ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK"

Transkript

1 Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon, účinnost, moment síly na hřídeli motoru a výon v obvodu cize buzeného dynama v závislosti na zatížení motoru. 3. Zjistěte otáčy asynchronního motoru v závislosti na zatížení motoru. 4. Nareslete grafy: s = f ( 2 ), cos ϕ = f ( 2 ), I = f ( 2 ), η = f ( 2 ), n = f ( 2), M = f (s). 5. Regulujte otáčy asynchronního motoru změnou frevence a nareslete graf n = f (d) a U výst. = f (d). 1. TEORETICKÝ ÚVOD 1.1 Asynchronní motor Asynchronní motor patří mezi nejpoužívanější eletricé točivé stroje, přeměňující eletricou energii, dodanou ze střídavé sítě, na energii mechanicou. Sládá se z pevné části - statoru a z otočné části - rotoru. Stator i rotor i je sestaven z transformátorových plechů, teré mají po obvodě drážy, v nichž jsou uloženy i L1 statorové, případně rotorové cívy. Rotor tvoří nejčastěji ativní vodiče spojené naráto. rotože se v čelech závitů neinduují proudy, mohou se vynechat a ativní strany vodičů se spojí čelnými ruhy, taže vytvoří tzv. lecové vinutí, zhotovené z hliníu. Statorové cívy motoru t uvažujme tři, natočené vůči sobě po obvodu statoru o úhel 120. řipojíme-li aždou cívu mezi fázový a nulový vodič třífázové sítě, potečou cívami proudy i L1 Obr. 1 Oamžité proudy třífázové sítě, i L2, i L3, vzájemně o 120 posunuté, ja znázorňuje obr. 1. Tyto proudy vytvářejí v aždé cívce magneticé pole o magneticé induci B (t), jejíž časový průběh je obdobný průběhu proudu. Kdybychom v aždém oamžiu provedli vetorový součet oamžitých hodnot magneticých inducí od všech cíve, zísali bychom výsledný vetor magneticé induce. Jeho veliost je stálá a vetor se otáčí rovnoměrně, v rovině olmé na osu rotoru. Tímto způsobem vzniá točivé magneticé pole, otáčející se synchronními otáčami n s. Jestliže do točivého pole umístíme rotor, tvořený naráto spojenými ativními vodiči, pa magneticé siločáry točivého pole jej budou protínat a ve vodičích rotoru se bude induovat eletromotoricé napětí, teré vodiči protlačí rotorový proud. Na vodiče protéané proudem a umístěné v magneticém poli pa začne působit silový moment, úměrný součinu magneticého tou a proudu. oud by se začal rotor otáčet stejnými otáčami jao točivé magneticé pole, (tj. synchronními otáčami), neinduoval by se v jeho vinutí proud a točivý silový moment by byl nulový. ři zatížení motoru vša zůstane rotor v otáčení pozadu za to- 128

2 čivým magneticým polem. Ve vinutí rotoru se induuje napětí o mitočtu, odpovídajícímu rozdílu rychlosti točivého magneticého pole a rychlosti rotoru (tzv. sluzový mitočet). ro funci tohoto motoru je tedy nezbytné, aby byla veliost otáče rotoru n vždy menší, než veliost otáče točivého pole n s. Odtud plyne taé jeho název - asynchronní. oměr n 100 = s nazýváme sluzem asynchronního motoru. Sluz bývá udáván v %, n s a n v otáčách za minutu. 1.2 Dynamo Dynamo je generátor stejnosměrného proudu. řeměňuje mechanicou energii, dodávanou např. turbinou, eletromotorem apod., v energii eletricou. Dynamo tvoří pevná část, stator s pólovými nástavci, na nichž jsou navinuty budicí cívy, a pohyblivý rotor, rovněž s navinutými cívami. roud procházející budicími cívami vytváří mezi pólovými nástavci magneticé pole, jehož magneticý to Φ se uzavírá přes otvu (rotor) mezi pólovými nástavci. Ve vodičích rotoru, teré se v tomto magneticém poli pohybují, se induuje střídavé napětí u. Jeho veliost je pro směr pohybu vodiče olmého indučním čarám dána vztahem u = B l v, (de B je induce magneticého pole, l je ativní déla vodiče a v je obvodová rychlost vodiče rotoru). Aby zísané napětí bylo stejnosměrné, musí být once jednotlivých cíve rotoru připojené půlruhovým, vzájemně izolovaným segmentům, teré tvoří omutátor. Na omutátor dosedají dva sběrné artáče. V oamžiu, dy ve vodiči dochází e změně směru induovaného napětí, once cívy si při svém pohybu vymění sběrné artáče, na nichž tím zůstává polarita odebíraného induovaného napětí stále stejná. oud bychom si znázornili průběh napětí induovaného jednou cívou, (viz obr. 2a), vidíme, že výsledné napětí je tepavé. Hodnota napětí se mění od nuly do maxima. roto bývá rotor onstruován z více cíve, taže se tepavost napětí téměř odstraní (obr. 2b). Veliost induovaného napětí se určí ze vztahu U = Φ n, de Φ - je magneticý to mezi pólovými nástavci statoru, n - jsou otáčy poháněného rotoru, - je onstanta, terá závisí na onstruci dynama. odle způsobu zapojení budicího vinutí rozlišujeme dynamo s cizím buzením a dynamo derivační. (Další možnosti jsou dynama sériová a ompaundní, nejsou vša předmětem úlohy) Dynamo s cizím buzením u t a) b) Obr. 2 Tepavé napětí a) jedné cívy b) více cíve Toto dynamo má budicí cívy, vytvářející magneticý to statoru, napájené ze zvláštního (cizího) stejnosměrného zdroje. Taové zapojení je užito při zatěžování asynchronního motoru. Zatěžovací charateristia, tj. U D = f (I D ), má taový průběh, dy s rostoucím odebíraným proudem z dynama napětí U D jen pozvolna lesá. Zdroje napětí s tímto průběhem charateristiy se nazývají napěťově tvrdé. u t 129

