou vazbu ve směru X Obr. 44: Zadání horizontální vazby podél linie 5. 1) Vybereme zatěžovací stav 2) Zrušíme výběr všech dříve vybraných entit 3) Aktivujeme položku Styčníky 4) Vybereme styčník č. 10 pro přiřazení předepsaného posunu 5) Klikneme na Nahradit a určíme směr a hodnotu posunu Obr. 45: Zadání předepsaného posunutí ve svislém směru horní ocelové desky pro zatěžovací stav 2. 27

32 3.9 Historie zatížení a parametry výpočtu Tato část popisuje zadávání historie zatížení pro analýzu Leonhardova smykového trámu. Historie zatížení sestává ze zatěžovacích kroků. Každý zatěžovací krok je definován jako kombinace zatěžovacích stavů, které byly předem zadány. Pro každý zatěžovací krok je také třeba definovat parametry řešení, které určují metodu řešení, jež má být užita během výpočtu zatěžovacího kroku. ATENA 2D obsahuje standardní sadu parametrů řešení, ty je možno si prohlédnout v tabulce Parametry výpočtu. Tato tabulka se objeví po zvýraznění položky Parametry výpočtu v přístupovém menu. Obr. 46: Displej programu s tabulkou Parametry výpočtu. Standardní parametry výpočtu je možno si prohlédnout kliknutím na tlačítko Zobrazit. Nová sada parametrů může být vytvořena volbou tlačítka Přidat. 28

33 Obr. 47: První záložka pro zadání vlastností pro sadu parametrů výpočtu Leonhardova trámu. Obr. 48: Druhá záložka pro zadání vlastností pro sadu parametrů výpočtu Leonhardova trámu. 29

34 Obr. 49: Tabulka Parametry výpočtu s nově vytvořenou sadou parametrů výpočtu. Obr. 50: Zatěžovací kroky jsou specifikovány volbou tlačítka Přidat z tabulky Výpočtové kroky. Tato tabulka se objeví v tabulkovém okně po zvýraznění položky Výpočtové kroky v přístupovém menu. Obr. 51: Každý krok se skládá ze zatěžovacího stavu 1 a 2. Násobitel 3 bude použit k vynásobení aplikovaného zatížení a během zatěžovacího kroku bude použity nově vytvořené parametry výpočtu. 30

35 Obr. 52: Tabulka Výpočtové kroky po zadání dvaceti zatěžovacích kroků s výše zadanými parametry. Je možno přidat další zatěžovací kroky později během provádění analýzy Monitorovací body Během nelineární analýzy je užitečné sledovat síly, posuny či napětí v modelu. Toto monitorování nám může poskytnout důležité informace o stavu konstrukce. Například ze sledování velikosti přiložených sil je možné zjistit, jestli již bylo dosaženo maximální hodnoty zatížení konstrukce či nikoliv. Monitorovací body jsou určovány zvýrazněním položky Monitory v přístupovém menu. Potom je opět možno použít grafický nebo alfanumerický způsob zadání umístění monitorovacího bodu. Grafický input je aktivován tlačítkem, pak následuje určení přesné polohy myší. Alfanumerické zadávání začíná volbou tlačítka Přidat z tabulky Monitory. V našem příkladě bude první monitor umístěn v blízkosti bodu, kde byl předepsán svislý posun. V tomto bodě budeme monitorovat velikost přiložené síly v uzlu sítě ve svislém směru, vybereme tedy druhou složku (Component 2 směr Y ). Není potřeba zadat polohu monitorovacího bodu přesně do uzlu MKP sítě, program automaticky vybere nejbližší z okolních uzlů. V případě požadavku monitorování v integračním bodě je vybrán nejbližší integrační bod. Druhý monitorovací bod umístíme do středu trámu blízko jeho spodního okraje, kde očekáváme největší svislé přemístění. V tomto bodě budeme monitorovat druhou složku uzlových posunů (Component 2 tj. posun ve směru Y). Tyto dva monitorovací body nám dovolují sledovat křivku zatížení průhyb během nelineární analýzy metodou konečných prvků. Umožní nám to monitorovat změny působících sil a posunů v každém zatěžovacím kroku nebo dokonce v každé iteraci. Displej programu po definování monitorů je zobrazen na Obr

36 Obr. 53: Zadání prvního monitorovacího bodu. Obr. 54: Dialogové okno pro zadání druhého monitorovacího bodu. 32

37 Obr. 55: Displej programu po zadání monitorů. Tímto tlačítkem nastavíme pohled zpět na zobrazení celé konstrukce Tímto tlačítkem aktivujeme zoom oknem Obr. 56: Způsob, jakým program vybírá nejbližší body pro monitorování se ozřejmí po zvětšení prostřední části trámu. 33

38 4. Nelineární MKP analýza 4.1 Úvod Tato část popisuje průběh a způsob vedení nelineárního výpočtu Leonhardova trámu metodou konečných prvků z dat připravených v předchozích částech tohoto tutoriálu. Před spuštěním výpočtu může být užitečné prohlédnout si číslování sítě konečných prvků. Číslování konečněprvkového modelu lze zobrazit pomocí tlačítka pro nastavení zobrazení, které se nachází v levém horním rohu zobrazovacího okna. Po zvolení tohoto tlačítka se otevře dialog (viz Obr. 57), jenž se používá pro výběr údajů zobrazovaných v okně. Mimo jiné je možno zapnout/vypnout zobrazení číslování konečných prvků, uzlů nebo geometrických entit, totéž lze provést pro pruty výztuže či monitory. Obr. 57: Dialogový box pro aktivaci zobrazení uzlů a prvků MKP sítě. 34

39 Obr 58: Síť konečných prvků s vyznačením čísel uzlů a elementů. Velikost písma lze měnit v hlavním menu v položce Nastavení Možnosti. 4.2 Spuštění výpočtu Výpočet metodou konečných prvků se spouští tlačítkem. Po kliknutí na toto tlačítko se na displeji počítače objeví zahajovací dialogové okno (viz Obr. 59). Pomocí něj lze vybrat zatěžovací krok, při kterém bude výpočet ukončen, a data, jež budou zobrazeny v zatěžovacím diagramu. Obr. 59: Dialogové okno před spuštěním MKP výpočtu. 35

