6. Měření Youngova modulu pružnosti v tahu a ve smyku

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "6. Měření Youngova modulu pružnosti v tahu a ve smyku"

Transkript

1 6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření.. vyd. Praha: SPN, 983, st..3.., čl..3.., čl... Pomůcy: Zařízení měření Youngova modulu z protažení drátu, drát, závaží, stupnice, zdroj střídavého napětí. Postup měření:. Seznamte se s metodami měření modulu pružnosti v tahu (viz doporučená literatura). Seznamte se s činností zařízení měření Youngova modulu. 3. Drát zatěžujte závažími v rozsahu od 300g do 000 g postupně po 00 g (před započetím měření je nutno na drát zavěsit dvě závaží po 00 g, aby byl drát vypnutý a rovný). Po dosažení nejvyššího zatížení závaží postupně odebírejte. Prodloužení drátu změřte pomocí metody otočného zrcáta a stupnice. 4. Provedená měření zpracujte pomocí metody postupných měření (čl...4.g, čl..4...). Princip měření Z různých elasticých onstant vybíráme pro charateristiu materiálu nejčastěji modul pružnosti v tahu E (obvyle nazývaný Youngův modul pružnosti) a modul pružnosti ve smyu G (záceně nazývaný taé modul smyu (torze)), neboť ostatní elasticé onstanty lze z modulů E a G vypočítat. Jednotou obou modulů je Pa. V dalších úvahách se omezíme na nejjednodušší případ, dy deformace a napětí jsou přímo úměrné a jejich poměr není časově závislý; tedy na případ, terý je popisován lasicou teorií pružnosti. Dále budeme předpoládat, že deformovaná láta je izotropní. Modul pružnosti v tahu je onstanta úměrnosti mezi deformací (poměrným prodloužením) l /l 0 a napětím F / S tahem namáhaného vzoru (v našem případě drátu). Tato úměra je obsahem Hooova záona, terý obvyle píšeme ve tvaru l l 0. E F S, () de l značí prodloužení, tj změnu dély způsobenou silou F, l0 původní délu vzoru (drátu), F tahovou sílu a S průřez vzoru (drátu). Při měření modulu E můžeme vycházet přímo z rovnice () a zjišťovat poměr napětí F / S deformaci l /l0. Nejprve změříme původní délu vzoru l0 a původní průřez S0, potom sledujeme závislost prodloužení l na působící síle F. Malé změny průřezu S při protahování vzoru zpravidla zanedbáváme.

2 Z přímých metod určení Youngova modulu E popíšeme metodu, podle teré stanovíme modul E z protažení drátu. Tuto metodu budeme taé používat v laboratorním cvičení. Z rovnice () plyne že l0 F E.. () l S Chceme-li měřit v oblasti, de deformace je úměrná napětí, tj. pro deformace nejvýše až %, musíme měřit poměrně malá prodloužení l. K měření těchto malých délových rozdílů slouží speciální zařízení, de protažení vzoru (drátu) je převáděno na otáčení zrcáta (viz obr. ). Obr. Zařízení měření Youngova modulu z protažení drátu V tomto případě vedeme drát D na jednom onci upevněný přes ladu K o poloměru R misce M, na terou lademe závaží. Na ladce je připevněno zrcáto Z. Úhel pootočení zrcáta souvisí s prodloužením l drátu vztahem R. l. (3) Úhel registrujeme metodou zrcáta a stupnice. Tato metoda umožňuje měřit velmi malé úhly. Na zrcáto Z, teré je pevně spojeno s ladou (viz obr. 6.), vyšleme světelný svaze, terý po odražení zachytíme na stupnici (viz obr. ). Obr. Metoda zrcáta a stupnice Stočení zrcáta o úhel způsobí změnu směru paprsu odraženému od zrcáta o úhel. Stupnici postavíme olmo paprsu odraženému od rovnovážné polohy zrcáta ZR. Stopa dopadne na stupnici v místě n0. Stočí-li se zrcáto od rovnovážné polohy do polohy ZV o úhel, dopadne stopa na stupnici v místě n. Pro vzdálenost n - n0 platí vztah