3 1.3 Regulace eletricého výonu a otáče motorů Eletricý výon regulujeme zpravidla tím, že měníme napětí nebo proud příslušným obvodem. Nejjednodušší způsob spočívá v zařazení reostatu do obvodu. Reostatem měníme celový odpor obvodu a tím na záladě Ohmova záona i proud obvodem. Nevýhodou je, že na odporu reostatu se též ztrácí výon, terý se mění v teplo, a často je nutno dodat další výon ve formě proudu chladicího média. rotože vzniají ztráty na regulačním prvu, nazýváme tuto regulaci ztrátovou. Současně s regulací eletricého výonu se mění i otáčy motoru. Otáčy motoru můžeme regulovat nejen zátěží ale i změnou frevence. 2. RINCI MĚŘENÍ 2.1 Zatěžování asynchronního motoru otřebujeme-li měřit asynchronní motor při různém zatížení, je možné tuto proměnnou zátěž realizovat ta, že hřídel motoru AM spojíme s hřídelí dynama D. Na obr. 3 je toto spojení vyznačeno tečovaně. Asynchronní motor pohání cize buzené dynamo, teré pracuje jao generátor stejnosměrného napětí. Budicí vinutí dynama BV je připojeno na samostatný zdroj stejnosměrného napětí. Napětí vyrobené dynamem se z rotoru dynama odvádí přes artáčy do zatěžovacích odporů R Z, de se eletricá energie mění v teplo. oud jsou reostaty R Z plně zařazené, prochází obvodem dynama malý proud a dynamo brzdí hřídel asynchronního motoru malou silou, tedy zatížení asynchronního motoru je malé. ostupným vyřazováním reostatů se zvětšuje proud, odebíraný z dynama a tím se zvětšuje brzdicí síla na hřídeli asynchronního motoru. Odváděný výon z dynama je 3 = UD ID. (1) Hodnoty U D, I D jsou měřeny v obvodu dynama stejnosměrným voltmetrem V D a ampérmetrem A D. L 2 L 3 E AM A D Obr. 3 Schéma zapojení zátěže dynama V V D + BV D R Z1 R Z2 R Z3 R Z4 2.2 Měření příonu asynchronního motoru Mění-li se zatížení asynchronního motoru, mění se též příon, terý motor odebírá ze sítě. Napětí a proud odebíraný motorem jsou vůči sobě posunuty o fázový posun ϕ, proto rozlišujeme zdánlivý příon S, jalový příon j a činný příon motoru. ři měření příonu budeme předpoládat, že napětí mezi vodiči jsou stejná (symetricá síť) a taé zátěž je symetricá, taže proudy odebírané motorem, teoucí v jednotlivých fázových vodičích, jsou shodné. a pro zdánlivý příon trojfázového motoru platí: S = 3 U f I f. (2) de U f je fázové napětí, měřené mezi fázovým a nulovým vodičem, I f je proud procházející jednou fází. Jednotou zdánlivého příonu je voltampér (VA). Napětí U f je podle obr. 4 měřeno střídavým voltmetrem V, fázový proud I f ampérmetrem A. 130