40 4.3 Interaktivní okno Kliknutím na tlačítko Počítej v dialogu zobrazeném na Obr. 59 se spustí aktuální výpočet. Průběh analýzy může být monitorován pomocí interaktivního okna, které je možno si prohlédnout na Obr. 60. Obr. 60: Interaktivní okno pro monitorování průběhu nelineární analýzy. Obr. 61: Interaktivní okno po zvolení jiného formátu zobrazování diagramu zatížení posun. Zobrazený diagram ukazuje interaktivně změny monitorovaných veličin. 36

41 4.4 Přidávání dalších zatěžovacích kroků Jestliže výpočet prvních 20 zatěžovacích kroků proběhl, je možno specifikovat další zatěžovací kroky. V případě potřeby zadat další zatěžovací kroky se musíme přepnout do pre-procesoru pomocí tlačítka. Po výpočtu zadaných zatěžovacích kroků program automaticky vstoupí do módu Výsledky, takže je nutno se přepnout do módu Zadávání, než začneme zadávat další zatěžovací kroky. Nové zatěžovací kroky jsou zadávány analogicky jako v kapitole 3.9 přidáváním dalších položek do tabulky Výpočtové kroky. Obr. 62: Dialogový panel pro zadávání nových kroků výpočtu. Použijeme stejných parametrů jako v kapitole 3.9. Obr. 63: Tabulka kroků analýzy po zadání dalších 20 zatěžovacích kroků. Po zadání dalších zatěžovacích kroků výpočet restartujeme opět tlačítkem. 37

42 5. Post-processing 5.1 Úvod Program automaticky vstoupí do módu Výsledky ihned po skončení nebo zastavení výpočtu. Post-processing může být aktivován také tlačítkem. Tato operace má samozřejmě smysl pouze tehdy, když výpočet již proběhl, v opačném případě nejsou k dispozici výsledky, které mají být zobrazovány. 5.2 Okno post-processingu Rozvržení okna Výsledky je možno si prohlédnout na Obr. 64. Nejdříve vybereme krok výpočtu (tj. zatěžovací krok), ze kterého požadujeme výsledky. Program načte data pro požadovaný zatěžovací krok do paměti počítače a vyplní náležitě přehled dostupných výstupních veličin. Výstupní data jsou určena typem analýzy a použitým materiálovým modelem. Výběr zatěžovacího kroku, jehož výsledky mají být zobrazeny Výběr skalárních veličin pro zobrazení. Je možno zvolit izolinie, izoplochy nebo barevný přechod. Výběr zobrazování trhlin v prvcích nebo v integračních bodech prvků Výběr napětí ve výztuži pro zobrazení Obr. 64: Okno post-processingu obsahující zobrazení izoploch napětí, trhlin a napětí ve výztuži na analyzované konstrukci pro poslední 40. zatěžovací krok. 38

43 Touto volbou zobrazíme směry a velikosti hlavních poměrných přetvoření Obr. 65: Okno Výsledky se zobrazením vektorů a s vykresleným barevným přechodem hlavních poměrných přetvoření pro zatěžovací krok 40. Obr. 66: Okno Výsledky se zvětšením části konstrukce, zobrazením vektorů a barevného přechodu velikostí hlavních poměrných přetvoření pro zatěžovací krok 40. Zaškrtnutím volby Popisovat přidáme k vykresleným tenzorům i numerické hodnoty. 39

44 Pomocí těchto tlačítek zapneme zobrazování okrajových podmínek a zatížení (možno pouze pro nedeformovaný tvar konstrukce) Jestliže zvolíme výstup výsledků pro uzly sítě, výsledky nejsou mezi prvky interpolovány a je tedy možno pozorovat skoky hodnot deformace mezi prvky Obr. 67: Okno Výsledky s vykresleným barevným přechodem hodnot inženýrského poměrného přetvoření pro konečné prvky pro zatěžovací krok 40. Je možné mít otevřeno několik oken Výsledky najednou. Každé z těchto oken lze použít pro zobrazení výsledků z jiných zatěžovacích kroků. Nové okno post-processingu se otevře z hlavního menu volbou Okna Nový Pohled. Aktivní okno Výsledky lze vytisknout volbou položky Soubor Grafický tisk z hlavního menu, nebo zkopírovat do schránky pomocí Úpravy Kopírovat obrázek. Zkopírovaný obrázek lze vložit například do dokumentu Microsoft Word. Obrázek zůstane i nadále ve vektorovém formátu, takže je možno ho jednoduše zvětšovat či zmenšovat při zachování původního rozlišení pro tisk. 40

45 5.3 Zatěžovací diagramy Důležité informace o chování konstrukce se dají získat z údajů shromážděných během výpočtu v monitorovacích bodech. V našem případě jsme monitorovali sílu v místě přiložení zatížení a maximální svislý posun ve středu nosníku na jeho spodním líci. Diagram závislosti zatížení na přetvoření může být zobrazen jako další okno Výsledky kliknutím na položku Okna Nový Graf v hlavním menu. Na displeji se objeví prázdné okno a následuje výběr veličin, jež mají být naneseny na osy X a Y do grafu. Obr. 68: Zatěžovací diagram. Ke změnám vzhledu diagramu se používají tlačítka v pravém horním rohu okna grafu. Tlačítkem vybereme typ grafu, kdy jsou zobrazena monitorovaná data pouze z konce zatěžovacího kroku, tlačítkem zobrazíme veličiny tak, jak se měnily během iterace. Tlačítka se používají pro změnu kvadrantu grafu, kde má být závislost zatížení na přetvoření vynesena. Vybraný zatěžovací diagram lze vytisknout nebo zkopírovat do schránky stejným způsobem jako je to popsáno v předcházející kapitole. Číselné hodnoty monitorovaných veličin se získají z textového výstupu, který bude popsán v kapitole

