6. Měření Youngova modulu pružnosti v tahu a ve smyku

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "6. Měření Youngova modulu pružnosti v tahu a ve smyku"

Transkript

1 6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření.. vyd. Praha: SPN, 983, st..3.., čl..3.., čl... Pomůcy: Zařízení měření Youngova modulu z protažení drátu, drát, závaží, stupnice, zdroj střídavého napětí. Postup měření:. Seznamte se s metodami měření modulu pružnosti v tahu (viz doporučená literatura). Seznamte se s činností zařízení měření Youngova modulu. 3. Drát zatěžujte závažími v rozsahu od 300g do 000 g postupně po 00 g (před započetím měření je nutno na drát zavěsit dvě závaží po 00 g, aby byl drát vypnutý a rovný). Po dosažení nejvyššího zatížení závaží postupně odebírejte. Prodloužení drátu změřte pomocí metody otočného zrcáta a stupnice. 4. Provedená měření zpracujte pomocí metody postupných měření (čl...4.g, čl..4...). Princip měření Z různých elasticých onstant vybíráme pro charateristiu materiálu nejčastěji modul pružnosti v tahu E (obvyle nazývaný Youngův modul pružnosti) a modul pružnosti ve smyu G (záceně nazývaný taé modul smyu (torze)), neboť ostatní elasticé onstanty lze z modulů E a G vypočítat. Jednotou obou modulů je Pa. V dalších úvahách se omezíme na nejjednodušší případ, dy deformace a napětí jsou přímo úměrné a jejich poměr není časově závislý; tedy na případ, terý je popisován lasicou teorií pružnosti. Dále budeme předpoládat, že deformovaná láta je izotropní. Modul pružnosti v tahu je onstanta úměrnosti mezi deformací (poměrným prodloužením) l /l 0 a napětím F / S tahem namáhaného vzoru (v našem případě drátu). Tato úměra je obsahem Hooova záona, terý obvyle píšeme ve tvaru l l 0. E F S, () de l značí prodloužení, tj změnu dély způsobenou silou F, l0 původní délu vzoru (drátu), F tahovou sílu a S průřez vzoru (drátu). Při měření modulu E můžeme vycházet přímo z rovnice () a zjišťovat poměr napětí F / S deformaci l /l0. Nejprve změříme původní délu vzoru l0 a původní průřez S0, potom sledujeme závislost prodloužení l na působící síle F. Malé změny průřezu S při protahování vzoru zpravidla zanedbáváme.

2 Z přímých metod určení Youngova modulu E popíšeme metodu, podle teré stanovíme modul E z protažení drátu. Tuto metodu budeme taé používat v laboratorním cvičení. Z rovnice () plyne že l0 F E.. () l S Chceme-li měřit v oblasti, de deformace je úměrná napětí, tj. pro deformace nejvýše až %, musíme měřit poměrně malá prodloužení l. K měření těchto malých délových rozdílů slouží speciální zařízení, de protažení vzoru (drátu) je převáděno na otáčení zrcáta (viz obr. ). Obr. Zařízení měření Youngova modulu z protažení drátu V tomto případě vedeme drát D na jednom onci upevněný přes ladu K o poloměru R misce M, na terou lademe závaží. Na ladce je připevněno zrcáto Z. Úhel pootočení zrcáta souvisí s prodloužením l drátu vztahem R. l. (3) Úhel registrujeme metodou zrcáta a stupnice. Tato metoda umožňuje měřit velmi malé úhly. Na zrcáto Z, teré je pevně spojeno s ladou (viz obr. 6.), vyšleme světelný svaze, terý po odražení zachytíme na stupnici (viz obr. ). Obr. Metoda zrcáta a stupnice Stočení zrcáta o úhel způsobí změnu směru paprsu odraženému od zrcáta o úhel. Stupnici postavíme olmo paprsu odraženému od rovnovážné polohy zrcáta ZR. Stopa dopadne na stupnici v místě n0. Stočí-li se zrcáto od rovnovážné polohy do polohy ZV o úhel, dopadne stopa na stupnici v místě n. Pro vzdálenost n - n0 platí vztah