4 Činný příon 1 jedné fáze je dán vztahem 1 = U f I f cos ϕ. odle obr. 4 je činný příon měřen wattmetrem W, jehož proudová cíva je zapojena ve fázovém vodiči, napěťová cíva je vstupní svorou připojena místu vstupu proudu do proudové cívy a výstupní svora je spojena se středním vodičem N. Kostra motoru se z bezpečnostních důvodů spojuje s ochranným vodičem E. Napěťová cíva je ta připojena na fázové napětí U f. Výsledný činný příon odebíraný motorem je = 3 1 a 1 = W d 1, (3) de d 1 je údaj wattmetru v dílcích a W je onstanta wattmetru. Má-li wattmetr nastaven napěťový rozsah na hodnotu U W a proudový rozsah na hodnotu I W a má-li stupnice počet dílů d, pa onstanta wattmetru je U I d W W W =. (4) Jednotou činného příonu je watt. Jalový příon jedné fáze je j1 = Uf If sinϕ. (5) Celový jalový příon třífázového spotřebiče je roven součtu jalových příonů jednotlivých fází. U symetricé sítě i zátěže je celový jalový příon = 3 = 3U I sinϕ. (6) j j1 f f Jednotou pro jalový výon je var (voltampér reatanční). Jalový příon asynchronního motoru je možno měřit zapojením wattmetru podle obr. 5. roudová cíva je zapojena ve fázi a napěťová cíva se připojí na sdružené napětí U s zbývajících fází, tj. mezi vodiče L 2 a L 3. U s Dosazením za Uf do vztahu (6) dostaneme: 3 Us j = 3 If sinϕ, 3 = 3U I sinϕ. (6a) j s f oud je napěťový rozsah cívy wattmetru nižší než sdružené napětí sítě U s, pa je nutno zvýšit napěťový rozsah cívy zařazením předřadného odporu R p do série s napěťovou cívou wattmetru (viz obr.5). ro veliost R p platí R p = (n - 1) R V, (7) L 2 L 3 N E Obr. 4 Schéma zapojení napájení asynchronního motoru L 2 L 3 E A V W W j R p AM AM Obr. 5 Zapojení předřadného odporu R p 131

5 de R V je odpor napěťové cívy wattmetru a n je poměr mezi sdruženým napětím U s a nastaveným rozsahem U W na wattmetru. ro napětí U s = 380 V uvažujeme pro výpočet hodnotu U s = 360 V. V tomto případě Us 360 n = =. (8) U U W W Konstantu wattmetru pa určíme ze vztahu UW IW IW j = =. (9) d UW d Uazuje-li ruča na stupnici wattmetru d j dílů, bude jalový příon = 3 d. (10) j j j Známe-li zdánlivý a činný příon, pa platí S 2 2 j =. (11) Hodnota činného i jalového příonu závisí podle vztahů (3) a (6) na fázovém posunu ϕ. Běží-li motor bez zatížení, je fázový posun ϕ největší. S rostoucím zatížením se zvětšuje činná složa odebíraného proudu a tím fázový posun ϕ lesá. Hodnota cos ϕ proto stoupá. Výraz cos ϕ je tzv. účiní: cos ϕ = 3U I = S. (12) f f 2.3 Měření proudu odebíraného motorem Vzhledem tomu, že všechny cívy jsou onstručně shodné, můžeme předpoládat, že motor představuje symetricé zatížení trojfázové sítě a fázovými vodiči protéají shodné proudy. Měříme proto odebíraný proud jedním ampérmetrem A (viz obr. 4). 2.4 Měření výonu a účinnosti motoru Výon 2 odebíraný na hřídeli asynchronního motoru určíme ze vztahu 2 = η m, (13) de - je činný příon motoru, η m - je účinnost motoru. Vzhledem tomu, že asynchronní motor s účinností η m a poháněné dynamo s účinností η d tvoří soustrojí s celovou účinností η = η m η d, je možno vyjádřit celovou účinnost η poměrem eletricého výonu dynama 3 a činného příonu : η = 3. (14) ředpoládáme-li pro zjednodušení shodné účinnosti η m = η d, pa η 3 m = η =. (15) Moment síly M na hřídeli asynchronního motoru je číselně roven síle, působící na obvodu hřídele motoru o jednotovém poloměru, pro výpočet momentu platí vztah 132

6 M = ω = π f, (16) 2 2 S 2 de ω s - je úhlová rychlost točivého magneticého pole, f - frevence proudu, tj. 50 Hz. rotože jsou otáčy rotoru nižší než synchronní otáčy pole, zanedbáváme zde sluz a určíme hodnotu momentu síly M pro jednopólpárový motor přibližně ze vztahu 2 M = 60, (17) 2π de ns jsou synchronní otáčy pole za minutu. 2.5 Měření otáče motoru Otáčy motoru je možno měřit opticým otáčoměrem, nebo je vypočítat ze sluzu.. Otáčy n hřídele motoru se zatížením lesají přibližně v rozmezí 90 až 99 % otáče n S točivého magneticého pole. Místo tohoto procentuálního údaje se zavádí poměrná hodnota nazývaná sluz s. latí, že n s = 100%. (18) n S Otáčy točivého magneticého pole ns je možno určit ze vztahu 60 f =. p (19) de n S jsou synchronní otáčy pole za minutu, f je frevence proudu v síti, p je počet pólpárů motoru, daný počtem a způsobem zapojení cíve statoru. Hodnotu p je možno určit z továrního štítu motoru. Jsou zde uvedeny nominální hodnoty pro pracovní otáčy motoru. Je-li uvedeno např. pro n = 2890 ot/min, je nejbližší 60 ti násobe frevence hodnota 3000 ot/min. Ze vztahu (19) vyplývá, že p = 1. ro jinou hodnotu n, např ot/min, plyne ze vztahu (19), že p = 2. Jsou tedy v prvním případě synchronní otáčy n S = 3000 ot/min, ve druhém případě n S = 1500 ot/min. 22O V K měření sluzu použijeme strobosopicé R DT metody měření otáče. Na spo- lečné hřídeli motoru a zatěžovacího dynama AM D SK je umístěn strobosopicý otouč SK (viz obr. 6). Na otouči je barevně vyznačena ruhová výseč. Kotouč se otáčí pracovními otáčami n hřídele motoru. Kotouč Obr. 6 Zapojení strobosopu je současně osvětlován poblíž umístěnou doutnavou DT, na terou se přes ochranný odpor R přivádí diodou jednocestně usměrněné síťové napětí, viz obr. 7. ři dosažení ionizačního napětí U i mezi eletrodami doutnavy, dojde doutnavému výboji. ři polesu napětí pod hodnotu U i výboj zhasne. ři frevenci proudu 50 Hz se doutnava rozsvítí po dobu t padesátrát za seundu, tj rát za minutu. Točivé magneticé pole jednopólpárového stroje vyoná 3000 otáče za minutu. Jestliže by se otouč na hřídeli 133