46 5.4 Textový výstup Tato část popisuje další formu výstupu z programu ATENA 2D. Textový výstup se používá ke zjištění číselných hodnot veličin v uzlech prvků sítě, v integračních bodech prvků nebo monitorech. Objeví se na displeji po zvolení položky Soubor Textový výstup z hlavního menu. Tato akce otevře okno zobrazené na Obr. 69. Okno textového výstupu je složeno ze dvou hlavních částí. Levá část obsahuje stromovou strukturu dostupných typů vstupních i výstupních dat. Požadovaná data se zaškrtnou v tomto stromě a po kliknutí na tlačítko Generate se vytvoří alfanumerický výstup v pravé části okna. Obsah této části je možno vytisknout, uložit do souboru nebo zkopírovat do jiného programu pomocí schránky. Obr. 69: Okno programu pro definici a výpis výsledků analýzy v textové podobě. 42

47 5.5 Informace o průběhu výpočtu Program ATENA 2D se skládá z několika modulů. Dva hlavní moduly jsou grafické uživatelské rozhraní (Graphical User Interface GUI) a výpočetní modul. Navzájem spolu komunikují pomocí rozhraní Microsoft COM (Component Object Model) a také pomocí čtyř záložek. Obsah těchto záložek pro každý zatěžovací krok je možno prozkoumat volbou položky Výpočty Informace o průběhu výpočtu v hlavním menu. Tato akce otevře na displeji vašeho počítače následující okno: Obr. 70: Okno Informace o výpočtu obsahuje vstupní a výstupní soubory z průběhu výpočtu metodou konečných prvků. Pro každý zatěžovací krok je možné prohlédnout si obsah těchto čtyř záložek, příslušné informace jsou umístěny v záložce odpovídajícího označení. Zatěžovací krok se vybírá z rolovacího seznamu v horní části okna. V záložce se vstupními daty jsou obsaženy příkazy, které proběhly mezi modulem GUI a výpočetním modulem. Pro první krok záložka obsahuje definici numerického modelu, v následujících zatěžovacích krocích definici podpor, zatížení a parametrů výpočtu. Formát tohoto soboru je popsán v manuálu ATENA Input File Format manual [4] (v angličtině). Pokročilí uživatelé mohou s užitkem modifikovat tento soubor před spuštěním analýzy. Aby byla tato akce uživateli umožněna, je třeba zaškrtnout příslušnou volbu, a to 43

Dokumentace programu ATENA Část 4-1. Průvodce programem ATENA 2D. Napsali: Jan Červenka, Václav Veselý

Dokumentace programu ATENA Část 4-1. Průvodce programem ATENA 2D. Napsali: Jan Červenka, Václav Veselý Červenka Consulting s.r.o. Na Hřebenkách 55 150 00 Praha 5 Tel.: +420 220 610 018 E-mail: cervenka@cervenka.cz Web: http://www.cervenka.cz Dokumentace programu ATENA Část 4-1 Průvodce programem ATENA 2D

Více

Beton 3D Výuková příručka Fine s. r. o. 2010

Beton 3D Výuková příručka Fine s. r. o. 2010 Zadání Cílem tohoto příkladu je navrhnout a posoudit výztuž šestiúhelníkového železobetonového sloupu (výška průřezu 20 cm) o výšce 2 m namáhaného normálovou silou 400 kn, momentem My=2,33 knm a momentem

Více

Výpočet sedání kruhového základu sila

Výpočet sedání kruhového základu sila Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody

Více

Analýza ŽB nosníku pomocí ATENA Engineering 2D

Analýza ŽB nosníku pomocí ATENA Engineering 2D Analýza ŽB nosníku pomocí ATENA Engineering 2D Petr Bílý kancelář B731 e-mail: petr.bily@fsv.cvut.cz web: people.fsv.cvut.cz/www/bilypet1 Popis konstrukce, zatěžovací schéma Odhad výsledků VŽDY MUSÍM JIŽ

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

FIN3D Výukovápříručka

FIN3D Výukovápříručka www.fine.cz FIN3D Výukovápříručka Zadání Tento příklad ukáže výpočet a posouzení konstrukce zobrazené na obrázku. Sloupy jsou z trubek, trámy profil I. Materiál ocel Fe 360. Zatížení na trámy je svislé

Více

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Inženýrský manuál č. 37 Aktualizace: 9/2017 Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Soubor: Demo_manual_37.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Konsolidace

Více

Nelineární analýza ohýbaného nosníku pomocí ATENA Engineering 2D

Nelineární analýza ohýbaného nosníku pomocí ATENA Engineering 2D Nelineární analýza ohýbaného nosníku pomocí ATENA Engineering 2D Petr Bílý kancelář B731 e-mail: petr.bily@fsv.cvut.cz web: people.fsv.cvut.cz/www/bilypet1 Terminologie Materiálová nelinearita neplatí

Více

Výpočet sedání terénu od pásového přitížení

Výpočet sedání terénu od pásového přitížení Inženýrský manuál č. 21 Aktualizace 06/2016 Výpočet sedání terénu od pásového přitížení Program: Soubor: MKP Demo_manual_21.gmk V tomto příkladu je řešeno sednutí terénu pod přitížením pomocí metody konečných

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání

Více

Postup zadávání základové desky a její interakce s podložím v programu SCIA

Postup zadávání základové desky a její interakce s podložím v programu SCIA Postup zadávání základové desky a její interakce s podložím v programu SCIA Tloušťka desky h s = 0,4 m. Sloupy 0,6 x 0,6m. Zatížení: rohové sloupy N 1 = 800 kn krajní sloupy N 2 = 1200 kn střední sloupy