3 n n0 tg, (4) l v němž l je vzdálenost stupnice od zrcáta. Pro stanovení úhlu se často užívá přibližný vzorec n n0, (5) l vhodný pro malé hodnoty. Metodou zrcáta a stupnice lze běžně dosáhnout přesnosti jedné úhlové minuty. Použitím přibližného vzorce (5) místo vzorce (4) vzniá pro úhel rovný 5 chyba %. Poyny e zpracování měření Výsledy zísané při měření modulu pružnosti E v tahu zpracujeme metodou postupných měření. Tuto metodu je vhodné použít tehdy, jestliže máme dispozici soubor měření, terá na sebe těsně navazují a vyznačují se tím, že oncový bod jednoho měření je současně výchozím bodem měření dalšího. V našem případě je tato podmína splněna, neboť měření je uspořádáno ta, že postupně zvyšujeme zatížení F a odečítáme příslušné hodnoty prodloužení l vzoru. Tím zísáme řadu hodnot l, l, l3,, ln, teré odpovídají hodnotám F, F, F3,, Fn. Volíme-li přitom hodnoty zatížení ta, aby vytvořily aritmeticou posloupnost, jde o měření s evidistantními hodnotami argumentu F. To znamená, že intervaly po sobě jdoucími hodnotami (Fi, Fi-) jsou onstantní a rozdíly F - F = F3 - F = = Fn - Fn- stejné. Kdyby měření probíhala bez chyb, byly by i rozdíly l - l, l3 - l,, ln - ln- stejné. Ve sutečnosti si tyto rozdíly nejsou rovny a úolem výpočtů je právě nalézt jejich nejpravděpodobnější hodnotu. Provedená měření rozdělíme do dvou početně stejných supin, taže aždá supina obsahuje n/ = měření. Je-li celový počet měření n číslo liché, jedno měření (zpravidla první) vynecháme. Rozdíly měřených hodnot l bereme mezi hodnotami téhož pořadí obou supin, tj. mezi první hodnotou první supiny a první hodnotou druhé supiny, mezi druhou hodnotou první supiny a druhou hodnotou druhé supiny atd. Celový počet tato vytvořených rozdílů l+ - l, l+ - l, l+3 - l3,, ln - l je a aždý z nich představuje -násobnou hodnotu rozdílu dvou po sobě jdoucích hodnot. Nejpravděpodobnější hodnota rozdílu bude

4 l l l l l l 3 l3 l... l n, což lze psát l n l l l... l l l l... l l l 3 nebo l n n 3 i i i l i li. (5) i i i Po výpočtu nejpravděpodobnější hodnoty l, známe-li F a je-li změřeno l0 a S, snadno ze vztahu () stanovíme hodnotu modulu E pružnosti v tahu. vztah Pro pravděpodobnou chybu onečného výsledu měření modulu pružnosti v tahu platí ( l0) ( d) ( l 4 ) l 0 d l ( E) E. (6) Přílad zpracování onrétního měření podle výše uvedeného postupu naleznete v doporučené literatuře BROŽ, J. Zálady fyziálních měření.. vyd. Praha: SPN, 983, čl Zde taé naleznete postup výpočtu pravděpodobné chyby onečného výsledu. Do celové chyby je vša třeba romě chyby pravděpodobné ještě započítat chybu metody. Dále tedy rozebereme, s jaou přesností je třeba měřit jednotlivé veličiny, použijeme-li měření dély drátu metody zrcáta a stupnice a chceme-li dosáhnout v určení modulu E přesnosti asi 3 %. Délu drátu l a vzdálenost stupnice od zrcáta, tj. dély přibližně m, stačí změřit s přesností asi 0,5 %, tj. pásovým měřítem. Poloměr lady R, terý bývá až cm, stačí stanovit rovněž s přesností 0,5 %; v tomto případě vša vzhledem menší celové měřené délce je nutné změřit průměr (R) lady posuvným měřítem (pozor je nutné měřit vnitřní poloměr lady!). Při odečítání dílů na stupnici musí být dosaženo větší přesnosti než %, což znamená, že posun značy, je-li stupnice dělená po mm, musí být nejméně 5 cm. Nejobtížnější je dosáhnout dostatečně malé chyby odečítání průměru drátu. Potřebná přesnost stanovení průměru asi % znamená při průměru drátu 0, mm měřit s přesností.0-3 mm. V tomto případě již plně nevyhovuje ani měření mirometricým šroubem a průměr by bylo třeba proměřit indiátorovými hodinami (viz podrobněji Brož, čl....). Nepřesnosti závaží a chybu vznilou náhradou za tg v metodě zrcáta a stupnice lze zanedbat.