7 motoru otáčel těmito otáčami magneticého pole, pa by znača na otouči byla U doutnavou osvětlena vždy při průchodu stejným místem. Vzhledem rychlému otáčení motoru a bliání doutnavy by se pozorovateli jevila znača jao nehybná. U i rotože ve sutečnosti jsou otáčy hřídele motoru a tedy i otouče se značou nižší, než je frevence bliání doutnavy, pa při následujícím osvětlení nedosáhne znača stejné polohy jao při předchozí otáčce, ale bude zpožděna. ozorovatel bude vnímat toto zpožďování značy jao zdánlivé otáčení značy proti směru otáčení t Obr. 7 Usměrněné napětí pro doutnavu t hřídele motoru. Frevence zdánlivého otáčení značy je rovna rozdílu synchronních otá- če ns a otáče motoru n. Označíme-li počet zdánlivých otáče značy za dobu t symbolem i, pa pro jednopólpárový motor (p = 1) a čas t = 20 s platí pro sluz s 1 60 i s (%) = t 100 = 100, s (%) = 0,1i. (20) 2.6 Jištění a svorovnice motoru odle následujícího celového schéma zapojení je mezi výstupní svory 3 x 380 V eletricého laboratorního rozvodu a asynchronní motor zapojen trojpólový jistič J pracující na eletromagneticém principu. odle továrního štítu na motoru vidíme, že once statorových cíve L motoru jsou vyvedeny na šrouby svorovnice 1-6, (viz obr. 8), umístěné na motoru. ři napětí sítě 3 x 380/220 V musí být once cíve L navzájem propojeny (zapojení do hvězdy). řívodní fázové vodiče, L 2, L 3 jsou proto zapojeny e spodním šroubům svorovnice (1, 2, 3). Horní šrouby 4, 5, 6 jsou vzájemně propojeny vodivou spojou S. 6 S 4 S 5 L L L L 2 L 3 3 x 380/220 V O Obr. 8. Svorovnice asynchronního motoru 134

8 J D V V D R Z1 A D R Z2 R Z3 R Z4 Obr. 9 Celové schéma zapojení měřené úlohy 2.7 Regulace otáče změnou frevence Jednofázové napájecí napětí (2) se v použitém regulátoru typu Commander VCD (1) nejprve usměrní a poté převede na třífázové napětí proměnné frevence od 0 do 100 Hz. ři frevenci po dosažení frevence 50 Hz musí regulátor snižovat též výstupní napětí, aby nebyl napěťově přetížen asynchronní motor (7), vinutý 2 pro frevenci 50 Hz. Celové schéma zapojení je V AM 8 na obr. 10. Regulaci obvodu provádíme regulačním 5 V potenciometrem (3). Výstupní napětí lze sledovat 3 V 6 f na voltmetru (5), změnu 4 frevence na freventoměrech (4 a 6). Otáčy asynchronního motoru měříme Obr. 10 Regulace otáče změnou frevence - schéma zapojení mechanicým otáčoměrem (8). 3. OSTU MĚŘENÍ ÚLOHY 1. Zapojte obvod podle obr. 9. Statorové vinutí asynchronního motoru zapojené do hvězdy připojte přes trojfázový jistič J na síť 3 x 380/220 V. 2. Kostru motoru propojte ochranným vodičem se žlutozelenou svorou třífázového rozvodu E. Konec napěťové cívy wattmetru a onec voltmetru připojte střednímu vodiči N (modré barvy). 135