3 n n0 tg, (4) l v němž l je vzdálenost stupnice od zrcáta. Pro stanovení úhlu se často užívá přibližný vzorec n n0, (5) l vhodný pro malé hodnoty. Metodou zrcáta a stupnice lze běžně dosáhnout přesnosti jedné úhlové minuty. Použitím přibližného vzorce (5) místo vzorce (4) vzniá pro úhel rovný 5 chyba %. Poyny e zpracování měření Výsledy zísané při měření modulu pružnosti E v tahu zpracujeme metodou postupných měření. Tuto metodu je vhodné použít tehdy, jestliže máme dispozici soubor měření, terá na sebe těsně navazují a vyznačují se tím, že oncový bod jednoho měření je současně výchozím bodem měření dalšího. V našem případě je tato podmína splněna, neboť měření je uspořádáno ta, že postupně zvyšujeme zatížení F a odečítáme příslušné hodnoty prodloužení l vzoru. Tím zísáme řadu hodnot l, l, l3,, ln, teré odpovídají hodnotám F, F, F3,, Fn. Volíme-li přitom hodnoty zatížení ta, aby vytvořily aritmeticou posloupnost, jde o měření s evidistantními hodnotami argumentu F. To znamená, že intervaly po sobě jdoucími hodnotami (Fi, Fi-) jsou onstantní a rozdíly F - F = F3 - F = = Fn - Fn- stejné. Kdyby měření probíhala bez chyb, byly by i rozdíly l - l, l3 - l,, ln - ln- stejné. Ve sutečnosti si tyto rozdíly nejsou rovny a úolem výpočtů je právě nalézt jejich nejpravděpodobnější hodnotu. Provedená měření rozdělíme do dvou početně stejných supin, taže aždá supina obsahuje n/ = měření. Je-li celový počet měření n číslo liché, jedno měření (zpravidla první) vynecháme. Rozdíly měřených hodnot l bereme mezi hodnotami téhož pořadí obou supin, tj. mezi první hodnotou první supiny a první hodnotou druhé supiny, mezi druhou hodnotou první supiny a druhou hodnotou druhé supiny atd. Celový počet tato vytvořených rozdílů l+ - l, l+ - l, l+3 - l3,, ln - l je a aždý z nich představuje -násobnou hodnotu rozdílu dvou po sobě jdoucích hodnot. Nejpravděpodobnější hodnota rozdílu bude

4 l l l l l l 3 l3 l... l n, což lze psát l n l l l... l l l l... l l l 3 nebo l n n 3 i i i l i li. (5) i i i Po výpočtu nejpravděpodobnější hodnoty l, známe-li F a je-li změřeno l0 a S, snadno ze vztahu () stanovíme hodnotu modulu E pružnosti v tahu. vztah Pro pravděpodobnou chybu onečného výsledu měření modulu pružnosti v tahu platí ( l0) ( d) ( l 4 ) l 0 d l ( E) E. (6) Přílad zpracování onrétního měření podle výše uvedeného postupu naleznete v doporučené literatuře BROŽ, J. Zálady fyziálních měření.. vyd. Praha: SPN, 983, čl Zde taé naleznete postup výpočtu pravděpodobné chyby onečného výsledu. Do celové chyby je vša třeba romě chyby pravděpodobné ještě započítat chybu metody. Dále tedy rozebereme, s jaou přesností je třeba měřit jednotlivé veličiny, použijeme-li měření dély drátu metody zrcáta a stupnice a chceme-li dosáhnout v určení modulu E přesnosti asi 3 %. Délu drátu l a vzdálenost stupnice od zrcáta, tj. dély přibližně m, stačí změřit s přesností asi 0,5 %, tj. pásovým měřítem. Poloměr lady R, terý bývá až cm, stačí stanovit rovněž s přesností 0,5 %; v tomto případě vša vzhledem menší celové měřené délce je nutné změřit průměr (R) lady posuvným měřítem (pozor je nutné měřit vnitřní poloměr lady!). Při odečítání dílů na stupnici musí být dosaženo větší přesnosti než %, což znamená, že posun značy, je-li stupnice dělená po mm, musí být nejméně 5 cm. Nejobtížnější je dosáhnout dostatečně malé chyby odečítání průměru drátu. Potřebná přesnost stanovení průměru asi % znamená při průměru drátu 0, mm měřit s přesností.0-3 mm. V tomto případě již plně nevyhovuje ani měření mirometricým šroubem a průměr by bylo třeba proměřit indiátorovými hodinami (viz podrobněji Brož, čl....). Nepřesnosti závaží a chybu vznilou náhradou za tg v metodě zrcáta a stupnice lze zanedbat.

