1 Nosné konstrukce vícepodlažních panelových budov

Rozměr: px
Začít zobrazení ze stránky:

Download "1 Nosné konstrukce vícepodlažních panelových budov"

Transkript

1 1 Nosné konstrukce vícepodlažních panelových budov Rozsáhlá výstavba obytných domů panelovou technologií probíhala zejména v letech 1957 až 1992, přičemž největší intenzity dosahovala v 70. a 80. letech minulého století. V uvedeném období bylo postaveno více než 80. tisíc panelových domů, převážně čtyř až osmipodlažních a v menším rozsahu dvanáctipodlažních, výjimečně byly také realizovány výškové budovy s 20 podlažími. V těchto budovách bylo celkem postaveno 1,165 milion bytů, tj. cca 30 % všech bytů v ČR (obr. 1.1). Obr. 1.1 Pohled na dvacetipodlažní panelovou budovu (T 06 B) po rekonstrukci obvodového pláště a deskový dvanáctipodlažní panelový bytový dům (T 08 B) Příčné uspořádání nosných stěn, které se uplatnilo v panelové výstavbě, otevřelo cestu novému pojetí a uspořádání nosného systému, vycházející z principu Le Corbusierova systému Domino (1914). Příčné uspořádání nosných stěn umožnilo, na rozdíl od tradičních zděných systémů s podélným uspořádáním nosných stěn, otevření obvodových konstrukcí a vytváření průčelí s průběžnými pásy oken a parapetů. Současně však příčné uspořádání nosných stěn omezilo propojování sousedních travé, např. v rámci bytu pouze dveřními otvory. Tato vlastnost příčného uspořádání nosných panelových stěn je v současnosti do určité míry překážkou při modernizaci a dispozičních úpravách bytů v souladu se současnými individuálními požadavky na volnější dispoziční a provozní propojení sousedních travé (obr. 1.2). Obr. 1.2 Schéma deskostěnové prefabrikované (panelové) konstrukce s příčným uspořádáním nosných stěn a ztužující stěnou v podélném směru 5

2 1.1 Základní charakteristiky vybraných panelových stavebních soustav Panelové budovy byly realizovány v 9 až 14 základních stavebních soustavách a v řadě tzv. krajských materiálových variant (cca 67). Stáří panelových domů se v závislosti na roku výstavby pohybuje cca od 20 let do 50 let, tzn., že dosahují cca 25 až 70 % předpokládané účetní životnosti (75 až 85 let). Nejvyšší podíl na výstavbě vícepodlažních panelových staveb mají především stavební soustavy G 57, T 06 B, T 08 B, VVÚ ETA, Larsen-Nielsen, B 70, PS 69, HK 60, BANKS, jejichž stručná charakteristika a vybrané příklady konstrukčních detailů jsou uvedeny v následující kapitole. Nosná konstrukce prefabrikovaných stěnových systémů je vytvořena vzájemným spojením jednotlivých prefabrikovaných stěnových a stropních dílců ve stycích. Prostorovou tuhost a stabilitu systému zajišťují stěny rozmístěné v příčném a podélném směru. Charakteristickým prvkem konstrukčního systému je nosná stěna vytvořená z velkoplošných stěnových dílců. Nosné stěny jsou převážně uspořádané v příčném směru budovy. Systémy s podélně nebo obousměrně uspořádanými nosnými stěnami jsou méně častým případem (obr. 1.3). Obr. 1.3 Charakteristické uspořádání svislé nosné konstrukce prefabrikovaných stěnových systémů 6

3 Ze statického hlediska jsou prefabrikované stěnové konstrukce charakteristické relativně velkou tuhostí srovnatelnou s monolitickými konstrukcemi a relativně nižší pevností ve stycích nosných dílců. Malé deformace systému (jako celku, jednotlivých dílců nebo styků) jsou v pružném stavu provázeny vznikem vysokých hodnot namáhání. Z tohoto hlediska jsou zvláště závažné účinky vynucené deformace (přetvoření), způsobené především účinky změny tvaru základové spáry, účinky teploty, vlhkosti a dotvarování. Proto je nutné vhodným uspořádáním skladby, konstrukčním řešením dílců a styků snížit závažnost uvedených vlivů a účinků na přípustnou hodnotu. Funkci nosných stěn plní též štítové a dilatační stěny, případně i stěny průčelní (obvodové) nebo vnitřní podélné. Podélné stěny jsou zpravidla situovány do míst, kde přebírají současně i zvukoizolační funkci, tj. např. mezi jednotlivými byty, mezi schodištěm a ostatními prostorami. Počet podélných tzv. ztužujících stěn je závislý na výšce budovy, půdorysném tvaru a způsobu jejich spřažení spolupůsobení s ostatní konstrukcí. Realizované prefabrikované stěnové konstrukce jsou charakteristické příčným uspořádáním nosných stěn, zpravidla umístěných v osové vzdálenosti mm až mm. Panelové soustavy s osovou vzdáleností příčných stěn mm až mm jsou označovány jako malorozponové soustavy, se vzdáleností příčných stěn mm (výjimečně mm) jako soustavy středněrozponové. Nedostatkem stěnových systémů s příčně orientovanými stěnami je obtížné sdružování sousedních travé, oddělených nosnou stěnou. Tato vlastnost omezuje použití stěnových systémů s příčně nosnými stěnami převážně na bytové stavby, popř. hotely, ubytovny, koleje apod., a představuje závažnou překážku při alternativním uspořádání vnitřních prostorů při změně funkce nebo provozu. Poloha nosných stěn vymezená rozpony stropní konstrukce současně určuje i dispoziční členění vnitřních prostorů. Zpravidla jakékoliv zásadní změny např. v uspořádání bytů, vytváření větších prostorů, sdružování sousedních travé vyžadují komplikované úpravy a zásahy do nosné konstrukce. Předností stěnového systému s příčným uspořádáním stěn je možnost využít plošné hmotnosti nosných stěn (min. 350 kg/m 2 ) při zajištění vzduchové neprůzvučnosti dělicích konstrukcí (stěny) např. mezi sousedními byty. Nekvalitní dílce, nedodržování technologických pravidel a požadavků při výstavbě panelových domů spolu s projektovými vadami typových podkladů zapříčinily řadu vad a poruch, snižujících kvalitu realizovaných panelových domů (obr. 1.4). Řada vad a poruch panelových staveb byla také zapříčiněna nedostatečnými znalostmi o těchto konstrukcích, a v neposlední řadě zaostáváním teorie v oblasti konstrukčně statické a stavebně fyzikální problematiky. Největší podíl na řadě poruch panelových domů má vadné řešení obvodových konstrukcí, lodžií a zejména neznalost a podcenění nesilových účinků teploty a vlhkosti. Provedení oprav, sanace a regenerace panelových domů v závislosti na jejich stáří, rozsahu a výskytu vad a poruch umožňuje dosáhnout v současnosti požadované kvality bydlení, snížení energetické náročnosti, zlepšení architektonického výrazu a zejména vytvořit předpoklady pro dosažení plné životnosti panelových budov, tj. min. 75 až 85 let (obr. 1.5). Lze oprávněně předpokládat, že náklady na uvedenou sanaci a regeneraci v závislosti na jejich rozsah, přepočtené na jednu bytovou jednotku, se budou převážně pohybovat pod 20 % současné pořizovací ceny bytu odpovídající velikosti. 7