9 3. Budicí vinutí cize buzeného dynama zapojte na stejnosměrné napětí z volitelných line označených Zátěž dynama realizujte pomocí tří reostatů (1200 Ω, 250 Ω, 105 Ω). ořadí reostatů volte za sebou podle proudové zatížitelnosti. 5. Obvod doutnavy napájejte přes jednocestný usměrňovač ze střídavého jednofázového napětí 220 V. 6. rvní měření proveďte s nezatíženým motorem, tj. při vypnutém budicím napětí dynama. 7. o zapnutí cizího budicího napětí změřte napětí U D pro 6 hodnot zvyšujícího se proudu, odebíraného z dynama, postupným vyřazováním zátěže v pořadí 1200 Ω, 250 Ω, 105 Ω. Maximální odebíraný proud z dynama je 1,6 A a nesmí být přeročen. ři aždém měření nastavte proud I D, a změřte napětí U D, U f, proud I f, výchylu wattmetru d a počet zdánlivých otáče i strobosopicé značy za dobu 20 s. Tuto veličinu i měřte ta, že změříte stopami čas pro alespoň 10 těchto zdánlivých otáče a poté jejich počet přepočtěte na hodnotu odpovídající hodnotě 20 s. Vypočtěte zdánlivý příon S motoru ze vztahu (2), činný příon ze vztahu (3), jalový příon j ze vztahu (11) a účiní ze vztahu (12). ro výpočet sluzu s a otáče n motoru použijte vztahů (18), (19), (20). Dále vypočtěte výon 3 odebíraný na výstupu dynama podle (1), účinnost motoru η m podle (15), výon na hřídeli asynchronního motoru 2 podle (13) a moment síly M ze vztahu (17). 8. Zapojte obvod podle obr. 10. Naměřené hodnoty (viz. bod 7) Číslo měření 1 (d) 1 (W) U f (V) I f (A) U D (V) I D (A) i ot/20 s Vypočtené hodnoty Číslo měř. s % n (ot/min) S (VA) (W) j (var) cos ϕ 3 (W) 2 (W) η m M (Nm) 9. Seznamte se s funcí mechanicého a opticého otáčoměru 10. Zjistěte závislost otáče asynchronního motoru, měřených mechanicým otáčoměrem, na poloze regulačního potenciometru v šesti bodech [n = f (d)]. 11. Obdobně jao v bodě 10. určete i závislost výstupního napětí regulátoru a frevence měřené freventoměrem a upraveným voltmetrem na poloze regulačního potenciometru v šesti bodech [f = f (d), f = f (d), U výst = f (d)]. 12. Závislosti vyneste do jednoho grafu. 136

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 17. 4. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 24

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

1. Spouštění asynchronních motorů

1. Spouštění asynchronních motorů 1. Spouštění asynchronních motorů při spouštěni asynchronního motoru je záběrový proud až 7 krát vyšší než hodnota nominálního proudu tím vznikají v síti velké proudové rázy při poměrně malém záběrovém

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3 MĚŘENÍ Laboratorní cvičení z měření Měření na elektrických strojích - transformátor, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru.

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru. Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz;

Více

Aplikace měničů frekvence u malých větrných elektráren

Aplikace měničů frekvence u malých větrných elektráren Aplikace měničů frekvence u malých větrných elektráren Václav Sládeček VŠB-TU Ostrava, FEI, Katedra elektroniky, 17. listopadu 15, 708 33 Ostrava - Poruba Abstract: Příspěvek se zabývá možnostmi využití

Více

Laboratorní práce č. 4: Určení elektrického odporu

Laboratorní práce č. 4: Určení elektrického odporu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_H.3.17 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

SYNCHRONNÍ MOTOR. Konstrukce

SYNCHRONNÍ MOTOR. Konstrukce SYNCHRONNÍ MOTOR Konstrukce A. stator synchronního motoru má stejnou konstrukci jako stator asynchronního motoru na svazku statorových plechů je uloženo trojfázové vinutí, potřebné k vytvoření točivého

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže

1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže 1 Měření paralelní kompenzace v zapoení do troúhelníku a do hvězdy pro symetrické a nesymetrické zátěže íle úlohy: Trofázová paralelní kompenzace e v praxi honě využívaná. Úloha studenty seznámí s vlivem

Více

Návrh a realizace regulace otáček jednofázového motoru

Návrh a realizace regulace otáček jednofázového motoru Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Návrh a realizace regulace otáček jednofázového motoru Michaela Pekarčíková 1 Obsah : 1 Úvod.. 3 1.1 Regulace 3 1.2

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

23-41-M/01 Strojírenství. Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009

23-41-M/01 Strojírenství. Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009 Učební osnova vyučovacího předmětu elektrotechnika Obor vzdělání: 23-41-M/01 Strojírenství Délka a forma studia: 4 roky, denní studium Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009 Pojetí

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů G Gymnázium Hranice Přírodní vědy

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Testy byly vypsany ze vsech pdf k 20.1.2012 zde na foru. Negarantuji 100% bezchybnost

Testy byly vypsany ze vsech pdf k 20.1.2012 zde na foru. Negarantuji 100% bezchybnost 1. Jakmile je postižený při úrazu elektrickým proudem vyproštěn z proudového obvodu je zachránce povinen - Poskytnou postiženému první pomoc než příjde lékař 2. Místo názvu hlavní jednotky elektrického

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_H.3.08 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

Skripta. Školní rok : 2005 / 2006 ASYNCHRONNÍ MOTORY

Skripta. Školní rok : 2005 / 2006 ASYNCHRONNÍ MOTORY INTEGROVANÁ STŘEDNÍ ŠKOLA Jméno žáka: CENTRUM ODBORNÉ PŘÍPRAVY 757 01 Valašské Meziříčí, Palackého49 Třída: Skripta Školní rok : 2005 / 2006 Modul: elementární modul: ELEKTRICKÉ STROJE skripta 9 ASYNCHRONNÍ

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny.