5 Úol : a) určete modul pružnosti v torzi pro tyče z různých materiálů (ocel, mosaz, hliní) metodou staticou, b) zjistěte, ja závisí modul pružnosti v torzi na materiálu, délce a průřezu tyče, c) proměřte hysterezní řivu pro měděnou tyč. Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření.. vyd. Praha: SPN, 983,..,.3.,.3.. HALLIDAY, D., RESNICK, R., WALKER, J. Fyzia, část Mechania - Termodynamia.. vyd. Praha: Prometheus, 000, s Pomůcy Stativový materiál, přístroj pro měření modulu pružnosti v torzi, pásové měříto, posuvné měříto, mirometr, sada ovových tyčí, siloměr. Princip měření Při vyšetřování vztahu mezi deformací těles a působícím napětím se v dalším výladu omezíme na případ, dy deformace a napětí jsou přímo úměrné a jejich poměr není časově závislý (lasicá teorie pružnosti). Dále předpoládáme, že deformovaná láta je izotropní. Uvedené předpolady bývají splněny u polyrystalicých ovových materiálů, nejsou-li napětí na ně působící příliš velá. Vlastnosti láty při deformaci jsou potom popsány dvěma nezávislými materiálovými onstantami, nejčastěji je to modul pružnosti v tahu (Youngův modul) E a modul pružnosti ve smyu G. Modul pružnosti ve smyu G udává vztah mezi smyovým napětím a smyovou deformací ve tvaru F, () G S de je úhel smyu, F je smyová síla a S plocha, ve teré působí smyová síla. Modul pružnosti ve smyu G se nejčastěji určuje z torze tyčí. Při torzi je aždá část tyče namáhána pouze smyem a přitom, i dyž je smy v aždé části tyče poměrně malý (tedy leží hluboo pod mezí úměrnosti deformace a napětí, výsledný úhel stočení tyče může být značný, a tedy dobře měřitelný. Vztah () přejde při torzi tyče ve vztah mezi úhlem stočení tyče a momentem síly M vyvolávajícím torzi, terý má tvar M M, () G D v němž jedinou materiálovou onstantou je modul pružnosti ve smyu G. Konstanta v rovnici () závisí pouze na tvaru tyče podrobené torzi. Veličina D se nazývá direční moment tyče. Modul pružnost ve smyu měříme buď staticy, tj. ta že měříme úhly stočení příslušné daným torzním momentům M a z rovnice () vypočítáme modul G, nebo dynamicy ta, že necháme tyč vyonávat torzní mity.

6 K měření modulu pružnosti ve smyu G staticou metodou použijeme tyč, terá má ruhový průřez o poloměru r a délu l a je na jednom onci upevněna. Působíme-li na druhý onec silovou dvojicí o momentu M, jehož směr je rovnoběžný s osou tyče, pootočí se tento onec vzhledem upevněnému onci o úhel, pro terý platí lm. (3) 4 Gr Tato rovnice vyplývá z rovnice (), dosadíme-li za direční moment D hodnotu 4 Gr D, (4) l jež platí pro tyč ruhového průřezu o poloměru r, délce l a materiálu s modulem pružnosti ve smyu G. Z rovnice (3) dostaneme pa pro modul pružnosti ve smyu Postup měření: ) Sestavíme experimentální zařízení podle obr.. lm G. (5) r 4 Obr. Měření provedeme pro různé tyče (volíme různé materiály, dély a průřezy tyčí). Pro aždou tyč změříme pomocí siloměru moment síly pro různé vzdálenosti od osy a pro různé veliosti úhlů. Z naměřených hodnot vypočteme pro aždou tyč hodnotu modulu pružnosti v torzi G. ) Graficy znázorníme závislost modul pružnosti v torzi na materiálu, délce a průřezu tyče. 3) Proměřte a graficy znázorněte hysterezní řivu pro tyč z mědi (viz obr. pro průměr tyče d = mm a délu tyče l = 0,5 m).