4 Obr. 1.4 Příklady nekvalitních dílců a provedení panelových konstrukcí a) prosekaný otvor ve stropním panelu, narušená krycí vrstva výztuže; b) poškození povrchové úpravy, velké tolerance rozměrů dílců obvodového pláště, poškozené rohy a okraje dílce; c) porušení panelu vnitřní konstrukce, způsobené neodbornou manipulací s dílcem; d) velký rozsah narušení zhlaví stěnových dílců; e) osazení narušeného stropního dílce, různý průhyb stropních dílců 8

5 Obr. 1.5 Příklad obnovy panelových domů Základní panelové soustavy [1] G 57 (severočeská varianta) Modulová vzdálenost příčných stěn mm. Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny ze škvárobetonových panelů tl. 200 mm, později betonové panely tl. 160 mm; stropní železobetonové plné dílce tl. 100 mm. Nosné štítové stěny celostěnové vícevrstvé dílce tl. 240 mm ve skladbě venkovní omítka, nosná betonová, železobetonová nebo škvárobetonová vrstva tl. 140 mm, pazderobeton tl. 85 mm, vnitřní omítka; celostěnové sendvičové dílce tl. 240 mm ve skladbě venkovní železobetonová vrstva 50 mm, tepelně izolační vrstva (skelná vata nebo mofoterm) v tl. 60 mm, vnitřní nosná železobetonová vrstva tl. 130 mm; štíty byly u většiny staveb dodatečně zatepleny přizděním izolační přizdívky z pórobetonových tvárnic tl. 70 mm. Obvodový plášť průčelí samonosný (částečně nosný), sestavený z celostěnových dílců tl. 240 mm ve dvou variantách skladby jako u štítových stěn, pouze s menší tl. pazderobetonu (60 mm) a větší tl. omítek. Lodžie zapuštěné, ocelové zábradlí s drátosklem, lodžiová podélná stěna shodné skladby jako stěna štítová nebo lehké dřevěné konstrukce. Spodní stavba (suterén) montovaná nebo monolitická, strop montovaný. Schodiště dvouramenné, montované. Příčky železobetonové tl. 80 mm. Bytová jádra lehké sendvičové konstrukce se stěnami ze sololitu a jádra z lisovaného papíru. 9

6 Období výstavby: Obr. 1.6 Konstrukční řešení a charakteristické detaily stavební soustavy G 57 10

7 T 06 B (středočeská varianta) Výška zástavby 4, 8 a 13 podlaží. Modulová vzdálenost příčných stěn mm. Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny ze železobetonových nebo betonových celostěnových dílců s konstrukční výztuží tl. 150 mm (řadové domy) nebo 200 mm (věžové domy); stropní železobetonové plné dílce tl. 120 mm. Nosné štítové stěny jednovrstvé celostěnové keramzitbetonové dílce tl. 310 mm. Obvodový plášť průčelí jednovrstvé celostěnové nenosné keramzitbetonové dílce tl. 270 mm; sendvičové celostěnové samonosné dílce tl. 320 mm; jednovrstvé parapetní křemelinové dílce tl. 200 mm, zavěšené na příčných nosných stěnách; sendvičové parapetní železobetonové dílce tl. 200 mm, zavěšené na příčných nosných stěnách; meziokenní vložky z dřevěných rámů a desek s tepelnou izolací. Lodžie zapuštěné nebo polozapuštěné; balkony zavěšené. Spodní stavba (suterén) montovaná. Schodiště dvouramenné, montované. Příčky železobetonové dílce tl. 60 mm a 80 mm. Bytová jádra B 3 a B 10M. Střecha plochá jednoplášťová nebo dvouplášťová. Realizace budov se zapuštěným suterénem montovaným (5 NP) nebo částečně zapuštěným suterénem montovaným (5, 9, 14 NP). T 06 B (severočeská varianta) Od středočeské varianty se liší především: Nosné vnitřní stěny betonové (u vyšších budov železobetonové) tl. 140 mm Nosné štítové stěny vrstvené celostěnové dílce tl. 320 mm s tepelnou izolací z plynosilikátu; sendvičové celostěnové železobetonové dílce tl. 290 mm s tepelnou izolací z polystyrenu. Obvodový plášť průčelí samonosné vrstvené celostěnové dílce tl. 240 mm s tepelnou izolací z plynosilikátu; sendvičové celostěnové železobetonové dílce tl. 220 mm (240 mm) s tepelnou izolací z polystyrenu. Schodiště 14podlažní věžový dům stavěný podle typového projektu má jednoramenné ocelové schodiště. Střecha plochá jednoplášťová s tepelnou izolací z plynosilikátových tvárnic nebo panelů, později dvouplášťová, tvořená železobetonovými deskami s tepelnou izolací z minerálních rohoží. T 06 B (jihočeská varianta) Od středočeské varianty se liší především: Nosné vnitřní konstrukce nosné stěny z železobetonových plných panelů o tloušťce 140 mm z betonu B II (B 170) nebo B III (B 250), stropní dílce jsou železobetonové plné tloušťky 120 nebo 140 mm. Obvodový plášť průčelí dvouvrstvé parapetní keramické dílce tl. 300 mm; jednovrstvé parapetní křemelinové dílce tl. 200 mm, zavěšené na příčných nosných stěnách. Štítové stěny křemelinové panely tloušťky 200 mm, zavěšené na železobetonové panely tl. 140 mm, keramické panely tl. 300 mm. Balkony zavěšená ocelová konstrukce (keramický obvodový plášť) nebo vykonzolovaná (křemelinový obvodový plášť) železobetonová deska šířky mm. 11

8 T 06 B (západočeská varianta Karlovy Vary) Od středočeské varianty se liší především: Nosné vnitřní konstrukce stěnové dílce tl. 150 mm pro příčné nosné stěny, stěny podélné zavětrovací a stěny štítové (pro dvouplášťové řešení štítů) tl. 150 mm, beton třídy III (B 250); stropní dílce jsou železobetonové, plné tl. 120 mm, od roku 1980 tl. 150 mm. Obvodový plášť podélné celostěnové keramzitbetonové fasádní prvky tl. 320 mm jsou nesené ocelovými konzolami, nejsou samonosné. T 06 B (západočeská varianta Plzeň) Od středočeské varianty se liší především: Obvodový plášť předsazený obvodový plášť KMV celostěnový, u deskových budov jako skládaný z parapetních pásů a meziokenních vložek. Štítové panely jsou jednovrstvé z keramzitbetonu tl. 290 mm, bez povrchových úprav; u bodových a řadových domů obvodový plášť ze zavěšených panelů z keramzitbetonu tl. 250 mm bez povrchových úprav. Obr Konstrukční řešení a charakteristické detaily stavební soustavy T 06 B 12

9 T 06 B ROZPON mm TL. STROPU 140 mm Obr Konstrukční řešení a charakteristické detaily stavební soustavy T 06 B 13

10 T 08 B Středně rozponová soustava používaná v Praze, středních a severních Čechách Výška zástavby 4 a 8 podlaží (řadové domy); 10 a 12 podlaží (domy věžové). Modulová vzdálenost příčných stěn mm. Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny z celostěnových železobetonových nebo betonových dílců s konstrukční výztuží tl. 190 mm; stropní předpjaté železobetonové dutinové dílce tl. 190 mm. Nosné štítové stěny celostěnové dílce keramobetonové tl. 340 mm; celostěnové třívrstvé sendvičové dílce tl. 240 mm (v pozdějších letech výstavby). Obvodový plášť průčelí sendvičové parapetní železobetonové dílce tl. 190 mm; meziokenní vložky sendvičové tl. 190 mm; jednovrstvé celostěnové spínané pórobetonové dílce (v pozdějších letech výstavby). Lodžie předsazené nebo zapuštěné, zábradlí ocelové nebo železobetonové. Spodní stavba (suterén) snížené montované technické podlaží. Schodiště jednoramenné, montované, dvakrát lomené. Příčky třískové desky; pórobetonové dílce tl. 80 mm; sádrokarton; zděné příčky tl. 100 mm a 125 mm. Bytová jádra B 3. SKLADBA STĚNOVÝCH A STROPNÍCH PANELŮ Obr Konstrukční řešení a charakteristické detaily stavební soustavy T 08 B 14