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny. Psaní testu Pokyny k vypracování testu: Za nesprávné odpovědi se poměrově odečítají body. Pro splnění testu je možné využít možnosti neodpovědět maximálně u šesti o tázek. Doba trvání je 90 minut. Způsob

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

Základy elektrotechniky a výkonová elektrotechnika (ZEVE)

Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-4

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-4 MĚŘENÍ Laboratorní cvičení z měření Měření vlastní a vzájemné indukčnosti, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem,

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem, 1 SVAŘOVACÍ ZDROJE PRO OBLOUKOVÉ SVAŘOVÁNÍ Svařovací zdroj pro obloukové svařování musí splňovat tyto požadavky : bezpečnost konstrukce dle platných norem a předpisů, napětí naprázdno musí odpovídat druhu

Více

Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství

Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Ing. Petr Vlček Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství Vytvořeno v

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

Název: Měření paralelního rezonančního LC obvodu

Název: Měření paralelního rezonančního LC obvodu Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu 1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu Cíle kapitoly: Cílem úlohy je ověřit teoretické znalosti při provozu dvou a více transformátorů paralelně. Dalším úkolem bude změřit

Více

Elektřina a magnetizmus rozvod elektrické energie

Elektřina a magnetizmus rozvod elektrické energie DUM Základy přírodních věd DUM III/2-T3-19 Téma: rozvod elektrické energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus rozvod

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více

Protokol o měření. Jak ho správně zpracovat

Protokol o měření. Jak ho správně zpracovat Protokol o měření Jak ho správně zpracovat OBSAH Co je to protokol? Forma a struktura Jednotlivé části protokolu Příklady Další tipy pro zpracování Co je to protokol o měření? Jedná se o záznam praktického

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

pracovní list studenta Elektrický proud v kovech Voltampérová charakteristika spotřebiče Eva Bochníčková

pracovní list studenta Elektrický proud v kovech Voltampérová charakteristika spotřebiče Eva Bochníčková pracovní list studenta Elektrický proud v kovech Eva Bochníčková Výstup RVP: Klíčová slova: žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data formou grafu; porovná získanou závislost s

Více

Rozdělení transformátorů

Rozdělení transformátorů Rozdělení transformátorů Druh transformátoru Spojovací Pojízdné Ohřívací Pecové Svařovací Obloukové Rozmrazovací Natáčivé Spouštěcí Nevýbušné Oddělovací/Izolační Bezpečnostní Usměrňovačové Trakční Lokomotivní

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Pracovní návod 1/5 www.expoz.cz

Pracovní návod 1/5 www.expoz.cz Pracovní návod 1/5 www.expoz.cz Fyzika úloha č. 14 Zatěžovací charakteristika zdroje Cíle Autor: Jan Sigl Změřit zatěžovací charakteristiku různých zdrojů stejnosměrného napětí. Porovnat je, určit elektromotorické

Více

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky 6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu zdroje

Více

Podélná RO působení při i R > i nast = 10x % I n, úplné mžikové vypnutí

Podélná RO působení při i R > i nast = 10x % I n, úplné mžikové vypnutí Ochrany alternátorů Ochrany proti zkratům a zemním spojení Vážné poruchy zajistit vypnutí stroje. Rozdílová ochrana Podélná RO porovnává vstup a výstup objektu (častější) Příčná RO porovnává vstupy dvou

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava atedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 9. TRASFORMÁTORY. Princip činnosti ideálního transformátoru. Princip činnosti skutečného transformátoru 3. Pracovní

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Stejnosměrné stroje. Konstrukce ss strojů. Princip činnosti ss stroje. Dynamo

Stejnosměrné stroje. Konstrukce ss strojů. Princip činnosti ss stroje. Dynamo Stejnosměrné stroje Konstrukce ss strojů Stejnosměrné stroje jsou stroje točivé, základní rozdělení je tedy na stator a rotor. Stator je oproti předchozím strojům homogenní, magnetický obvod není sestaven

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

3. Elektrický náboj Q [C]

3. Elektrický náboj Q [C] 3. Elektrický náboj Q [C] Atom se skládá z neutronů, protonů a elektronů. Elektrony mají záporný náboj, protony mají kladný náboj a neutrony jsou bez náboje. Protony jsou společně s neutrony v jádře atomu

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

Počítačový napájecí zdroj

Počítačový napájecí zdroj Počítačový napájecí zdroj Počítačový zdroj je jednoduše měnič napětí. Má za úkol přeměnit střídavé napětí ze sítě (230 V / 50 Hz) na napětí stejnosměrné, a to do několika větví (3,3V, 5V, 12V). Komponenty

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Garant přípravného studia: Střední průmyslová škola elektrotechnická a ZDVPP, spol. s r. o. IČ: 25115138 Učební osnova: Základní

Více

Návod na instalaci. Softstartery PS S 18/30 142/245. 1SFC 388002-cz 1999-10-26 PS S85/147-500...142/245-500 PS S85/147-690...