5 Úol : a) určete modul pružnosti v torzi pro tyče z různých materiálů (ocel, mosaz, hliní) metodou staticou, b) zjistěte, ja závisí modul pružnosti v torzi na materiálu, délce a průřezu tyče, c) proměřte hysterezní řivu pro měděnou tyč. Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření.. vyd. Praha: SPN, 983,..,.3.,.3.. HALLIDAY, D., RESNICK, R., WALKER, J. Fyzia, část Mechania - Termodynamia.. vyd. Praha: Prometheus, 000, s Pomůcy Stativový materiál, přístroj pro měření modulu pružnosti v torzi, pásové měříto, posuvné měříto, mirometr, sada ovových tyčí, siloměr. Princip měření Při vyšetřování vztahu mezi deformací těles a působícím napětím se v dalším výladu omezíme na případ, dy deformace a napětí jsou přímo úměrné a jejich poměr není časově závislý (lasicá teorie pružnosti). Dále předpoládáme, že deformovaná láta je izotropní. Uvedené předpolady bývají splněny u polyrystalicých ovových materiálů, nejsou-li napětí na ně působící příliš velá. Vlastnosti láty při deformaci jsou potom popsány dvěma nezávislými materiálovými onstantami, nejčastěji je to modul pružnosti v tahu (Youngův modul) E a modul pružnosti ve smyu G. Modul pružnosti ve smyu G udává vztah mezi smyovým napětím a smyovou deformací ve tvaru F, () G S de je úhel smyu, F je smyová síla a S plocha, ve teré působí smyová síla. Modul pružnosti ve smyu G se nejčastěji určuje z torze tyčí. Při torzi je aždá část tyče namáhána pouze smyem a přitom, i dyž je smy v aždé části tyče poměrně malý (tedy leží hluboo pod mezí úměrnosti deformace a napětí, výsledný úhel stočení tyče může být značný, a tedy dobře měřitelný. Vztah () přejde při torzi tyče ve vztah mezi úhlem stočení tyče a momentem síly M vyvolávajícím torzi, terý má tvar M M, () G D v němž jedinou materiálovou onstantou je modul pružnosti ve smyu G. Konstanta v rovnici () závisí pouze na tvaru tyče podrobené torzi. Veličina D se nazývá direční moment tyče. Modul pružnost ve smyu měříme buď staticy, tj. ta že měříme úhly stočení příslušné daným torzním momentům M a z rovnice () vypočítáme modul G, nebo dynamicy ta, že necháme tyč vyonávat torzní mity.

6 K měření modulu pružnosti ve smyu G staticou metodou použijeme tyč, terá má ruhový průřez o poloměru r a délu l a je na jednom onci upevněna. Působíme-li na druhý onec silovou dvojicí o momentu M, jehož směr je rovnoběžný s osou tyče, pootočí se tento onec vzhledem upevněnému onci o úhel, pro terý platí lm. (3) 4 Gr Tato rovnice vyplývá z rovnice (), dosadíme-li za direční moment D hodnotu 4 Gr D, (4) l jež platí pro tyč ruhového průřezu o poloměru r, délce l a materiálu s modulem pružnosti ve smyu G. Z rovnice (3) dostaneme pa pro modul pružnosti ve smyu Postup měření: ) Sestavíme experimentální zařízení podle obr.. lm G. (5) r 4 Obr. Měření provedeme pro různé tyče (volíme různé materiály, dély a průřezy tyčí). Pro aždou tyč změříme pomocí siloměru moment síly pro různé vzdálenosti od osy a pro různé veliosti úhlů. Z naměřených hodnot vypočteme pro aždou tyč hodnotu modulu pružnosti v torzi G. ) Graficy znázorníme závislost modul pružnosti v torzi na materiálu, délce a průřezu tyče. 3) Proměřte a graficy znázorněte hysterezní řivu pro tyč z mědi (viz obr. pro průměr tyče d = mm a délu tyče l = 0,5 m).