11 Obr Konstrukční řešení a charakteristické detaily stavební soustavy T 08 B 15

12 HK 60 (HK 65) Výška zástavby 5 až 13 podlaží (řadové domy); 10 až 17 podlaží (bodové domy HK 65). Modulová vzdálenost příčných stěn mm a mm. Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny z celostěnových železobetonových dutinových panelů tl. 250 mm z betonu B 250 (B 330) mají dutiny průměru 190 mm (excentricky umístěné o 5 mm z osy panelu), krajní stěnové panely jsou o 300 mm delší než vnitřní, v kraji u obvodového pláště mají vytvořeno zhlaví s drážkou pro uložení obvodového panelu, skladebné šířky mm a mm; stropní železobetonové dutinové dílce tl. 250 mm z betonu B 250 mají podélné dutiny a šikmá čela, v horní polovině s větším sklonem čela. Stropní panely jsou vzájemně spojeny v místě závěsných ok spojovací výztuží průměru 12 mm, věncová výztuž je tvořena dvěma profily N10. Charakteristický svislý styk je tvořen hladkou styčnou plochou stěnového panelu. Nosné štítové stěny železobetonové dílce a samonosné sendvičové panely tl. 200 mm. Obvodový plášť průčelí parapetní panely tl. 200 mm; meziokenní vložky tl. 200 mm. HK 65 se od HK 60 liší zejména odlišnou koncepcí obvodového pláště uložením parapetních dílců na ocelové konzoly. Obr Konstrukční řešení a charakteristické detaily stavební soustavy HK 60 a HK 65 16

13 Obr Konstrukční řešení a charakteristické detaily stavební soustavy HK 60 a HK 65 VVÚ ETA Středně rozponová soustava odvozená od soustavy T 08 B. Výška zástavby 4, 8 a 12 podlaží (řadové i bodové domy). Modulová vzdálenost příčných stěn mm a mm. Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny z celostěnových železobetonových dílců tl. 190 mm; stropní předpjaté železobetonové dutinové dílce tl. 190 mm. Nosné štítové stěny celostěnové sendvičové dílce tl. 290 mm ve skladbě vnější železobetonová vrstva 60 (50*) mm, polystyren 80 (40*) mm a vnitřní nosná železobetonová vrstva tl. 150 mm. Obvodový plášť průčelí celostěnové spínané pórobetonové dílce; celostěnové sendvičové dílce tl. 240 ve skladbě vnější železobetonová vrstva 60 (50*) mm, polystyren 80 (40*) mm a vnitřní nosná železobetonová vrstva tl. 100 mm. Lodžie předsazené a zapuštěné, zábradlí ocelové a železobetonové. Spodní stavba (suterén). Schodiště jednoramenné nebo dvouramenné montované. Příčky železobetonové dílce tl. 60 mm; pórobetonové dílce tl. 60 mm. Bytová jádra B 6 a B 10. Poznámka: *tloušťka vrstev před revizí soustavy 17

14 VVÚ ETA ROZPON 3 000, mm TL. STROPU 190 mm Obr Konstrukční řešení a charakteristické detaily stavební soustavy VVÚ ETA 18

15 PS 69 (jihočeská a západočeská varianta) Výška zástavby 5 až 9 a 13 podlaží. Modulová vzdálenost příčných stěn mm a mm, později mm. Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny z celostěnových železobetonových dílců tl. 150 mm; stropní plné železobetonové dílce tl. 150 mm. Nosné štítové stěny celostěnové kompletizované sendvičové dílce tl. 290 mm. Obvodový plášť průčelí parapetní kompletizované keramické dílce tl. 350 mm. Balkony (lodžie) ocelové zavěšené, později nahrazeny předsazenými lodžiemi. Spodní stavba (suterén) montovaná. Schodiště montované dvouramenné železobetonové, v modulu mm. Příčky železobetonové tl. 80 mm, částečně z desek Orlen tl. 50 mm. Střecha dvouplášťová horní část je z keramických panelů na spádových klínech. b) Obr Konstrukční řešení a charakteristické detaily stavební soustavy PS 69 19

16 PS 69 ROZPON 2 400, 3 600, mm TL. STROPU 140 mm Obr Konstrukční řešení a charakteristické detaily stavební soustavy PS 69 20

17 Západočeská varianta PS 69 se liší zejména tím, že tl. stěnových dílců je 140 mm; nosné štítové stěny jsou sendvičové o tl. 240 mm, později 300 mm; obvodový plášť průčelí je tvořen parapetními jednovrstvými keramzitbetonovými dílci tl. 270 mm v kombinaci s meziokeními vložkami nebo jednovrstvými celostěnovými dílci z keramzitbetonu tl. 270 mm; lodžie jsou polozapuštěné a zapuštěné, podélné lodžiové stěny jsou dřevěné rámové konstrukce tl. 150 mm; příčky jsou též sádrokartonové tl. 86 mm. Střecha je dvouplášťová. Horní plášť střešní konstrukce je ze železobetonových spojitých desek tloušťky 80 mm, uložených na spádové trámky. V rámci západních Čech existovaly dvě varianty Plzeňská varianta nepoužívala svařované styky na rozdíl od Karlovarské. Jihočeská varianta byla shodná s Karlovarskou variantou, co se týká svařování styků. Larsen-Nielsen Výška zástavby do 12 podlaží (řadové i bodové domy). Modulová vzdálenost příčných stěn mm, mm a mm (1. aplikace); mm, mm a mm (2. aplikace). Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny z celostěnových železobetonových nebo betonových dílců s konstrukční výztuží tl. 150 mm; stropní plné železobetonové dílce tl. 160 mm. Nosné štítové stěny celostěnové železobetonové sendvičové tl. 260 mm (290 mm v 2. aplikaci) ve skladbě vnější železobetonová vrstva tl. 60 mm, pěnový polystyrén tl. 50 mm (80 mm v 2. aplikaci) a vnitřní železobetonová vrstva tl. 150 mm. Obvodový plášť průčelí celostěnové sendvičové dílce tl. 210 mm (1. aplikace) a 240 mm (2. aplikace); vodorovné i svislé spáry suché a větrané. Lodžie předsazené a zapuštěné. Schodiště dvouramenné montované. Příčky železobetonové dílce tl. 65 mm. Bytová jádra B 6, B 7 a B 9. 21

18 Larsen-Nielsen ROZPON 2 400, 3 600, mm TL. STROPU 160 mm Obr Konstrukční řešení a charakteristické detaily stavební soustavy Larsen-Nielsen 22