Návod na instalaci. Softstartery PS S 18/30 142/245. 1SFC 388002-cz 1999-10-26 PS S85/147-500...142/245-500 PS S85/147-690... Návod na instalaci a údržbu Softstartery PS S 18/30 142/245 1SFC 388002-cz 1999-10-26 PS S18/30-500...44/76-500 PS S50/85-500...72/124-500 PS S18/30-690...32/124-690 PS S85/147-500...142/245-500 PS S85/147-690...142/245-690

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_H.3.06 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

ELEKTRICKÉ ZDROJE. Elektrické zdroje a soklové zásuvky

ELEKTRICKÉ ZDROJE. Elektrické zdroje a soklové zásuvky Elektrické zdroje a soklové zásuvky ELEKTRICKÉ ZDROJE Bezpečnostní zvonkový transformátor TZ4 K bezpečnému oddělení a napájení obvodů o příkonu max. 4 VA bezpečným malým napětím 6, 8, 12 V a.c. K napájení

Více

rozdělení napětí značka napětí napěťové hladiny v ČR

rozdělení napětí značka napětí napěťové hladiny v ČR Trojfázové napětí: Střídavé elektrické napětí se získává za využití principu elektromagnetické indukce v generátorech nazývaných alternátory (většinou synchronní), které obsahují tři cívky uložené na pevné

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_H.3.18 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

Přenosný zdroj PZ-1. zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů

Přenosný zdroj PZ-1. zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů Použití: Přenosný zdroj PZ1 se používá jako zdroj regulovaného proudu nebo napětí a měření časového zpoždění

Více

Návod na použití, montáž a zapojení síťových zdrojů 4 FP 672 62 a 4 FP 672 63

Návod na použití, montáž a zapojení síťových zdrojů 4 FP 672 62 a 4 FP 672 63 Návod na použití, montáž a zapojení síťových zdrojů 4 FP 672 62 a 4 FP 672 63 Technické parametry: - hmotnost: 1020±20g - rozměry (šxvxh): 153 x 107 x 62 mm - provozní teplota: -5 C +40 C při relativní

Více

MOTORY. = p n S kmitočet (frekvence) otáčení f kmitočet (proudu) p počet pólových párů statoru

MOTORY. = p n S kmitočet (frekvence) otáčení f kmitočet (proudu) p počet pólových párů statoru MOTORY Vytvoření točivého magnetického pole Otáčením tyčového trvalého magnetu nebo tyčového elektromagnetu kolem vlastního středu vznikne točivé magnetické pole. V generátoru vytváří točivé magnetické

Více

X. Hallův jev. Michal Krištof. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem.

X. Hallův jev. Michal Krištof. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem. X. Hallův jev Michal Krištof Pracovní úkol 1. Zjistěte závislost proudu vzorkem na přiloženém napětí při nulové magnetické indukci. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách

Více

Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače

Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače 48,1,2,47,4 6,3,4,4 5,44,5,6,43,42, 7,8,41,4 0,9,10, 39,38,1 1,12,37, 36,13,1 4,35,34,15,16, 33,32,1 7,18,31, 30,19,2 0,29,28,21,22,

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

200W ATX PC POWER SUPPLY

200W ATX PC POWER SUPPLY 200W ATX PC POWER SUPPLY Obecné informace Zde vám přináším schéma PC zdroje firmy DTK. Tento zdroj je v ATX provedení o výkonu 200W. Schéma jsem nakreslil, když jsem zdroj opravoval. Když už jsem měl při

Více

Digitální měřící přístroje a proudové transformátory

Digitální měřící přístroje a proudové transformátory Digitální měřící přístroje a proudové transformátory Digitální měřící přístroje DMK: 96x48mm Panelové provedení Modulární provedení Jednofázové Jednofunkční Voltmetr mpérmetr Voltmetr nebo mpérmetr Kmitočtoměr

Více

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703).

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 1 Pracovní úkoly 1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 2. Určete dynamický vnitřní odpor Zenerovy diody v propustném směru při proudu 200 ma

Více

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika - měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................