7 Obr.

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

2. STAVBA PARTPROGRAMU

2. STAVBA PARTPROGRAMU Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

Název: Studium kmitů hudebních nástrojů, barva zvuku

Název: Studium kmitů hudebních nástrojů, barva zvuku Název: Studium kmitů hudebních nástrojů, barva zvuku Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Hudební výchova) Tematický

Více

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického 1 Pracovní úkol 1. Změřte V-A charakteristiky magnetronu při konstantním magnetickém poli. Rozsah napětí na magnetronu volte 0-200 V (s minimálním krokem 0.1-0.3 V v oblasti skoku). Proměřte 10-15 charakteristik

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon,

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny:

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny: DIFRAKCE SVTLA V paprsové optice jsme se zabývali opticým zobrazováním (zrcadly, oami a jejich soustavami). Pedpoládali jsme, že se svtlo šíí pímoae podle záona pímoarého šíení svtla. Ve sutenosti je ale

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1)

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1) 17. ročník, úloha I. E... absolutní nula (8 bodů; průměr 4,03; řešilo 40 studentů) S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík Petr Kulí Dimenzování prvů dřevěných onstrucí 7 Dimenzování prvů dřevěných onstrucí 7.1 Úvod U dřevěných onstrucí musíme ověřit jejich stavy, teré se vztahují e zřícení nebo jiným způsobům pošození onstruce,

Více

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Autor Mgr. Lenka Střelcová Tematický celek Posloupnosti Cílová skupina 3. ročník SŠ Anotace Materiál má podobu výkladového a pracovního listu s úlohami, pomocí nichž si žáci osvojí a procvičí využití geometrické

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Název: Měření příkonu spotřebičů, výpočet účinnosti, hledání energetických úspor v domácnosti

Název: Měření příkonu spotřebičů, výpočet účinnosti, hledání energetických úspor v domácnosti Název: Měření příkonu spotřebičů výpočet účinnosti hledání energetických úspor v domácnosti Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy škola hl. města Prahy Předmět (mezipředmětové vztahy)

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce ermistor Pomůcky: Systém ISES, moduly: teploměr, ohmmetr, termistor, 2 spojovací vodiče, stojan s držáky, azbestová síťka, kádinka, voda, kahan, zápalky, soubor: termistor.imc. Úkoly: ) Proměřit závislost

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

Optické zobrazování - čočka

Optické zobrazování - čočka I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Magnety a magnetické vlastnosti látek

Magnety a magnetické vlastnosti látek 144 Mládež a fyzika Magnety a magnetické vlastnosti látek v experimentálních úlohách Mezinárodní fyzikální olympiády Jan Kříž, Bohumil Vybíral, Ivo Volf Ústřední komise Fyzikální olympiády, Přírodovědecká

Více

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky 6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu zdroje

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové č Čs čas fyz 6 () 67 Tepelné záření v teoreticých i experimentálních úlohách MEZINÁRODNÍ FYZIKÁLNÍ OLYMPIÁDY Jan Kříž, Ivo Volf, Bohumil Vybíral Ústřední omise Fyziální olympiády, Univerzita Hradec Králové,

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI PŘEDNÁŠKA 7 Definice: Mechanické vlastnosti materiálů - odezva na mechanické působení od vnějších sil: 1. na tah 2. na tlak 3. na ohyb 4. na krut 5. střih F F F MK F x F F F MK 1. 2. 3. 4. 5. Druhy namáhání

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší.

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší. EF1: Dva cyklisté Lenka jede rychlostí v1 = 10 m/s, Petr rychlostí v2 = 12 m/s, tedy v2 > v1, délka uzavřené trasy L = 1200 m. Když vyrazí cyklisté opačnými směry, potom pro čas setkání t platí v1 t +

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Metodický list Biologie Měkkýši Zadání pro žáky 1

Metodický list Biologie Měkkýši Zadání pro žáky 1 Metodický list Biologie Měkkýši Zadání pro žáky 1 Téma: Měkkýši (Mollusca) Úkol: 1. Proveďte důkaz chemického složení schránek (ulity, lastury) měkkýšů dle pracovního postupu. Důkazy vyjádřete rovnicemi.