19 Obr Konstrukční řešení a charakteristické detaily stavební soustavy Larsen-Nielsen BANKS Výška zástavby 4 a 8 podlaží (řadové domy); 12 podlaží (bodové domy). Modulová vzdálenost příčných stěn mm, mm a mm. Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny z celostěnových železobetonových nebo betonových dílců s konstrukční výztuží tl. 150 mm; stropní plné železobetonové dílce tl. 150 mm. Nosné štítové stěny celostěnové železobetonové sendvičové tl. 290 mm ve skladbě vnější železobetonová vrstva tl. 60 mm, pěnový polystyrén tl. 80 mm a vnitřní železobetonová vrstva tl. 150 mm. Obvodový plášť průčelí celostěnové sendvičové dílce tl. 290 mm ve stejné skladbě jako nosné štítové stěny. Lodžie podélné kompletizované dřevěné lodžiové stěny v modulu mm. Příčky železobetonové dílce tl. 80 mm. Bytová jádra B 3 a B 7. Výtahové šachty prostorové železobetonové dílce. Střecha dvouplášťová, ve složení: minerální plsť tl. 100 mm, střešní trámky, střešní desky železobetonové, živičná krytina. Po revizi tepelně technické normy, počátkem 80. let byla zvětšena tloušťka tepelné izolace na min. 140 mm. 23

20 BANKS ROZPON 2 400, 3 600, mm TL. STROPU 160 mm Obr Konstrukční řešení a charakteristické detaily stavební soustavy BANKS 24

21 B 70 Modulová vzdálenost příčných stěn mm, mm a mm. Konstrukční výška podlaží mm. Nosné vnitřní konstrukce stěny z celostěnových železobetonových nebo betonových dílců s konstrukční výztuží tl. 150 mm; stropní plné železobetonové dílce tl. 150 mm. Nosné štítové stěny celostěnové železobetonové sendvičové tl. 270 mm ve skladbě vnější betonová vrstva vyztužená sítí tl. 60 mm, pěnový polystyren tl. 60 mm a vnitřní železobetonová vrstva tl. 150 mm. Obvodový plášť průčelí celostěnové sendvičové dílce tl. 270 mm ve stejné skladbě jako nosné štítové stěny. Lodžie zapuštěné v modulu mm; kompletizované stropní dílce tl. 190 mm; podélné lodžiové celostěnové dílce tl. 200 mm. Příčky železobetonové dílce tl. 80 mm. Bytová jádra B 10. Schodiště jednoramenné, nesené podestami. Soustava používaná v Severočeském kraji, od roku 1979 do roku 1986 výlučně v okresech Ústí nad Labem a Teplice. B 70 ROZPON 2 400, 3 600, mm TL. STROPU 150 mm Obr Konstrukční řešení a charakteristické detaily stavební soustavy B 70 25

22 Obr Konstrukční řešení a charakteristické detaily stavební soustavy B Charakteristika nosného prefabrikovaného systému vícepodlažních panelových budov Základním článkem nosného prefabrikovaného systému vícepodlažních panelových budov je nosná stěna, vytvořená ze stěnových dílců. Prefabrikované stěnové systémy jsou ze statického hlediska charakteristické relativně velkou tuhostí. Malé deformace stěnového systému v porovnání např. se sloupovým systémem, způsobené např. účinky vynucených přetvoření nesilové účinky, účinky změny tvaru základové spáry, vodorovným zatížením větrem jsou v pružném stavu provázeny vznikem vysokých hodnot zejména smykových namáhání ve stycích mezi stěnovými dílci (schéma prefabrikované stěnové konstrukce viz obr. 1.2). Poznámka: Časté povodně v posledních letech poukázaly na nežádoucí důsledky zamokření základového podloží při zatopení terénu povodňovou vlnou, jehož následkem dochází ke změnám geotechnických vlastností základové půdy. Dochází ke snížení výpočtové únosnosti základové půdy a posléze k dodatečnému sedání stavby. Zvláště intenzivní mohou být tyto procesy v oblastech bývalých skládek a úložišť, v oblastech se sprašovými zeminami a v oblastech zvýšeného pohybu povodňové vody vsáklé do podloží (zvyšování pórovitosti vymýváním jemných částic zeminy apod.). Na obr jsou zachyceny panelové stavby, u nichž došlo při povodních v roce 1997 k výraznému podemletí základů, aniž by došlo k havárii nebo významnému narušení celého systému. Uvedené příklady dokládají účinné spolupůsobení vrchní stěnové prefabrikované konstrukce a základové konstrukce. V důsledku tohoto spolupůsobení dochází k redistribuci namáhání přenášených stěnou z oblastí s porušenou kontaktní základovou spárou do oblastí funkčních základů. 26

23 Obr Narušená základová konstrukce čtyřpodlažní panelové budovy při povodních 2002 Pro prefabrikované stěnové systémy je charakteristický mechanismus přetváření a porušování, při němž se stěnové dílce posunují ve stycích porušených trhlinami, tj. v dotykových nebo tzv. kontaktních plochách. V rámci numerické analýzy většinou postačí uvažovat nelineárně pružné chování pouze ve stycích a chování dílců uvažovat jako lineárně pružné, neboť tlaková i smyková namáhání dílců jsou zpravidla podstatně nižší než jejich únosnost na mezi úměrnosti (únosnost v pružné oblasti). Vznik svislých tahových normálových napětí +σ y, účinkem vodorovného zatížení, kterému zpravidla předchází překročení smykové únosnosti svislých styků stěnových dílců, je provázen otevíráním ložných spár. Meznímu stavu konstrukce jako celku předchází porušování styků, konstrukce přechází z lineárně pružného chování do nelineárně pružného až plastického stavu, zpravidla překročením meze úměrnosti ve stycích (obr. 1.16). Spolehlivost a statická bezpečnost prefabrikovaných železobetonových stěnových systémů při působení mimořádných účinků (výbuch, požár, teroristický útok), dynamických a nízkocyklických účinků (technická a indukovaná seismicita, přírodní seismicita) jsou závislé na mechanismu plastického přetváření především styků nosných prefabrikovaných dílců při disipaci energie. V tomto stadiu působení prefabrikovaných nosných stěnových systémů, kdy dochází, zejména ve stycích s jistou mírou duktility, k absorpci energie (stadium plastického působení), je nutné, aby nedošlo k úplnému vyřazení příslušné statické vazby z nosného systému. To předpokládá, aby při disipaci energie převládal mechanismus plastického přetváření v kritických místech nosného systému. V případě prefabrikovaných stěnových systémů mají z tohoto hlediska zpravidla rozhodující úlohu svislé styky prefabrikovaných stěnových dílců namáhané především smykovými silami, vodorovné styky ( stěna strop stěna ) namáhané převážně tlakovými silami a tuhost stropní desky, ve své rovině svazující jednotlivé svislé stěnové prvky v nosný prostorový systém. Z hlediska disipace energie je nutné, při uplatnění mechanismu plastického smyku a přetváření v těchto kritických oblastech, aby nedocházelo k podstatnému snížení tzv. vratné síly a k lokálním nestabilitám. Zásadní úlohu z hlediska disipace energie plastickým přetvářením styků prefabrikovaných dílců má duktilita styků. 27

24 Obr a) Experimentálně stanovené pracovní diagramy svislých styků T x y stěnových dílců při zatížení monotónně vzrůstající smykovou silou [2] a při zatížení opakovanou smykovou silou [3]; b) idealizované pracovní diagramy svislých styků; c) diskrétní a kontinuální vyztužení svislých styků; d) vyztužení v oblasti styku stěna strop stěna Způsob, kvalita a množství vyztužení stropní desky a styků jsou rozhodující pro dosažení potřebné míry duktility nosného systému (obr. 1.17). Prefabrikovaná stěnová konstrukce nedostatečně vyztužená, zejména v rámci stropní tabule (podélné styky mezi stropními dílci, vodorovné 28