Více

1.1 Usměrňovací dioda

1.1 Usměrňovací dioda 1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.7 VOLBA VELIKOSTI MOTORU Vlastní volba elektrického motoru pro daný pohon vychází z druhu zatížení a ze způsobu řízení otáček. Potřebný výkon motoru

Více

Výkonová elektronika. Polovodičový stykač BF 9250

Výkonová elektronika. Polovodičový stykač BF 9250 Výkonová elektronika Polovodičový stykač BF 9250 BF 9250 do 10 A BF 9250 do 25 A podle EN 60 947-4-2, IEC 60 158-2, VDE 0660 část 109 1-, 2- a 3-pólová provedení řídící vstup X1 s malým příkonem proudu

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

NÁVOD K OBSLUZE. Zimní sada SWK-20

NÁVOD K OBSLUZE. Zimní sada SWK-20 NÁVOD K OBSLUZE Zimní sada SWK-20 - plynulá regulace otáček ventilátoru - ovládání ohřívače podle okolní teploty -alarm při vysoké kondenzační teplotě - zobrazení aktuální teploty - mikroprocesorové řízení

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá ČLOVĚK A PŘÍRODA FYZIKA 8. JOSKA Pohybová a polohová energie Přeměna polohové a pohybové energie

vzdělávací oblast vyučovací předmět ročník zodpovídá ČLOVĚK A PŘÍRODA FYZIKA 8. JOSKA Pohybová a polohová energie Přeměna polohové a pohybové energie Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky Uvede hlavní jednotky práce a výkonu, jejich díly a násobky

Více

1. Význam a účel měření, rozdělení měřících přístrojů.

1. Význam a účel měření, rozdělení měřících přístrojů. 1. Význam a účel měření, rozdělení měřících přístrojů. Fyzikální veličiny: Např. délka, čas, elektrický proud a napětí atd. Každá veličina má svoji kvantitativní stránku, která se vyjadřuje hodnotou veličiny

Více

Parametry a aplikace diod

Parametry a aplikace diod Cvičení 6 Parametry a aplikace diod Teplotní závislost propustného úbytku a závěrného proudu diody (PSpice) Reálná charakteristika diody, model diody v PSpice Extrakce parametrů diody pro PSpice Měření

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické

Více

Nastavitelný napájecí zdroj DC řady EP-600

Nastavitelný napájecí zdroj DC řady EP-600 Nastavitelný napájecí zdroj DC řady EP-600 I. POPIS Návod k obsluze Nastavitelné napájecí zdroje DC řady EP-600 jsou polovodičová, kompaktní zařízení, která jsou vybavena přesnou regulací a stabilním napětím.

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové č Čs čas fyz 6 () 67 Tepelné záření v teoreticých i experimentálních úlohách MEZINÁRODNÍ FYZIKÁLNÍ OLYMPIÁDY Jan Kříž, Ivo Volf, Bohumil Vybíral Ústřední omise Fyziální olympiády, Univerzita Hradec Králové,

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

VE ŠKOLE PRO PRAKTICKOU VÝUKU, MOTIVACI I ZÁBAVU

VE ŠKOLE PRO PRAKTICKOU VÝUKU, MOTIVACI I ZÁBAVU CZ.1.07/1.1.24/01.0066 Střední škola elektrotechnická, Ostrava, Na Jízdárně 30, příspěvková organizace 2014 POKYNY KE STUDIU: ČAS KE STUDIU Čas potřebný k prostudování látky. Čas je pouze orientační a

Více

Základy elektrotechniky řešení příkladů

Základy elektrotechniky řešení příkladů Název vzdělávacího programu Základy elektrotechniky řešení příkladů rčeno pro potřeby dalšího vzdělávání pedagogických pracovníků středních odborných škol Autor ng. Petr Vavřiňák Název a sídlo školy Střední

Více

Dioda jako usměrňovač

Dioda jako usměrňovač Dioda A K K A Dioda je polovodičová součástka s jedním P-N přechodem. Její vývody se nazývají anoda a katoda. Je-li na anodě kladný pól napětí a na katodě záporný, dioda vede (propustný směr), obráceně

Více

3 x 0 až vstupní napětí (zapojení motoru 3x230V) Provozní teplota - 10 C až + 40-10 C až 50 C

3 x 0 až vstupní napětí (zapojení motoru 3x230V) Provozní teplota - 10 C až + 40-10 C až 50 C FREKVENČNÍ MĚNIČE SIEMENS, MICROMASTER 420 Montážní a provozní předpisy číslo : MPP - 25.2 platí od: 18.11.2004 kontakt : ALTEKO, spol s r.o. telefon: +420-311 584 102 ; +420-311 583 218 Pod Cihelnou 454

Více

HEJNO REZISTORŮ žákovská varianta

HEJNO REZISTORŮ žákovská varianta HEJNO REZISTORŮ žákovská varianta Václav Piskač, Brno 2015 Pro výuku elektrických obvodů jsem připravil níže popsanou sadu součástek. Kromě nich je k práci nutný multimetr, spojovací vodiče a plochá baterie.

Více

základní vzdělávání druhý stupeň

základní vzdělávání druhý stupeň Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Pavel Broža Datum 5. ledna. 2014 Ročník 8. a 9. Vzdělávací oblast Člověk a příroda Vzdělávací obor Fyzika Tematický okruh

Více

Měření vlastností a základních parametrů elektronických prvků

Měření vlastností a základních parametrů elektronických prvků Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_EM_1.08_měření VA charakteristiky usměrňovací diody Střední odborná škola a Střední

Více