Více

Možnosti tisku v MarushkaDesignu

Možnosti tisku v MarushkaDesignu 0 Možnosti tisku v MarushkaDesignu OBSAH 1 CÍL PŘÍKLADU...2 2 PRÁCE S PŘÍKLADEM...2 3 UKÁZKA DIALOGOVÉHO OKNA...3 4 STRUČNÝ POPIS PŘÍKLADU V MARUSHKADESIGNU...5-1 - 1 Cíl příkladu V tomto příkladu si ukážeme

Více

Budovy a místnosti. 1. Spuštění modulu Budovy a místnosti

Budovy a místnosti. 1. Spuštění modulu Budovy a místnosti Budovy a místnosti Tento modul představuje jednoduchou prohlížečku pasportizace budov a místností VUT. Obsahuje detailní přehled všech budov a místností včetně fotografií, výkresů objektů, leteckých snímků

Více

Tutoriál programu ADINA

Tutoriál programu ADINA Nelineární analýza materiálů a konstrukcí (V-132YNAK) Tutoriál programu ADINA Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2010 1 Výstupy programu ADINA: Preprocesor

Více

Posouzení mikropilotového základu

Posouzení mikropilotového základu Inženýrský manuál č. 36 Aktualizace 06/2017 Posouzení mikropilotového základu Program: Soubor: Skupina pilot Demo_manual_36.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu GEO5 SKUPINA

Více

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28. Zdokonalování gramotnosti v oblasti ICT Kurz MS Excel kurz 6 1 Obsah Kontingenční tabulky... 3 Zdroj dat... 3 Příprava dat... 3 Vytvoření kontingenční tabulky... 3 Možnosti v poli Hodnoty... 7 Aktualizace

Více

BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY. AUTOR: Ing. MARTIN HORÁČEK, Ph.D.

BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY. AUTOR: Ing. MARTIN HORÁČEK, Ph.D. BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY AUTOR: Ing. MARTIN HORÁČEK, Ph.D. Obsah Stanovení pérové konstanty poddajné podpory... - 3-1.1 Princip stanovení

Více

SCIA.ESA PT. Export a import souborů DWG a DXF

SCIA.ESA PT. Export a import souborů DWG a DXF SCIA.ESA PT Export a import souborů DWG a DXF VÍTEJTE 5 EXPORT DWG A DXF 6 Export z grafického okna programu...6 Export z Galerie obrázků...8 Export z Galerie výkresů...9 IMPORT DWG A DXF 10 Import do

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Autor: Michal Šofer Verze 0 Ostrava 2011 Zadání: Proveďte napěťovou analýzu součásti s kruhovým vrubem v místě

Více

2 PŘÍKLAD IMPORTU ZATÍŽENÍ Z XML

2 PŘÍKLAD IMPORTU ZATÍŽENÍ Z XML ROZHRANÍ ESA XML Ing. Richard Vondráček SCIA CZ, s. r. o., Thákurova 3, 160 00 Praha 6 www.scia.cz 1 OTEVŘENÝ FORMÁT Jednou z mnoha užitečných vlastností programu ESA PT je podpora otevřeného rozhraní

Více

pro začátečníky pro pokročilé na místě (dle požadavků zákazníka)

pro začátečníky pro pokročilé na místě (dle požadavků zákazníka) Semináře pro začátečníky pro pokročilé na místě (dle požadavků zákazníka) Hotline telefonická podpora +420 571 894 335 vzdálená správa informační email carat@technodat.cz Váš Tým Obsah Obsah... -2- Úvod...

Více

Formátování pomocí stylů

Formátování pomocí stylů Styly a šablony Styly, šablony a témata Formátování dokumentu pomocí standardních nástrojů (přímé formátování) (Podokno úloh Zobrazit formátování): textu jsou přiřazeny parametry (font, velikost, barva,

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky VŠB- Technická univerzita Ostrava akulta strojní Katedra pružnosti a pevnosti Úvod do KP Autor: ichal Šofer Verze Ostrava Úvod do KP Zadání: Určete horizontální a vertikální posun volného konce stojanu

Více

SCIA.ESA PT. Galerie obrázků

SCIA.ESA PT. Galerie obrázků SCIA.ESA PT Galerie obrázků 2 VÍTEJTE 5 SPRÁVCE GALERIE OBRÁZKŮ 6 Otevření Galerie obrázků...6 Vložení obrázku z okna do galerie...7 Průvodce tvorbou obrázků...7 Řezy rovinami čárového rastru (generované

Více

tohoto systému. Můžeme propojit Mathcad s dalšími aplikacemi, jako je Excel, MATLAB, Axum, nebo dokumenty jedné aplikace navzájem.

tohoto systému. Můžeme propojit Mathcad s dalšími aplikacemi, jako je Excel, MATLAB, Axum, nebo dokumenty jedné aplikace navzájem. 83 14. (Pouze u verze Mathcad Professional) je prostředí pro přehlednou integraci a propojování aplikací a zdrojů dat. Umožní vytvořit složitý výpočtový systém a řídit tok dat mezi komponentami tohoto

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Základy parametrického modelování Skicovací nástroje

Více

Postupy práce se šablonami IS MPP

Postupy práce se šablonami IS MPP Postupy práce se šablonami IS MPP Modul plánování a přezkoumávání, verze 1.20 vypracovala společnost ASD Software, s.r.o. dokument ze dne 27. 3. 2013, verze 1.01 Postupy práce se šablonami IS MPP Modul

Více

Práce s programem MPVaK

Práce s programem MPVaK Práce s programem MPVaK Tato informace popisuje postup práce s programem "MPVaK Vybrané údaje z majetkové a Vybrané údaje z provozní evidence. Jsou v ní popsány nejdůležitější úlohy, které budete s programem

Více

MANUÁL VÝPOČTOVÉHO SYSTÉMU W2E (WASTE-TO-ENERGY)

MANUÁL VÝPOČTOVÉHO SYSTÉMU W2E (WASTE-TO-ENERGY) MANUÁL VÝPOČTOVÉHO SYSTÉMU W2E (WASTE-TO-ENERGY) 0 1. PRACOVNÍ PLOCHA Uspořádání a vzhled pracovní plochy, se kterým se uživatel během práce může setkat, zobrazuje obr. 1. Obr. 1: Uspořádání pracovní plochy

Více

MANUÁL administrátora elektronické spisové služby

MANUÁL administrátora elektronické spisové služby MANUÁL administrátora elektronické spisové služby Administrace obálek a sestav (NÁVRHÁŘ) 1 PilsCom, s.r.o. OBSAH 1. NÁVRHÁŘ OBECNĚ... 3 2. NASTAVENÍ MS INTERNET EXPLORERU... 4 3. SPUŠTĚNÍ NÁVRHÁŘE OBÁLKY...