7 Obr.

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí

Více

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu Úloha 1 Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu 1.1 Úkol měření 1.Změřtezávislostanodovéhoproudu I a naindukcimagnetickéhopoleprodvěhodnotyanodovéhonapětí

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM 9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: 1. Změřte převodní charakteristiku deformačního snímače síly v rozsahu 0 10 kg 1. 2. Určete hmotnost neznámého závaží. 3. Ověřte, zda lze měření zpřesnit

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM I Úloha číslo: X Název: Rychlost šíření zvuku Vypracoval: Ondřej Hlaváč stud. skup.: F dne: 7. 3. 00 Odevzdal dne:

Více

Měření povrchového napětí kapaliny z kapilární elevace

Měření povrchového napětí kapaliny z kapilární elevace Měření povrchového napětí kapaliny z kapilární elevace Problém A. Změřit povrchové napětí destilované vody. B. Změřit povrchové napětí lihu. C. Stanovení nejistot změřených veličin. Předpokládané znalosti

Více

Měření na trojfázovém transformátoru naprázdno a nakrátko.

Měření na trojfázovém transformátoru naprázdno a nakrátko. Úol: Měřeí a trojfázovém trasformátoru aprázdo a aráto. 1. Změřte a areslete charateristiy aprázdo trojfázového trasformátoru 2,, P, cos = f ( 1) v rozmezí 4-1 V. Zdůvoděte průběh charateristi 2 = f (

Více

OVMT Měření základních technických veličin

OVMT Měření základních technických veličin Měření základních technických veličin Měření síly Měření kroutícího momentu Měření práce Měření výkonu Měření ploch Měření síly Hlavní jednotkou síly je 1 Newton (N). Newton je síla, která uděluje volnému

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

Název: Studium tření a jeho vliv na běžné aktivity

Název: Studium tření a jeho vliv na běžné aktivity Název: Studium tření a jeho vliv na běžné aktivity Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Člověk a svět práce) Tematický

Více

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou:

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou: Funční měniče. Zadání: A. Na předloženém aproximačním funčním měniči s operačním zesilovačem realizujícím funci danou tabulou: proveďte: U / V / V a) pomocí oscilosopu měnič nastavte b) změřte na něm jeho

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Pracoval: Jakub Michálek stud. skup. 15 dne:. dubna 009 Odevzdal

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 8: Měření zatížení protéz dolních končetin tenzometrickou soupravou Metodický pokyn pro vyučující se vzorovým protokolem

Více

Úloha I.E... tři šedé vlasy dědy Aleše

Úloha I.E... tři šedé vlasy dědy Aleše Úloha I.E... tři šedé vlasy dědy Aleše 8 bodů; průměr 4,28; řešilo 50 studentů Pokuste se určit některé napěťové charakteristiky v tahu u lidského vlasu. Z vašeho pokusu sestavte co nejpodrobnější graf

Více

Měření hladiny intenzity a spektrálního složení hluku hlukoměrem

Měření hladiny intenzity a spektrálního složení hluku hlukoměrem Měření hladiny intenzity a spektrálního složení hluku hlukoměrem Problém A. V režimu váhového filtru A změřit závislost hladiny akustické intenzity LdB [ ] vibrační sirény na napětí UV [ ] napájecího zdroje.

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

5 Měření tokových vlastností

5 Měření tokových vlastností 5 Měření tokových vlastností K měření tokových vlastností se používají tzv. reometry. Vzhledem k faktu, že jednotlivé polymerní procesy probíhají při rozdílných rychlostech smykové deformace (Obr. 5.1),

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úoha : Měření moduu pružnosti v tahu a ve smyku Datum měření: 9. 10. 009 Jméno: Jiří Sabý Pracovní skupina: 1 Ročník a kroužek:. ročník, 1. kroužek, pátek 13:30 Spoupracovaa:

Více

Název: Chování cívky v obvodu, vlastní indukce, indukčnost

Název: Chování cívky v obvodu, vlastní indukce, indukčnost Název: Chování cívky v obvodu, vlastní indukce, indukčnost Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický

Více

na tyč působit moment síly M, určený ze vztahu (9). Periodu kmitu T tohoto kyvadla lze určit ze vztahu:

na tyč působit moment síly M, určený ze vztahu (9). Periodu kmitu T tohoto kyvadla lze určit ze vztahu: Úloha Autoři Zaměření FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 2. Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Martin Dlask Měřeno 11. 10., 18. 10., 25. 10. 2012 Jakub Šnor SOFE Klasifikace

Více

Pavel Burda Jarmila Doležalová

Pavel Burda Jarmila Doležalová VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA MATEMATIKA III Pavel Burda Jarmila Doležalová Vytvořeno v rámci projetu Operačního programu Rozvoje lidsých zdrojů CZ.04.1.0/..15.1/0016 Studijní opory