25 styky stropních a stěnových dílců), má zpravidla malou oblast pružnoplastických a plastických deformací a není schopna absorbovat alespoň část přetvárné energie, vyvolané např. krátkodobým extrémním účinkem, aniž by došlo ke ztrátě její statické funkce a stability. Obr a) Schéma vyztužení stropní desky výztuží vloženou do styků stropních dílců; b) schéma vyztužení stropní desky výztuží zabudovanou ve stropních dílcích Prefabrikované svislé nosné konstrukce panelových budov Prefabrikované nosné stěny jsou charakteristickou konstrukcí panelových budov. Jsou vytvořeny z jednotlivých stěnových dílců vzájemně spojených svislými a vodorovnými styky, jejichž prostřednictvím dochází k vzájemnému spolupůsobení stěnových dílců. Prefabrikovaná stěnová konstrukce je v běžných případech vyztužena pouze v úrovni vodorovných styků tzv. věncovou výztuží, vloženou do styků stěnových a stropních dílců. Svislá výztuž je zpravidla, až na výjimky, nahrazena podmínkou, podle níž nesmí vzniknout v ložných spárách svislé tahové normálové namáhání. V případě nedostatečné tuhosti svislých styků stěnových dílců, např. svislých styků porušených trhlinami, dochází v těchto stycích k dílčím posunům, které snižují ohybovou tuhost prefabrikované stěny. V těchto případech nelze vyloučit vznik tahových normálových napětí v ložných spárách, provázených vznikem vodorovných trhlin v ložných spárách (obr. 1.18). 29

26 Obr Schematické znázornění normálových napětí v patě panelové stěny v závislosti na tuhosti svislých styků [4] Stabilitu a prostorovou tuhost nosného systému zajišťují nosné prefabrikované stěny, umístěné ve dvou vzájemně kolmých rovinách v příčném a v podélném směru neposuvně spojené prostřednictvím svislých styků a stropních desek, zajišťujících spojitost vodorovné deformace nosného systému při působení vodorovných sil. Nedílnou součástí zajištění tuhosti a celistvosti nosného systému je výztuž vložená do styků stropních dílců a dodržení příslušných zásad skladby stropních a stěnových dílců. Stěnové dílce jsou nejčastěji plné, skladebné tloušťky 120 mm, 140 mm, 150 mm a 160 mm, popř. vylehčené kruhovými svislými dutinami skladebné tloušťky 190 mm a 200 mm. Výška stěnových dílců je závislá na konstrukční výšce podlaží a na řešení styku se stropními dílci. Konstrukční výška podlaží je v převážné většině případů realizovaných panelových budov mm. Maximální rozměr stěnových dílců je omezený výrobními a přepravními možnostmi a především únosností montážních mechanismů. Nejčastěji se používaly dílce s hmotností cca do 5 tun, tj. obvykle šířky do 4,8 m. Stěnové dílce mohou být plné nebo s dveřním otvorem. V některých případech jsou opatřeny ve zhlaví tzv. montážními (osazovacími) šrouby a v patě zápustnými otvory pro osazovací šrouby nižších stěnových dílců. V dílcích mohou být zabudovány trubky pro elektrovodiče. 30

27 Stěnové dílce tl. 140 mm, 150 mm, 160 mm a 190 mm jsou vyrobeny z betonu kvality nejméně B 15 (C 12/15). Ve stavební soustavě HK 60 jsou použity stěnové dílce tl. 250 mm vylehčené otvory 190 mm. V některých případech byly nosné stěnové dílce vyrobeny z lehkých betonů (škvárobeton, struskobeton). Tloušťka stěnových dílců z lehkých betonů je zpravidla větší než 200 mm. Po obvodě jsou stěnové dílce zpravidla vyztuženy svařovanými žebříčky (mřížovinou) z kruhové oceli E 6 12 mm. Pata a zhlaví stěnových dílců mohou být vyztuženy podle potřeby 2 3 žebříčky, vzdálenými od sebe maximálně 0,7 l h nebo 0,7 h j (stěna tl. 150 mm 80 mm; stěnové dílce mohou být v řadě případů vyztuženy pouze po obvodě). Tato základní výztuž je v závislosti na rozměrech a požadované únosnosti dílce doplněna obdobnými svařovanými žebříčky, uloženými svisle a vodorovně max. ve vzdálenostech 400 mm, popř. trojnásobku tloušťky nosného dílce pro výztuž uspořádanou ve vodorovném směru (ČSN EN , čl. 9.6.) (obr. 1.19a). Stěnové dílce jsou opatřeny dvěma zvedacími háky, popř. stavěcími šrouby, z nichž je každý dimenzován na tíhu dílce, zvýšenou dynamickým součinitelem. Nadpraží stěnových dílců s dveřními otvory je dimenzováno jako oboustranně vetknutý nosník. Výztuž nadpraží je oboustranná, řádně kotvená do obou pilířů dílce. Výztuž stěnových dílců panelových konstrukcí realizovaných po roce 1970 byla navrhována podle ČSN Obr a) Schéma vyztužení stěnových dílců podle ČSN ; b) schéma vyztužení stěnových dílců podle ČSN EN ; c) vyztužení nadedveřních překladů Nadpraží působí jako krátký vysoký nosník, často vyztužený hustší armaturou z menších profilů, doplněnou přídavnou (smykovou) výztuží (obr. 1.19c). Podle ČSN EN čl. 97 je potřeba, aby ortogonálně uspořádaná výztuž byla uspořádána v osových vzdálenostech 300 mm (nejvýše dvojnásobek tloušťky stěnového nosníku překladu). Kotevní délka výztuže překladu se uvažuje od hrany otvoru (např. dveřního). Šířka užšího pilířku stěnového dílce s dveřním otvorem je minimálně 250 mm. Pilířek je zpravidla silněji vyztužený (má vyšší procento vyztužení) v porovnání se širším pilířem a s dílcem bez otvoru. Pilířek s větším procentem vyztužení vykazuje zpravidla odlišné vlastnosti z hlediska reologických změn způsobených účinkem smršťování a dotvarování, v porovnání se slabě vyztuženým dílcem nebo širším pilířem. Při tuhém (neposuvném) spojení silně vyztuženého pilířku se slabě vyztuženým sousedním dílcem vznikají ve svislém styku a nadedveřním překladu přídatné smykové síly od reologických účinků (smršťování, dotvarování), které mohou být příčinou porušení přilehlého svislého styku, popř. překladu (obr. 1.20). 31

Předsazené -předsazené před obvodový plášť - kotvené k vnitřními nosnému plášti pomocí ocelových spojek - svislý styk tvořen betonovou zálivkou -

Předsazené -předsazené před obvodový plášť - kotvené k vnitřními nosnému plášti pomocí ocelových spojek - svislý styk tvořen betonovou zálivkou - Radim Kokeš Předsazené -předsazené před obvodový plášť - kotvené k vnitřními nosnému plášti pomocí ocelových spojek - svislý styk tvořen betonovou zálivkou - zejména soustavy VVÚ ETA a T08B Zapuštěné -

Více

2 Dodatečné zřizování otvorů v nosných stěnách vícepodlažních panelových budov

2 Dodatečné zřizování otvorů v nosných stěnách vícepodlažních panelových budov 2 Dodatečné zřizování otvorů v nosných stěnách vícepodlažních panelových budov Příčné uspořádání nosných panelových stěn omezuje možnost volnějšího provozně dispozičního spojení sousedních travé, které

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

TECHNOLOGIE STAVEB TECHNOLOGIE STAVEB PODLE KONSTRUKCE. Jitka Schmelzerová 2.S

TECHNOLOGIE STAVEB TECHNOLOGIE STAVEB PODLE KONSTRUKCE. Jitka Schmelzerová 2.S TECHNOLOGIE STAVEB TECHNOLOGIE STAVEB PODLE KONSTRUKCE Jitka Schmelzerová 2.S Konstrukční systém - je celek složený z navzájem propojených konstrukčních prvků a subsystémů, které jsou vzhledem k vnějšímu

Více

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( ) Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a

Více

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D.