Více

Microsoft Office PowerPoint 2003

Microsoft Office PowerPoint 2003 Microsoft Office PowerPoint 2003 Školení učitelů na základní škole Meteorologická Maturitní projekt SSPŠ 2013/2013 Vojtěch Dušek 4.B 1 Obsah 1 Obsah... 2 2 Seznam obrázků... 4 3 Základy programu PowerPoint...

Více

verze Grafický editor PALSTAT s.r.o. systémy řízení jakosti PALSTAT CAQ 1 Obsah

verze Grafický editor PALSTAT s.r.o. systémy řízení jakosti PALSTAT CAQ 1 Obsah 1 Obsah 1 Obsah... 1 2 Úvod... 2 2.1 Výhody... 2 2.2 Základní ovládání... 2 3 Menu... 3 3.1 Menu Soubor... 3 3.1.1 Menu Soubor / Nový... 3 3.1.2 Menu Soubor / Otevřít... 3 3.1.3 Menu Soubor / Otevřít podle

Více

IDEA Corbel 5. Uživatelská příručka

IDEA Corbel 5. Uživatelská příručka Uživatelská příručka IDEA Corbel IDEA Corbel 5 Uživatelská příručka Uživatelská příručka IDEA Corbel Obsah 1.1 Požadavky programu... 3 1.2 Pokyny k instalaci programu... 3 2 Základní pojmy... 4 3 Ovládání...

Více

KAPITOLA 3 - ZPRACOVÁNÍ TEXTU

KAPITOLA 3 - ZPRACOVÁNÍ TEXTU KAPITOLA 3 - ZPRACOVÁNÍ TEXTU KLÍČOVÉ POJMY textové editory formát textu tabulka grafické objekty odrážky a číslování odstavec CÍLE KAPITOLY Pracovat s textovými dokumenty a ukládat je v souborech různého

Více

Zpravodaj. Uživatelská příručka. Verze

Zpravodaj. Uživatelská příručka. Verze Zpravodaj Uživatelská příručka Verze 02.01.02 1. Úvod... 3 2. Jak číst tuto příručku... 4 3. Funkčnost... 5 3.1. Seznam zpráv... 5 4. Ovládání programu... 6 4.1. Hlavní okno serveru... 6 4.2. Seznam zpráv...

Více

Uživatelské rozhraní grafického zadávání

Uživatelské rozhraní grafického zadávání 24.02.2014 Seznam změn Truss 4.6 Firma Fine s.r.o. připravila verzi 4.6 programu Truss. Tato verze přináší následující změny a vylepšení: Grafické zadávání Rovinné (2D) pracovní plochy nyní umožňují přímé

Více

Pružné oblasti (oblasti bez plasticity) Program: MKP

Pružné oblasti (oblasti bez plasticity) Program: MKP Pružné oblasti (oblasti bez plasticity) Program: MKP Soubor: Demo_manual_34.gmk Inženýrský manuál č. 34 Aktualizace: 04/2016 Úvod Při zatížení zeminy napětím, jehož hodnota dosáhne meze plasticity, dojde

Více

Obsah. 1. Obecná vylepšení Úpravy Prvky Zatížení Výpočet Posudky a výsledky Dokument...

Obsah. 1. Obecná vylepšení Úpravy Prvky Zatížení Výpočet Posudky a výsledky Dokument... Novinky 2/2016 Obsah 1. Obecná vylepšení...3 2. Úpravy...7 3. Prvky...9 4. Zatížení... 11 5. Výpočet...4 6. Posudky a výsledky...5 7. Dokument...8 2 1. Obecná vylepšení Nové možnosti otáčení modelu, zobrazení

Více

GEOM LITE - MANUÁL hlavní obrazovka

GEOM LITE - MANUÁL hlavní obrazovka GEOM LITE - MANUÁL hlavní obrazovka Levý panel Pomoci levého panelu je možné vybírat aktivní vrstvy, měnit jejich průhlednost a pořadí. V dolní části je zobrazena legenda. Horní panel V horním panelu se

Více

Návrh nekotvené pažící stěny

Návrh nekotvené pažící stěny Inženýrský manuál č. 4 Aktualizace 03/2018 Návrh nekotvené pažící stěny Program: Pažení návrh Soubor: Demo_manual_04.gp1 V tomto inženýrském manuálu je popsán návrh nekotvené pažící stěny na trvalé i mimořádné

Více

MIDAS GTS. gram_txt=gts

MIDAS GTS. gram_txt=gts K135YGSM Příklady (MIDAS GTS): - Plošný základ lineární výpočet a nelineární výpočet ve 2D MKP - Stabilita svahu ve 2D a 3D MKP - Pažící konstrukce ve 2D a 3D MKP MIDAS GTS http://en.midasuser.com http://departments.fsv.cvut.cz/k135/cms/?pa

Více

MS Wodrd pro pokročilé

MS Wodrd pro pokročilé MS Wodrd pro pokročilé 1.11.5 ÚPRAVA VLOŽENÉHO OBRÁZKU Jak jsme si již uvedli, vybraný obrázek se vloží do dokumentu na místo, kam jste umístili (zanechali) kurzor myši. Takto vložený obrázek má statickou

Více

METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ Formátování textu Text formátujeme (určujeme jeho vlastnosti) na pásu karet DOMŮ. U textu můžeme formátovat font, velikost písma, řez, barvu písma, barvu