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

Měření výstupní práce elektronu při fotoelektrickém jevu

Měření výstupní práce elektronu při fotoelektrickém jevu Měření výstupní práce elektronu při fotoelektrickém jevu Problém A. Změřit voltampérovou charakteristiku ozářené vakuové fotonky v závěrném směru. B. Změřit výstupní práci fotoelektronů na fotokatodě vakuové

Více

KOMPENZACE PŘI KONSTANTNÍM ČINNÉM VÝKONU

KOMPENZACE PŘI KONSTANTNÍM ČINNÉM VÝKONU OMPENZCE PŘ ONSTNTNÍM ČNNÉM VÝON sin Před ompenzaí Po ompenzai sin (Vr; V, ) ompenzaní výon sin sin (Vr; V, ) Veliost apaity ap C X ap ap C (; V, C (F; Vr, s 1, V) ) OMPENZCE PŘ ONSTNTNÍM ZDÁNLVÉM VÝON

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 5 Z GEODÉZIE 1 (Měření délek) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. říjen 2015 1 Geodézie 1 přednáška č.5 MĚŘENÍ DÉLEK Podle

Více

Akustická měření - měření rychlosti zvuku

Akustická měření - měření rychlosti zvuku Akustická měření - měření rychlosti zvuku Úkol : 1. Pomocí přizpůsobené Kundtovy trubice určete platnost vztahu λ = v / f. 2. Určete rychlost zvuku ve vzduchu pomocí Kundtovy a Quinckeho trubice. Pomůcky

Více

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje

Více

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia

Více

Úkol č. 1: Změřte měrnou tepelnou kapacitu kovového tělíska.

Úkol č. 1: Změřte měrnou tepelnou kapacitu kovového tělíska. Měření měrné tepelné kapacity pevných látek a kapalin Měření měrné tepelné kapacity pevných látek a kapalin Úkol č : Změřte měrnou tepelnou kapacitu kovového tělíska Pomůcky Směšovací kalorimetr s míchačkou

Více

7. Měření rychlosti zvuku ze zpoždění signálu v akustické trubici

7. Měření rychlosti zvuku ze zpoždění signálu v akustické trubici 7. Měření rychlosti zvuku ze zpoždění signálu v akustické trubici Problém A. Přímé změření vlnové délky zvuku ve vzduchu za normálního tlaku v Kundtově trubici pro pět různých frekvencí nízkofrekvenčního

Více

Fyzikální praktikum č.: 2

Fyzikální praktikum č.: 2 Datum: 3.3.2005 Fyzikální praktikum č.: 2 Vypracoval: Tomáš Henych Název: Studium termoelektronové emise Úkoly: 1. Změřte výstupní práci w wolframu pomocí Richardsonovy Dushmanovy přímky. 2. Vypočítejte

Více

3.1.6 Dynamika kmitavého pohybu, závaží na pružině

3.1.6 Dynamika kmitavého pohybu, závaží na pružině 3..6 Dynaia itavého pohybu, závaží na pružině Předpolady: 303 Pedagogicá poznáa: Na příští hodinu by si všichni ěli do dvojice přinést etrový prováze (nebo silnější nit) a stopy. Poůcy: pružina, stojan,

Více

RNDr. Božena Rytířová. Základy měření (laboratorní práce)

RNDr. Božena Rytířová. Základy měření (laboratorní práce) Autor: Tematický celek: Učivo (téma): Stručná charakteristika: RNDr. Božena Rytířová Základy měření (laboratorní práce) Měření rozměrů tělesa posuvným a mikrometrickým měřidlem Materiál má podobu pracovního

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení

Více

Měřící a senzorová technika Návrh měření odporových tenzometrů

Měřící a senzorová technika Návrh měření odporových tenzometrů VŠBTU Ostrava 2006/2007 Měřící a senzorová technika Návrh měření odporových tenzometrů Ondřej Winkler SN171 Zadání: Odporové tenzometry staré zpracování 1. Seznámit se s konstrukcí a použitím tenzometrů

Více

Návrh vysokofrekvenčních linkových transformátorů

Návrh vysokofrekvenčních linkových transformátorů inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových

Více

V i s k o z i t a N e w t o n s k ý c h k a p a l i n

V i s k o z i t a N e w t o n s k ý c h k a p a l i n V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam

Více

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie B Autořiúloh:J.Thomas(1,4,7),M.Jarešová(3),I.ČápSK(2),J.Jírů(5) P.