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D. Konstrukční systémy I Třídění, typologie a stabilita objektů Ing. Petr Suchánek, Ph.D. Zatížení a namáhání Konstrukční prvky stavebního objektu jsou namáhány: vlastní hmotností užitným zatížením zatížením

Více

M pab = k(2 a + b ) + k(2 a + b ) + M ab. M pab = M tab + k(2 a + b )

M pab = k(2 a + b ) + k(2 a + b ) + M ab. M pab = M tab + k(2 a + b ) Míra tuhosti styku sloupu a příčle = M p : M t 1 Moment příčle (průvlaku) při tuhém styku M tab = k(2 a + b ) + M ab při pružném připojení M pab = k(2 a + b ) + M ab M pab = k(2 a + b ) + k(2 a + b ) +

Více

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova

Více

NKI Zděné konstrukce doc. Ing. Karel Lorenz, CSc. Ústav nosných konstrukcí FA

NKI Zděné konstrukce doc. Ing. Karel Lorenz, CSc. Ústav nosných konstrukcí FA NKI Zděné konstrukce doc. Ing. Karel Lorenz, CSc. Ústav nosných konstrukcí FA Přednáška 2 letní semestr 2016 17 Uplatnění a výhody nejšiřší rozsah konstrukčního uplatnění při vhodném použití příznivá cena

Více

Účinky smršťování a dotvarování a opatření pro omezení jejich nepříznivého působení

Účinky smršťování a dotvarování a opatření pro omezení jejich nepříznivého působení PŘEDNÁŠKY Účinky smršťování a dotvarování a opatření pro omezení jejich nepříznivého působení Pozemní stavby Pozemní stavby rámové konstrukce Vliv dotvarování a smršťování na sloupy a pilíře střední sloupy

Více

Interakce stavebních konstrukcí

Interakce stavebních konstrukcí Interakce stavebních konstrukcí Interakce hlavních subsystémů budovy Hlavní subsystémy Hlavní subsystémy budovy: nosné konstrukce obalové a dělící konstrukce technická zařízení Proč se zabývat interakcemi

Více

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn Zdivo zadní stěny suterénu je namáháno bočním zatížením od zeminy (lichoběžníkovým). Obecně platí, že je výhodné, aby bočně namáhaná

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019

Více

Technologie staveb podle konstrukce. Technologie staveb Jan Kotšmíd,3.S

Technologie staveb podle konstrukce. Technologie staveb Jan Kotšmíd,3.S Technologie staveb podle konstrukce Technologie staveb Jan Kotšmíd,3.S Konstrukční třídění Konstrukční systém-konstrukční systém je celek tvořený navzájem propojenými konstrukčními prvky a subsystémy,

Více

PS01 POZEMNÍ STAVBY 1

PS01 POZEMNÍ STAVBY 1 PS01 POZEMNÍ STAVBY 1 SVISLÉ NOSNÉ KONSTRUKCE 1 Funkce a požadavky Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb)

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů Stavební konstrukce Adresa.: Střední průmyslová

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019

Více

Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016

Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016 Rámové konstrukce Obsah princip působení a vlastnosti rámové konstrukce statická a tvarová řešení optimalizace tvaru rámu zachycení vodorovných sil stabilita rámu prostorová tuhost Uspořádání a prvky rámové

Více

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh

Více

PROJEKTOVÁ DOKUMENTACE

PROJEKTOVÁ DOKUMENTACE PROJEKTOVÁ DOKUMENTACE STUPEŇ PROJEKTU DOKUMENTACE PRO VYDÁNÍ STAVEBNÍHO POVOLENÍ (ve smyslu přílohy č. 5 vyhlášky č. 499/2006 Sb. v platném znění, 110 odst. 2 písm. b) stavebního zákona) STAVBA INVESTOR

Více

Prostorové prefabrikované systémy. HABITAT 67 - Montreal, Canada

Prostorové prefabrikované systémy. HABITAT 67 - Montreal, Canada Prostorové prefabrikované systémy HABITAT 67 - Montreal, Canada HABITAT 67 - Montreal, Canada Prostorové jednotky Nakagin Tokyo (hotel, nyní domov důchodců, 1971) Prostorové jednotky New Jersey, USA

Více

Úvod do pozemního stavitelství

Úvod do pozemního stavitelství Úvod do pozemního stavitelství 6/12 ZS 2018 Ing. Michal Kraus, Ph.D. Budovy jsou členění na trakty - prostorové části budovy vymezené dvěma vzájemně následnými vertikálními rovinami, procházejícími geometrickými

Více

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování

Více

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B12 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Spřažené konstrukce Obsah: Spřažení částečné a plné, styčná

Více

Bibliografická citace VŠKP

Bibliografická citace VŠKP Bibliografická citace VŠKP PROKOP, Lukáš. Železobetonová skeletová konstrukce. Brno, 2012. 7 stran, 106 stran příloh. Bakalářská práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav betonových

Více

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015 2015 STAVBA STUPEŇ Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem DSP STATICKÝ POSUDEK srpen 2015 ZODP. OSOBA Ing. Jiří Surovec POČET STRAN 8 Ing. Jiří Surovec istruct Trabantská 673/18, 190

Více

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení,

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY PŘEDMĚT BL001 rok 2017/2018

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY PŘEDMĚT BL001 rok 2017/2018 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY PŘEDMĚT BL001 rok 2017/2018 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010 1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení

Více

ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16

ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16 ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16 Přehled úloh pro cvičení RBZS Úloha 1 Po obvodě podepřená deska Úloha 2 Lokálně

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení STROPNÍ KERAMICKÉ PANELY POD - Stropní panely určené pro stropní a střešní ploché konstrukce, uložené na zdivo, průvlaky nebo do přírub ocelových

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

Smyková odolnost na protlačení

Smyková odolnost na protlačení Smyková odolnost na protlačení Základní případy Sloup uložený na desce Patka, soustředěné zatížení Bezhřibové stropní desky Smyk protlačením myková odolnost evyztužené desky τ c je smyková pevnost desky

Více

Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,

Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá

Více

Dilatace nosných konstrukcí

Dilatace nosných konstrukcí ČVUT v Praze Fakulta stavební PSA2 - POZEMNÍ STAVBY A2 (do roku 2015 název KP2) Dilatace nosných konstrukcí doc. Ing. Jiří Pazderka, Ph.D. Katedra konstrukcí pozemních staveb Zpracováno v návaznosti na

Více

Schöck Isokorb typ KS

Schöck Isokorb typ KS Schöck Isokorb typ 20 Schöck Isokorb typ 1 Obsah Strana Varianty připojení 16-165 Rozměry 166-167 Dimenzační tabulky 168 Vysvětlení k dimenzačním tabulkám 169 Příklad dimenzování/upozornění 170 Údaje pro

Více

Prvky betonových konstrukcí BL01 7 přednáška

Prvky betonových konstrukcí BL01 7 přednáška Prvky betonových konstrukcí BL01 7 přednáška Zásady vyztužování - podélná výztuž - smyková výztuž Vyztužování bet. prvků desky - obecné zásady - pásové a lokální zatížení - úpravy kolem otvorů trámové

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

Požární odolnost v minutách 15 30 45 60 90 120 180 1 Stropy betonové, staticky určité 1),2) (s ustálenou vlhkostí), bez omítky, druh DP1 REI 60 10 1)