Více

IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL

IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL Jaromír Křížek OBSAH 1 ÚVOD... 3 2 INSTALACE... 4 2.1 SYSTÉMOVÉ POŽADAVKY... 5 2.2 SPUŠTĚNÍ IBRIDGE 1.0... 5 3 HLAVNÍ MENU... 6 3.1 MENU FILE... 6 3.2 MENU SETTINGS... 6

Více

VÝUKA PČ NA 2. STUPNI základy technického modelování. Kreslící a modelovací nástroje objekty, čáry

VÝUKA PČ NA 2. STUPNI základy technického modelování. Kreslící a modelovací nástroje objekty, čáry VÝUKA PČ NA 2. STUPNI základy technického modelování Kreslící a modelovací nástroje objekty, čáry Název šablony: III/2-9, Výuka PČ na 2. stupni základy technického modelování Číslo a název projektu: CZ.1.07/1.4.00/21.3443,

Více

Advance Design 2014 / SP1

Advance Design 2014 / SP1 Advance Design 2014 / SP1 První Service Pack pro ADVANCE Design 2014 přináší několik zásadních funkcí a více než 240 oprav a vylepšení. OBECNÉ [Réf.15251] Nová funkce: Možnost zahrnout zatížení do generování

Více

Zjednodušený manuál aplikace GSWeb

Zjednodušený manuál aplikace GSWeb Zjednodušený manuál aplikace GSWeb Názorné příklady verze 1.3 Obsah Úvod... 2 Seznámení s aplikací... 3 Připojování Vrstev... 4 Zobrazení rastrového podkladu... 6 Lokalizace... 7 Tisk... 8 Tematizace...

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Betonové konstrukce II - BL09. Studijní podklady. Příručka na vytvoření matematického modelu lokálně podepřené desky pomocí programu Scia Engineer

Betonové konstrukce II - BL09. Studijní podklady. Příručka na vytvoření matematického modelu lokálně podepřené desky pomocí programu Scia Engineer CZ.1.07/2.2.00/15.0426 Posílení kvality bakalářského studijního programu Stavební Inženýrství Betonové konstrukce II - BL09 Studijní podklady Příručka na vytvoření matematického modelu lokálně podepřené

Více

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního

Více

Obsah. Výkon a stabilita... 6 Nové nastavení / možnosti... 7

Obsah. Výkon a stabilita... 6 Nové nastavení / možnosti... 7 Obsah VÍTEJTE V ADVANCE CONCRETE 2012... 5 OBECNÉ... 6 Výkon a stabilita... 6 Nové nastavení / možnosti... 7 MODELOVÁNÍ... 8 Označené konce prvků při jejich výběru... 8 Výkaz materiálů (BOM) Možnost nastavit

Více

NEXIS 32 rel. 3.60 Samostatný betonový průřez

NEXIS 32 rel. 3.60 Samostatný betonový průřez SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

VOZIDLA. Uživatelská příručka SeeMe - Ecofleet. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace

VOZIDLA. Uživatelská příručka SeeMe - Ecofleet. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace alarmy do vozidel, sledování úbytku paliva a další služby VOZIDLA Uživatelská příručka SeeMe - Ecofleet Identifikace IČO:28550650 Rejstříkový soud: Praha, Oddíl C vložka 149630 Systémové požadavky... 3

Více

DUM 02 téma: Corel - křivky

DUM 02 téma: Corel - křivky DUM 02 téma: Corel - křivky ze sady: 1 tematický okruh sady: Vektorová grafika ze šablony: 09 Počítačová grafika určeno pro: 2. ročník vzdělávací obor: vzdělávací oblast: číslo projektu: anotace: metodika:

Více

Práce v programu Word 2003

Práce v programu Word 2003 Práce v programu Word 2003 Prostředí programu WORD 2003 Program WORD 2003 slouží k psaní textů, do kterých je možné vkládat různé obrázky, tabulky a grafy. Vytvořené texty se ukládají, jako dokumenty s

Více

Numerické řešení pažící konstrukce

Numerické řešení pažící konstrukce Inženýrský manuál č. 24 Aktualizace 06/2016 Numerické řešení pažící konstrukce Program: MKP Soubor: Demo_manual_24.gmk Cílem tohoto manuálu je vypočítat deformace kotvené stěny z ocelových štětovnic a

Více

Obsah Přehled existujících a evidence nových klientů... 3 Přehled foto-záznamů... 4 Nahrávání foto-záznamů... 6 Analýza foto-záznamů...

Obsah Přehled existujících a evidence nových klientů... 3 Přehled foto-záznamů... 4 Nahrávání foto-záznamů... 6 Analýza foto-záznamů... 1 Obsah 1. Přehled existujících a evidence nových klientů... 3 1.1. Filtrování, vyhledávání údajů... 4 2. Přehled foto-záznamů... 4 3. Nahrávání foto-záznamů... 6 3.1. Změna velikosti foto-záznamu... 7

Více

BALISTICKÝ MĚŘICÍ SYSTÉM

BALISTICKÝ MĚŘICÍ SYSTÉM BALISTICKÝ MĚŘICÍ SYSTÉM UŽIVATELSKÁ PŘÍRUČKA Verze 2.3 2007 OBSAH 1. ÚVOD... 5 2. HLAVNÍ OKNO... 6 3. MENU... 7 3.1 Soubor... 7 3.2 Měření...11 3.3 Zařízení...16 3.4 Graf...17 3.5 Pohled...17 1. ÚVOD

Více

MS SQL Server 2008 Management Studio Tutoriál

MS SQL Server 2008 Management Studio Tutoriál MS SQL Server 2008 Management Studio Tutoriál Vytvoření databáze Při otevření management studia a připojením se ke konkrétnímu sql serveru mám v levé části panel s názvem Object Explorer. V tomto panelu

Více

Kapitola 24. Numerické řešení pažící konstrukce

Kapitola 24. Numerické řešení pažící konstrukce Kapitola 24. Numerické řešení pažící konstrukce Cílem tohoto manuálu je vypočítat deformace kotvené stěny z ocelových štětovnic a dále zjistit průběhy vnitřních sil pomocí metody konečných prvků. Zadání