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

2. Ve spolupráci s asistentem zkontrolujte, zda je torzní kyvadlo horizontálně vyrovnané.

2. Ve spolupráci s asistentem zkontrolujte, zda je torzní kyvadlo horizontálně vyrovnané. FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze Úloha #1 Cavendishův experiment Datum měření: 15.11.013 Skupina: 7 Jméno: David Roesel Kroužek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasifikace: 1 Pracovní

Více

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5 Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru

Více

X-kříž. Návod k instalaci a použití

X-kříž. Návod k instalaci a použití X-kříž Návod k instalaci a použití 1 Obsah Název kapitoly strana 1. Měřicí princip X-kříže 2 2. Konstrukce 2 3. Využití 2 4. Umístění 3 5. Provedení 3 6. Instalace 4 7. Kompletace systému 7 8. Převod výstupu

Více

Vrtání a vyvrtávání. 1.1.1 Charakteristika výrobní metody

Vrtání a vyvrtávání. 1.1.1 Charakteristika výrobní metody Vrtání a vyvrtávání Vrtáním se rozumí obrábění díry do plného materiálu, zatímco vyvrtáváním se díry předvrtané, předlité nebo předované zvětšují na požadovaný průměr. Vrtat lze válcové, uželové a tvarové

Více

Využití expertního systému při odhadu vlastností výrobků

Využití expertního systému při odhadu vlastností výrobků Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních

Více

MS Excel druhy grafů

MS Excel druhy grafů MS Excel druhy grafů Nejčastější typy grafů: Spojnicový graf s časovou osou Sloupcový graf a pruhový graf Plošný graf Výsečový a prstencový graf (koláčový) Ostatní typy grafů: Burzovní graf XY bodový graf

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

Práce, energie, výkon

Práce, energie, výkon I N V E S T I C E D O R O Z V O E V Z D Ě L Á V Á N Í TENTO PROEKT E SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laoratorní práce č. 6 Práce,, výon Pro potřey projetu

Více

Kružnice. Délka kružnice (obvod kruhu)

Kružnice. Délka kružnice (obvod kruhu) Kružnice Délka kružnice (obvod kruhu) Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing Šárka Macháňová Dostupné z Metodického portálu wwwrvpcz, ISSN: 1802-4785, financovaného z ESF a

Více

Inventarizace lesů, Metodika venkovního sběru dat Verze 6.0

Inventarizace lesů, Metodika venkovního sběru dat Verze 6.0 Inventarizace lesů, Metodika venkovního sběru dat Verze 6.0 3. MĚŘENÍ STROMU Veškerá měření a popisy se uskutečňují jen na zaměřených stromech, které se v okamžiku šetření nacházejí na inventarizační ploše

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

Bezpečnost práce, měření fyzikálních veličin, chyby měření

Bezpečnost práce, měření fyzikálních veličin, chyby měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření fyzikálních

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3 MĚŘENÍ Laboratorní cvičení z měření Měření na elektrických strojích - transformátor, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Název: Odraz a lom světla

Název: Odraz a lom světla Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.79 Název DUM: Hydrostatický tlak

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Měření rychlosti zvuku z Dopplerova jevu

Měření rychlosti zvuku z Dopplerova jevu Měření rychlosti zvuku z Dopplerova jevu Online: http://www.sclpx.eu/lab2r.php?exp=10 Měření rychlosti zvuku z Dopplerova jevu patří k dalším zcela původním a dosud nikým nepublikovaným experimentům, které

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

pro gymnasia Optika Fysika mikrosvěta

pro gymnasia Optika Fysika mikrosvěta Fysikální měření pro gymnasia V. část Optika Fysika mikrosvěta Gymnasium F. X. Šaldy Honsoft Liberec 2009 ÚVODNÍ POZNÁMKA EDITORA Obsah. Pátá, poslední část publikace Fysikální měření pro gymnasia obsahuje

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8. Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.759 Název DUM: Skládání sil Název

Více

KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU

KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU Modelování součástí z plechu Autodesk Inventor poskytuje uživatelům vedle obecných nástrojů pro parametrické a adaptivní

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

VY_32_INOVACE_C 08 14

VY_32_INOVACE_C 08 14 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Vzájemný vztah mezi objemovým a hmotnostním průtokem

Vzájemný vztah mezi objemovým a hmotnostním průtokem Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více