Požární odolnost v minutách 15 30 45 60 90 120 180 1 Stropy betonové, staticky určité 1),2) (s ustálenou vlhkostí), bez omítky, druh DP1 REI 60 10 1) Tabulka 2 Stropy Požární odolnost v minutách 15 30 45 90 1 1 Stropy betonové, staticky určité, (s ustálenou vlhkostí), bez omítky, druh DP1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Desky z hutného betonu), výztuž v

Více

PREFABRIKOVANÉ STROPNÍ SYSTÉMY. Inteligentní řešení

PREFABRIKOVANÉ STROPNÍ SYSTÉMY. Inteligentní řešení PREFABRIKOVANÉ STROPNÍ SYSTÉMY Inteligentní řešení 1 STROPNÍ KERAMICKÉ PANELY POD Použití a konstrukce: - Stropní panely určené pro stropní a střešní ploché konstrukce, uložené na zdivo, průvlaky nebo

Více

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 03. VYZTUŽOVÁNÍ - DESKOVÉ PRVKY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284

Více

Schodiště. Schodiště termíny

Schodiště. Schodiště termíny 133 Schodiště podesta odpočívadlo hlavní podesta mezipodesta schodišťové rameno nástupní výstupní zrcadlo stupeň stupnice podstupnice jalový stupeň výška, šířka stupně Schodiště termíny K133, či jsou volně

Více

VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce

Více

Modulová osnova. systém os, určující polohu hlavních nosných prvků

Modulová osnova. systém os, určující polohu hlavních nosných prvků Modulová osnova systém os, určující polohu hlavních nosných prvků čtvercová, obdélníková, (trojúhelníková, lichoběžníková, kosodélná) pravidelná osnova - opakovatelnost dílů, detailů, automatizace při

Více

GlobalFloor. Cofrastra 70 Statické tabulky

GlobalFloor. Cofrastra 70 Statické tabulky GlobalFloor. Cofrastra 7 Statické tabulky Cofrastra 7. Statické tabulky Cofrastra 7 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Polakovaná strana Použití Profilovaný plech Cofrastra

Více

Stavební technologie

Stavební technologie S třední škola stavební Jihlava Stavební technologie 1. Konstrukční systémy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

Prostorová tuhost. Nosná soustava. podsystém stabilizační. podsystém gravitační. stropy, sloupy s patkami, základy. (železobetonové), jádra

Prostorová tuhost. Nosná soustava. podsystém stabilizační. podsystém gravitační. stropy, sloupy s patkami, základy. (železobetonové), jádra Prostorová tuhost Nosná soustava podsystém gravitační přenáší zatížení vyplývající z působení gravitačních sil stropy, sloupy s patkami, základy podsystém stabilizační ztužidla, zavětrování, rámové vazby,

Více

STROPNÍ KONSTRUKCE Petr Hájek 2009

STROPNÍ KONSTRUKCE Petr Hájek 2009 STROPNÍ KONSTRUKCE FUNKCE A POŢADAVKY Základní funkce a poţadavky architektonická funkce a poţadavky - půdorysná variabilita - estetická funkce - konstrukční tloušťka stropu statická funkce a poţadavky

Více

BL006 - ZDĚNÉ KONSTRUKCE

BL006 - ZDĚNÉ KONSTRUKCE BL006 - ZDĚNÉ KONSTRUKCE Vyučující konzultace, zápočty, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, Registrace studentů a průběh konzultací: Studenti si

Více

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 04. VYZTUŽOVÁNÍ - TRÁMY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284

Více

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING.

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING. 2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ SŠS Jihlava ING. SVOBODOVÁ JANA OBSAH 1. ZATÍŽENÍ 3 ŽELEZOBETON PRŮHYBEM / OHYBEM / NAMÁHANÉ PRVKY

Více

Základní případy. Smyková odolnost. τ c je smyková pevnost desky [MPa] Patka, soustředěné zatížení. Bezhřibové stropní desky

Základní případy. Smyková odolnost. τ c je smyková pevnost desky [MPa] Patka, soustředěné zatížení. Bezhřibové stropní desky Základní případy Sloup uložený na desce Patka, soustředěné zatížení Bezhřibové stropní desky Smyková odolnost nevyztužené desky τ c je smyková pevnost desky [MPa] Smyková pevnost desky závislá na stupni

Více

Modulová osnova. systém os, určující polohu hlavních nosných prvků

Modulová osnova. systém os, určující polohu hlavních nosných prvků Modulová osnova systém os, určující polohu hlavních nosných prvků čtvercová, obdélníková, (trojúhelníková, lichoběžníková, kosodélná) pravidelná osnova - opakovatelnost dílů, detailů, automatizace při

Více

Podklady pro cvičení. Úloha 3

Podklady pro cvičení. Úloha 3 Pozemní stavby A2 Podklady pro cvičení Cíl úlohy Úloha 3 Dilatace nosných konstrukcí Návrh nosné konstrukce zadané budovy (úloha 3 má samostatné zadání) se zaměřením na problematiku dilatací nosných konstrukcí.

Více

Betonové a zděné konstrukce 2 (133BK02)

Betonové a zděné konstrukce 2 (133BK02) Podklad k příkladu S ve cvičení předmětu Zpracoval: Ing. Petr Bílý, březen 2015 Návrh rozměrů Rozměry desky a trámu navrhneme podle empirických vztahů vhodných pro danou konstrukci, ověříme vhodnost návrhu

Více

Schöck Isokorb typ ABXT

Schöck Isokorb typ ABXT Schöck Isokorb typ Schöck Isokorb typ Schöck Isokorb typ Používá se u atik, předsazených ů a krátkých konzol. Prvek přenáší ohybové momenty, posouvající síly a normálové síly. 133 Schöck Isokorb typ Uspořádání

Více

BL06 - ZDĚNÉ KONSTRUKCE

BL06 - ZDĚNÉ KONSTRUKCE BL06 - ZDĚNÉ KONSTRUKCE Vyučující společné konzultace, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, individuální konzultace a zápočty: - Ing. Pavel Šulák,

Více

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením

Více

BO004 KOVOVÉ KONSTRUKCE I

BO004 KOVOVÉ KONSTRUKCE I BO004 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ VYPRACOVAL: Ing. MARTIN HORÁČEK, Ph.D. AKADEMICKÝ ROK: 2018/2019 Obsah Dispoziční řešení... - 3 - Příhradová vaznice... - 4 - Příhradový vazník... - 6 - Spoje

Více

KONSTRUKČNÍ MATERIÁLY

KONSTRUKČNÍ MATERIÁLY KONSTRUKČNÍ MATERIÁLY TENDENCE A SMĚRY VÝVOJE snižování materiálové náročnosti snižování energetické náročnosti ochrana životního prostředí humanizace staveb a životního prostředí sídel realizace staveb

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

BH 52 Pozemní stavitelství I

BH 52 Pozemní stavitelství I BH 52 Pozemní stavitelství I Stavební úpravy ve zdivu - překlady Ztužující konstrukce pozední věnce Ing. Lukáš Daněk, Ph.D. Stavební úpravy ve zdivu Překlady - Dveřní otvory. - Okenní otvory. - Výklenky,

Více

Montované technologie. Technologie staveb Jan Kotšmíd,3.S

Montované technologie. Technologie staveb Jan Kotšmíd,3.S Montované technologie Technologie staveb Jan Kotšmíd,3.S Montované železobetonové stavby U montovaného skeletu je rozdělena nosná část sloupy, průvlaky a stropní panely) a výplňová část (stěny): Podle