Více

Svolávací systém Uživatelský manuál

Svolávací systém Uživatelský manuál Uživatelský manuál TTC TELEKOMUNIKACE, s.r.o. Třebohostická 987/5 100 00 Praha 10 tel.: 234 052 111 fax.: 234 052 999 e-mail: ttc@ttc.cz http://www.ttc-telekomunikace.cz Datum vydání: 14. srpna 2013 Číslo

Více

Začínáme pracovat s tabulkovým procesorem MS Excel

Začínáme pracovat s tabulkovým procesorem MS Excel Začínáme pracovat s tabulkovým procesorem MS Excel Nejtypičtějším představitelem tabulkových procesorů je MS Excel. Je to pokročilý nástroj pro tvorbu jednoduchých i složitých výpočtů a grafů. Program

Více

Tvorba prezentaci v Autodesk Inventoru 10

Tvorba prezentaci v Autodesk Inventoru 10 Tvorba prezentaci v Autodesk Inventoru 10 Příprava montážní dokumentace vyžaduje věnovat zvýšenou pozornost postupu sestavování jednotlivých strojních uzlů a detailům jednotlivých komponentů. Inventoru

Více

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova

Více

Uživatelský manuál. Aplikace GraphViewer. Vytvořil: Viktor Dlouhý

Uživatelský manuál. Aplikace GraphViewer. Vytvořil: Viktor Dlouhý Uživatelský manuál Aplikace GraphViewer Vytvořil: Viktor Dlouhý Obsah 1. Obecně... 3 2. Co aplikace umí... 3 3. Struktura aplikace... 4 4. Mobilní verze aplikace... 5 5. Vytvoření projektu... 6 6. Části

Více

MS OFFICE POWER POINT 2010

MS OFFICE POWER POINT 2010 MS OFFICE POWER POINT 2010 Program Power Point patří do rodiny programů Microsoft Office a slouží ke tvorbě prezentací. Prezentace je tvořena snímky, které jsou postupně zobrazovány a to buď po nějaké

Více

Pravidla a plánování

Pravidla a plánování Administrátorský manuál TTC TELEKOMUNIKACE, s.r.o. Třebohostická 987/5 100 00 Praha 10 tel.: 234 052 111 fax.: 234 052 999 e-mail: ttc@ttc.cz http://www.ttc-telekomunikace.cz Datum vydání: 7. května 2013

Více

Rektifikace rastrových dat

Rektifikace rastrových dat Rektifikace rastrových dat Při rektifikaci převádíme rastrová data do příslušného souřadného systému tak, aby byly na svém správném místě a bylo možné tyto data kombinovat s jinými daty. Například letecký

Více

Cvičení 6 PARAMETRICKÉ 3D MODELOVÁNÍ TVORBA VÝKRESU OBROBKU Inventor Professional 2012

Cvičení 6 PARAMETRICKÉ 3D MODELOVÁNÍ TVORBA VÝKRESU OBROBKU Inventor Professional 2012 Cvičení 6 PARAMETRICKÉ 3D MODELOVÁNÍ TVORBA VÝKRESU OBROBKU Inventor Professional 2012 Cílem cvičení je osvojit si základní postupy tvorby výkresu dle platných norem na modelu obrobeného odlitku, který

Více

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu

Více

Základní vzorce a funkce v tabulkovém procesoru

Základní vzorce a funkce v tabulkovém procesoru Základní vzorce a funkce v tabulkovém procesoru Na tabulkovém programu je asi nejzajímavější práce se vzorci a funkcemi. Když jednou nastavíte, jak se mají dané údaje zpracovávat (některé buňky sečíst,

Více

Prohlížení a editace externích předmětů

Prohlížení a editace externích předmětů Prohlížení a editace externích předmětů 1. Spuštění modulu Externí předměty 2. Popis prostředí a ovládacích prvků 2.1. Rozbalovací seznamy 2.3. Seznamy 2.3.1. Definice předmětů 2.3.2. Vypsané předměty

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Ovládání mapového prohlížeče a aplikace. Šumperk : Mapa města

Ovládání mapového prohlížeče a aplikace. Šumperk : Mapa města Ovládání mapového prohlížeče a aplikace Šumperk : Mapa města Úvod Aplikace má pouze informativní charakter a data z ní zobrazená nejsou právně závazná. Aplikace je zpracována tak, aby zobrazovala jednu

Více

PEPS. CAD/CAM systém. Cvičebnice DEMO. Modul: Drátové řezání

PEPS. CAD/CAM systém. Cvičebnice DEMO. Modul: Drátové řezání PEPS CAD/CAM systém Cvičebnice DEMO Modul: Drátové řezání Cvičebnice drátového řezání pro PEPS verze 4.2.9 DEMO obsahuje pouze příklad VII Kopie 07/2001 Blaha Technologie Transfer GmbH Strana: 1/16 Příklad

Více

Spuštění a ukončení databázové aplikace Access

Spuštění a ukončení databázové aplikace Access Spuštění a ukončení databázové aplikace Access Aplikaci Access spustíte tak, že vyhledáte její ikonu v nabídce "Start" a klepnete na ní. Najdete ho v Sekci Všechny programy/mircosoft Office. Po výběru

Více

6. Formátování: Formátování odstavce

6. Formátování: Formátování odstavce 6. Formátování: Formátování odstavce Obrázek 1: Formát / Odstavec Odstavec je text mezi dvěma znaky konce odstavce. Konec odstavce je skrytý znak a vkládáme jej během psaní při každém stisknutí klávesy

Více

Windows Live Movie Maker

Windows Live Movie Maker Windows Live Movie Maker Tento program slouží k vytváření vlastních filmů, která se mohou skládat z fotografií, videí, titulků a zvuku. Movie Maker je součástí instalace operačního systému Windows 7 a