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie B Autořiúloh:J.Thomas(1,4,7),M.Jarešová(3),I.ČápSK(2),J.Jírů(5) P. Řešení úloh. ola 53. ročníu fyziální olympiády. Kategorie B Autořiúloh:J.Thomas(,,7),M.Jarešová(3),I.ČápSK(),J.Jírů(5) P. Šedivý(6).a) Objem V ponořenéčástiválečuje63%objemu V celéhováleču.podle Archimedova

Více

6. Měření veličin v mechanice tuhých a poddajných látek

6. Měření veličin v mechanice tuhých a poddajných látek 6. Měření veličin v mechanice tuhých a poddajných látek Pro účely měření mechanických veličin (síla, tlak, mechanický moment, změna polohy, rychlost změny polohy, amplituda, frekvence a zrychlení mechanických

Více

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní

Více

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování

Více

Mikroelektronika a technologie součástek

Mikroelektronika a technologie součástek FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ Mikroelektronika a technologie součástek laboratorní cvičení Garant předmětu: Doc. ng. van Szendiuch, CSc. Autoři textu: ng.

Více

Závěrečná práce studentského projektu

Závěrečná práce studentského projektu Gymnázium Jana Nerudy Závěrečná práce studentského projektu Studium deformace vláken Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti 214 Petr Krýda Petr Jaroš Petr Kolouch Matěj Seykora

Více

pracovní list studenta Struktura a vlastnosti pevných látek Deformační křivka pevných látek, Hookův zákon

pracovní list studenta Struktura a vlastnosti pevných látek Deformační křivka pevných látek, Hookův zákon Výstup RVP: Klíčová slova: pracovní list studenta Struktura a vlastnosti pevných látek, Mirek Kubera žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, analyzuje průběh

Více

ZVUKY KMITAJÍCÍCH TYČÍ

ZVUKY KMITAJÍCÍCH TYČÍ ZVUKY KMITAJÍCÍCH TYČÍ BŘETISLAV PATČ, ZŠ BRANDÝS N. L., LEOŠ DVOŘÁK, KDF MFF UK PRAHA *) ÚVOD Za tyče považujeme v akustice pevná pružná tělesa, u kterých převažuje jeden rozměr nad ostatními dvěma. Tyče

Více

MĚŘENÍ PARAMETRŮ DUTÉHO ZRCADLA; URČENÍ INDEXU LOMU KAPALIN POMOCÍ DUTÉHO ZRCADLA

MĚŘENÍ PARAMETRŮ DUTÉHO ZRCADLA; URČENÍ INDEXU LOMU KAPALIN POMOCÍ DUTÉHO ZRCADLA MĚŘENÍ PARAMETRŮ DUTÉHO ZRCADLA; URČENÍ INDEXU LOMU KAPALIN POMOCÍ DUTÉHO ZRCADLA V geometrické optice, a také ve většině experimentálních metod, se k určení ohniskové vzdálenosti dutého zrcadla využívá

Více

L a b o r a t o r n í c v i č e n í z f y z i k y

L a b o r a t o r n í c v i č e n í z f y z i k y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZI KY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 1.11.006 Stud. rok 006/007 Ročník. Datum odevzdání 15.11.006 Stud.

Více

Název: Dynamická měření tuhosti pružiny a torzní tuhosti nylonového vlákna

Název: Dynamická měření tuhosti pružiny a torzní tuhosti nylonového vlákna Název: Dynamicá měření tuhosti pružiny a torzní tuhosti nylonového vlána Autor: Doc. RNDr. Milan Rojo, CSc. Název šoly: Gymnázium Jana Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: fyzia,

Více

Název Lineární pohon vřetenem s trapézovým závitem 902) OSP-E..ST

Název Lineární pohon vřetenem s trapézovým závitem 902) OSP-E..ST Veličiny Veličiny Všeobecně Znača Jednota Poznáma Název ineární pohon vřetenem s trapézovým závitem 902) Typ OSP-E..ST Upevnění viz výresy Rozsah teplot ϑ min C -20 ϑ max C +70 Materiál Hmotnost g viz

Více

plynu, Měření Poissonovy konstanty vzduchu

plynu, Měření Poissonovy konstanty vzduchu Úloha 4: Měření dutých objemů vážením a kompresí plynu, Měření Poissonovy konstanty vzduchu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 2.11.2009 Jméno: František Batysta Pracovní skupina: 11 Ročník