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

Termografická diagnostika pláště objektu

Termografická diagnostika pláště objektu Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO

Více

ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ

ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ Charakteristiky zatížení a jejich stanovení Charakteristikami zatížení jsou: a) normová zatížení (obecně F n ), b) součinitele zatížení (obecně y ), c) výpočtová zatížení

Více

Nosné konstrukce AF01 ednáška

Nosné konstrukce AF01 ednáška Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce AF01 3. přednp ednáška Deska působící ve dvou směrech je

Více

Konstrukční systémy vícepodlažních budov Přednáška 5 Stěnové systémy Doc. Ing. Hana Gattermayerová,CSc Obsah

Konstrukční systémy vícepodlažních budov Přednáška 5 Stěnové systémy Doc. Ing. Hana Gattermayerová,CSc Obsah Konstrukční systémy vícepodlažních budov Přednáška 5 Doc. Ing. Hana Gattermayerová,CSc gatter@fsv.cvut.cz Literatura Obsah Rojík: Konstrukční systémy vícepodlažních budov, CVUT 1979, předběžné a podrobné

Více

NOSNÉ STĚNY, SLOUPY A PILÍŘE

NOSNÉ STĚNY, SLOUPY A PILÍŘE NOSNÉ STĚNY, SLOUPY A PILÍŘE KAMENNÉ STĚNY, SLOUPY A PILÍŘE Kamenné zdivo lomové zdivo haklíkové zdivo KAMENNÉ STĚNY Kamenné zdivo řádkové zdivo kyklopské zdivo kvádrové zdivo KAMENNÉ STĚNY vazba rohu

Více

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5 Úvod do zatížení stavebních konstrukcí terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5.1 Terminologie stavebních konstrukcí nosné konstrukce

Více

NK 1 Konstrukce. Volba konstrukčního systému

NK 1 Konstrukce. Volba konstrukčního systému NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

SVISLÉ NOSNÉ KONSTRUKCE

SVISLÉ NOSNÉ KONSTRUKCE SVISLÉ NOSNÉ KONSTRUKCE FUNKCE A POŽADAVKY Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) SVISLÉ KONSTRUKCE Technologické a materiálové rozdělení zděné konstrukce

Více

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

MĚSTO BÍLINA BŘEŽÁNSKÁ 50/ BÍLINA

MĚSTO BÍLINA BŘEŽÁNSKÁ 50/ BÍLINA ProCes alfa, s.r.o. Seifertova 5/9 418 01 Bílina tel./fax 417 823 046, e-mail jindrich.brunclik@seznam.cz DIČ : CZ 254 25 005 IČO : 254 25 005 bankovní spojení : Komerční banka, a.s., č.ú. 78-7240580237/0100

Více

VODOROVNÉ NOSNÉ KONSTRUKCE

VODOROVNÉ NOSNÉ KONSTRUKCE VODOROVNÉ NOSNÉ KONSTRUKCE STAVITELSTVÍ I. FAKULTA ARCHITEKTURY ČVUT PRAHA VODOROVNÉ NOSNÉ KONSTRUKCE Základní funkce a požadavky architektonická funkce a požadavky - variabilita vnitřního prostoru - estetická

Více

Termografická diagnostika pláště objektu

Termografická diagnostika pláště objektu Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Určeno posluchačům Fakulty stavební ČVUT v Praze

Určeno posluchačům Fakulty stavební ČVUT v Praze Strana 1 HALOVÉ KONSTRUKCE Halové konstrukce slouží nejčastěji jako objekty pro různé typy průmyslových činností nebo jako prostory pro skladování. Jsou také velice často stavěny pro provozování rozmanitých

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

DOSTAVBA AREÁLU FIRMY KIEKERT

DOSTAVBA AREÁLU FIRMY KIEKERT DOSTAVBA AREÁLU FIRMY KIEKERT Pavel Čížek, Zora Čížková, Martin Vašina 1 Úvod Dostavba areálu firmy KIEKERT CS s.r.o. v Přelouči nebyla jednoduchá. Halové objekty skladu a expedice s přímou návazností

Více

Vrstvená struktura (sendvič)

Vrstvená struktura (sendvič) Vrstvená struktura (sendvič) Statická schémata působení vrstevnatých struktur Numerické řešení Ukázka modelu Excel (MKP Sendvič.xls) okrajové podmínky a vlivy charakteristická napjatost mechanizmy vzniku

Více

Suterénní zdivo zakládání na pásech s použitím betonové zálivky

Suterénní zdivo zakládání na pásech s použitím betonové zálivky Suterénní zdivo zakládání na pásech s použitím betonové zálivky 0 ) QPOR pórobetonová pøesná tvárnice ) QPOR strop ) zateplení, tl. mm ) železobetonový ztužující vìnec ) úložná vrstva pod nosníky ) vrstvy

Více

A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č.

A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č. A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č. 1270 Střední část 2.1. Technická zpráva a) Podrobný popis navrženého nosného systému

Více

POZEMNÍ STAVITELSTVÍ

POZEMNÍ STAVITELSTVÍ Střední průmyslová škola stavební Střední odborná škola stavební a technická Ústí nad Labem, příspěvková organizace tel.: 477 753 822 e-mail: sts@stsul.cz www.stsul.cz POZEMNÍ STAVITELSTVÍ Témata k profilové

Více

Schöck Isokorb typ QS

Schöck Isokorb typ QS Schöck Isokorb typ Schöck Isokorb typ Obsah Strana Varianty připojení 182 Rozměry 183 Pohledy/čelní kotevní deska/přídavná stavební výztuž 18 Dimenzační tabulky/vzdálenost dilatačních spar/montážní tolerance

Více

YQ U PROFILY, U PROFILY

YQ U PROFILY, U PROFILY YQ U Profil s integrovanou tepelnou izolací Minimalizace tepelných mostů Jednoduché ztracené bednění monolitických konstrukcí Snadná a rychlá montáž Norma/předpis ČSN EN 771-4 Specifikace zdicích prvků

Více

2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ

2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ Podrobné technické vlastnosti jednotlivých výrobků jsou uvedeny v následujících přehledných tabulkách, řazených podle jejich použití ve stavebním systému VELOX: desky (VELOX WS, VELOX WSD, VELOX WS-EPS)

Více

9 STANOVENÍ POŽÁRNÍ ODOLNOSTI ZDIVA PODLE TABULEK

9 STANOVENÍ POŽÁRNÍ ODOLNOSTI ZDIVA PODLE TABULEK 9 STANOVENÍ POŽÁRNÍ ODOLNOSTI ZDIVA PODLE TABULEK 9.1 Norma ČSN EN 1996-1-2 Evropská norma pro navrhování zděných konstrukcí na účinky požáru EN 1996-1-2 nahrazující předběžnou normu ENV 1996-1-2:1995

Více

Sylabus k přednášce předmětu BK30 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc.

Sylabus k přednášce předmětu BK30 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc. Schodiště jsou souborem stavebních prvků (schodišťová ramena, podesty, mezipodesty, podestové nosníky, schodnice a schodišťové stěny), které umožňují komunikační spojení různých výškových úrovní. V budovách

Více

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017 Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním

Více

KONSTRUKČNĚ STATICKÝ PRŮZKUM

KONSTRUKČNĚ STATICKÝ PRŮZKUM Strana: 1 KONSTRUKČNĚ STATICKÝ PRŮZKUM Stavba: Stavební úpravy regenerace bytového domu Nová 504, Kunštát Část: Konstrukčně statický průzkum Zpracovatel části: Ing. Petr Fousek Dusíkova 19, 638 00 Brno

Více