Více

Interaktivní tabule SMART Notebook

Interaktivní tabule SMART Notebook Gymnázium Ostrava Hrabůvka, příspěvková organizace Františka Hajdy 34, Ostrava Hrabůvka Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030 Interaktivní tabule

Více

Výukovápříručka. Ocelové spoje

Výukovápříručka. Ocelové spoje Výukovápříručka Ocelové spoje Obsah Oboustranný přípoj nosníku na sloup...3 Šroubovaný přípoj úhelníků na styčníkový plech...19 Šroubovaný přípoj úhelníků na styčníkový plech...28 2 Oboustranný přípoj

Více

Libor Kasl 1, Alois Materna 2

Libor Kasl 1, Alois Materna 2 SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými

Více

Zadejte ručně název první kapitoly. Manuál. Rozhraní pro program ETABS

Zadejte ručně název první kapitoly. Manuál. Rozhraní pro program ETABS Zadejte ručně název první kapitoly Manuál Rozhraní pro program ETABS Všechny informace uvedené v tomto dokumentu mohou být změněny bez předchozího upozornění. Žádnou část tohoto dokumentu není dovoleno

Více

AutoCAD výstup výkresu

AutoCAD výstup výkresu Kreslení 2D technické dokumentace AutoCAD výstup výkresu Ing. Richard Strnka, 2012 1. Výstup z AutoCADu Výklad: Výstup z programu AutoCAD je možný několika různými způsoby. Základní rozdělení je na výstup

Více

Uživatelská příručka

Uživatelská příručka Tel.: 558 646 913 Fax: 558 6626 500 Webové stránky města Kolín Uživatelská příručka Vypracovala Kateřina Klichová 28. 4. 2011 Obsah 1 Přílohy... 1 1.1 Vložení přílohy... 1 1.2 Smazání přílohy... 2 1.3

Více

SCHÉMA aplikace ObčanServer 2 MENU aplikace Mapové kompozice

SCHÉMA aplikace ObčanServer 2 MENU aplikace Mapové kompozice ObčanServer Nápověda SCHÉMA aplikace ObčanServer 2 MENU aplikace Mapové kompozice Příklady mapových kompozic Katastrální mapa Územní plán Funkční plochy Letecký snímek Pasport hřbitova Císařské otisky

Více

Kreslení a vlastnosti objektů

Kreslení a vlastnosti objektů Kreslení a vlastnosti objektů Projekt SIPVZ 2006 Řešené příklady AutoCADu Autor: ing. Laďka Krejčí 2 Obsah úlohy Procvičíte založení výkresu zadávání délek segmentů úsečky kreslící nástroje (úsečka, kružnice)

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení)

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově reg. č. projektu: CZ.1.07/1.3.11/02.0005 Sada metodických listů: KABINET INFORMATIKY Název

Více

Obslužný software. PAP ISO 9001

Obslužný software.  PAP ISO 9001 Obslužný software PAP www.apoelmos.cz ISO 9001 červen 2008, TD-U-19-20 OBSAH 1 Úvod... 4 2 Pokyny pro instalaci... 4 2.1 Požadavky na hardware...4 2.2 Postup při instalaci...4 3 Popis software... 5 3.1

Více

WDLS (BUILDINGDESIGN)

WDLS (BUILDINGDESIGN) Vysoká škola báňská Technická univerzita Ostrava Fakulta stavební METODICKÝ POSTUP PRO PRÁCI S PROGRAMEM WDLS (BUILDINGDESIGN) Vypracoval: doc. Ing. Iveta Skotnicová, Ph.D. Ing. Marcela Černíková Ing.

Více

Vlastnosti dokumentu/stránky

Vlastnosti dokumentu/stránky Vlastnosti dokumentu/stránky Formát stránky papíru pro tisk V záložce Rozložení stránky na pásu karet najdeme vše potřebné pro přípravu dokumentu před tiskem. 1) Záložka Rozložení stránky 2) Změna Orientace

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

KNIHOVNA POROTHERM PRO PROGRAM ARCHICAD 14CZ

KNIHOVNA POROTHERM PRO PROGRAM ARCHICAD 14CZ KNIHOVNA POROTHERM PRO PROGRAM ARCHICAD 14CZ Knihovna Porotherm 14 je rozdělena do dvou částí. První konstrukční část obsahuje knihovní prvky - překlady 7, překlady VARIO, překlady 11.5 a 14.5, stropní

Více

Microsoft Office. Word vzhled dokumentu

Microsoft Office. Word vzhled dokumentu Microsoft Office Word vzhled dokumentu Karel Dvořák 2011 Práce se stránkou Stránka je jedním ze stavebních kamenů tvořeného dokumentu. Představuje pracovní plochu, na které se vytváří dokument. Samozřejmostí

Více

Konstrukce součástky

Konstrukce součástky Konstrukce součástky 1. Sestrojení dvou válců, které od sebe odečteme. Vnější válec má střed podstavy v bodě [0,0], poloměr podstavy 100 mm, výška válce je 100 mm. Vnitřní válec má střed podstavy v bodě

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Tvorba výpočtového modelu MKP

Tvorba výpočtového modelu MKP Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku Autor: Michal Šofer Verze 0 Ostrava 20 Zadání: Proveďte

Více

UniLog-D. v1.01 návod k obsluze software. Strana 1

UniLog-D. v1.01 návod k obsluze software. Strana 1 UniLog-D v1.01 návod k obsluze software Strana 1 UniLog-D je PC program, který slouží k přípravě karty pro záznam událostí aplikací přístroje M-BOX, dále pak k prohlížení, vyhodnocení a exportům zaznamenaných

Více

Co je nového 2019 R2

Co je nového 2019 R2 Co je nového 2019 R2 Obsah AKTUALIZACE... 4 NOVÁ VERZE ITALSKÉ NORMY NTC 2018... 4 Změna koeficientů zatížení pro ostatní stálé zatížení... 4 Doplnění nových tříd betonu... 5 Nové a aktualizované odkazy

Více