Více

ŽELEZNIČNÍ STAVBY II

ŽELEZNIČNÍ STAVBY II VYSOKÉ UČEÍ TECHICKÉ V BRĚ FAKULTA STAVEBÍ OTTO PLÁŠEK, PAVEL ZVĚŘIA, RICHARD SVOBODA, VOJTĚCH LAGER ŽELEZIČÍ STAVBY II MODUL 6 BEZSTYKOVÁ KOLEJ STUDIJÍ OPORY PRO STUDIJÍ PROGRAMY S KOMBIOVAOU FORMOU STUDIA

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Měření ohniskových vzdáleností čoček, optické soustavy

Měření ohniskových vzdáleností čoček, optické soustavy Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného

Více

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Měření měrné tepelné kapacity látek kalorimetrem

Měření měrné tepelné kapacity látek kalorimetrem Měření měrné tepelné kapacity látek kalorimetrem Problém A. Změření kapacity kalorimetru (tzv. vodní hodnota) pomocí elektrického ohřevu s měřeným příkonem. B. Změření měrné tepelné kapacity hliníku směšovací

Více

Možnosti stanovení příčné tuhosti flexi-coil pružin

Možnosti stanovení příčné tuhosti flexi-coil pružin Jaub Vágner, Aleš Hába Možnosti stanovení příčné tuhosti flexi-coil pružin Klíčová slova: vypružení, flexi-coil, příčná tuhost, MKP, šroubovitá pružina. Úvod Vinuté pružiny typu flexi-coil jsou dnes jedním

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T 1 Pracovní úkol 1. Změřte účiník (a) rezistoru (b) kondenzátoru (C = 10 µf) (c) cívky Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Fyzika v přírodě. výukový modul pro 9. ročník základní školy

Fyzika v přírodě. výukový modul pro 9. ročník základní školy Fyzika v přírodě výukový modul pro 9. ročník základní školy Základní údaje o výukovém modulu Autor (autoři) výukového modulu: Mgr. Pavel Rafaj Téma (témata) výukového modulu: vyhledávání a zpracování informací

Více

VÝROBA SOUČÁSTI Z DRÁTU

VÝROBA SOUČÁSTI Z DRÁTU VÝROBA SOUČÁSTI Z DRÁTU THE MANUFACTURING OF COMPONENT FROM WIRE BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE AUTHOR Hana Elisabetha PECINOVÁ VEDOUCÍ PRÁCE SUPERVISOR Ing. Eva PETERKOVÁ, Ph.D. BRNO 2014

Více

Rezonanční elektromotor

Rezonanční elektromotor - 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší

Více

Geodézie pro stavitelství KMA/GES

Geodézie pro stavitelství KMA/GES Geodézie pro stavitelství KMA/GES ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

4.1 Shrnutí základních poznatků

4.1 Shrnutí základních poznatků 4.1 Shrnutí základních poznatků V celé řadě konstrukcí se setkáváme s případy, kdy o nosnosti nerozhoduje pevnost materiálu, ale stabilitní stav rovnováhy. Tuto problematiku souhrnně nazýváme stabilita

Více

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č. Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.IV

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.IV Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Vypracoval: Petr Škoda Stud.

Více

Název: Chemická rovnováha

Název: Chemická rovnováha Název: Chemicá rovnováha Autor: Mgr. Štěpán Miča Název šoly: Gymnázium Jana Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, fyzia Roční: 6. Tématicý cele: Chemicá rovnováha (fyziální

Více

. Opakovací kurs středoškolské matematiky podzim 2015

. Opakovací kurs středoškolské matematiky podzim 2015 . Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

2 Kotvení stavebních konstrukcí

2 Kotvení stavebních konstrukcí 2 Kotvení stavebních konstrukcí Kotvení stavebních konstrukcí je velmi frekventovanou metodou speciálního zakládání, která umožňuje přenos tahových sil z konstrukce do horninového prostředí, případně slouží

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 6

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 6 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ převody Přednáška 6 Pevnostní výpočet čelních ozubených kol Don t force it! Use a bigger hammer. ANONYM Kontrolní výpočet

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření

22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy MĚŘENÍ NA VEDENÍ 102-4R-T,S Zadání 1. Sestavte měřící

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

Únosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil.

Únosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil. Směrnice Obsah Tato část se zabývá polyesterovými a vinylesterovými konstrukčními profily vyztuženými skleněnými vlákny. Profily splňují požadavky na kvalitu dle ČSN EN 13706. GDP KORAL s.r.o. může dodávat

Více

SNÍMAČE PRO MĚŘENÍ SÍLY, TLAKU, KROUTÍCÍHO MOMENTU, ZRYCHLENÍ

SNÍMAČE PRO MĚŘENÍ SÍLY, TLAKU, KROUTÍCÍHO MOMENTU, ZRYCHLENÍ SNÍMAČE PRO MĚŘENÍ SÍLY, TLAKU, KROUTÍCÍHO MOMENTU, ZRYCHLENÍ 9.1. Snímače síly 9.2. Snímače tlaku 9.3. Snímače kroutícího momentu 9.4. Snímače zrychlení 9.1. SNÍMAČE SÍLY dva základní principy: 9.1.1.

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů tyristoru, část 3-5-3

MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů tyristoru, část 3-5-3 MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

10 Navrhování na účinky požáru

10 Navrhování na účinky požáru 10 Navrhování na účinky požáru 10.1 Úvod Zásady navrhování konstrukcí jsou uvedeny v normě ČSN EN 1990[1]; zatížení konstrukcí je uvedeno v souboru norem ČSN 1991. Na tyto základní normy navazují pak jednotlivé

Více

Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Rovnice RNDr. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Grafické řešení soustav rovnic a nerovnic VY INOVACE_0 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Soustav lineárních rovnic Soustavou

Více

Voltův článek, ampérmetr, voltmetr, ohmmetr

Voltův článek, ampérmetr, voltmetr, ohmmetr Úloha č. 1b Voltův článek, ampérmetr, voltmetr, ohmmetr Úkoly měření: 1. Sestrojte Voltův článek. 2. Seznamte se s multimetry a jejich zapojováním do obvodu. 3. Sestavte obvod pro určení vnitřního odporu

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita omáše Bati ve Zíně LABORAORNÍ CVIČENÍ Z FYZIKY II Název úohy: Měření tíhového zrychení reverzním a matematickým kyvadem Jméno: Petr Luzar Skupina: I II/1 Datum měření: 3.října 007 Obor: Informační

Více

1. Měření hustoty látek. Úkol 1: Stanovte hustotu tělesa přímou metodou a pomocí Tabulek určete druh látky, z níž je těleso zhotoveno.

1. Měření hustoty látek. Úkol 1: Stanovte hustotu tělesa přímou metodou a pomocí Tabulek určete druh látky, z níž je těleso zhotoveno. 1. Měření hustoty látek Úkol 1: Stanovte hustotu tělesa přímou metodou a pomocí Tabulek určete druh látky, z níž je těleso zhotoveno. BROŽ, J. Základy fyzikálních měření. 1. vyd. Praha: SPN, 1983, čl.

Více

Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007. Posuzoval:... dne... výsledek klasifikace...

Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007. Posuzoval:... dne... výsledek klasifikace... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007 Odevzdal dne:... vráceno:... Odevzdal dne:...

Více

Funkce pružiny se posuzuje podle průběhu a velikosti její deformace v závislosti na působícím zatížení.

Funkce pružiny se posuzuje podle průběhu a velikosti její deformace v závislosti na působícím zatížení. Teorie - základy. Pružiny jsou konstrukční součásti určené k zachycení a akumulaci mechanické energie, pracující na principu pružné deformace materiálu. Pružiny patří mezi nejvíce zatížené strojní součásti

Více

Technická univerzita v Liberci

Technická univerzita v Liberci Technická univerzita v Liberci Fakulta strojní Marek Holík Měření obráběcích sil a tuhosti konstrukce prototypu CNC stroje Bakalářská práce 2010 Technická univerzita v Liberci Fakulta strojní Katedra výrobních

Více

Obr.1 Princip Magnetoelektrické soustavy

Obr.1 Princip Magnetoelektrické soustavy rincipy měřicích soustav: 1. Magnetoeletricá (depreszý) 2. Eletrodynamicá 3. Induční 4. Feromagneticá 1.ANALOGOVÉ MĚŘICÍ ŘÍSTROJE Magnetoeletricá soustava: Založena na působení sil v magneticém poli permanentního

Více

Název: Čočková rovnice

Název: Čočková rovnice Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.

Více