6 Vícerovnicové ekonometrické soustavy 1

Rozměr: px
Začít zobrazení ze stránky:

Download "6 Vícerovnicové ekonometrické soustavy 1"

Transkript

1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese) Panelová data Panelový model s fixními efekty Panelová data s náhodnými efekty Simultánní soustavy rovnic Převod na redukovaný tvar Maticové vyjádření simultánních soustav Problém identifikace Metody odhadu simultánních rovnic Klasická metoda nejmenších čtverců Nepřímá metoda nejmenších čtverců (ILS) Dvoustupňový odhad MNČ Třístupňový odhad MNČ Dynamické simultánní rovnice Ve velké řadě ekonometrických aplikací (a nejenom v ekonometrických) je třeba vysvětlovat chování více vysvětlovaných veličin. Pokud mezi rovnice existuje další souvislost, například se jedná o kauzální vztah dvou proměnných, kdy v jedné rovnici vystupuje veličina v pozici vysvětlující proměnné a v druhé rovnici v pozici proměnné vysvětlované, je výhodné uvažovat o modelu jako o modelu soustavy rovnic a odhadovat parametry simultánně. V takovýchto případech se jedná o vícerovnicové soustavy. Jak uvádí [Cipra] lze k vícerovnicovým soustavám přistupovat i z hlediska datové struktury. Typickým příkladem datové sady pro ekonometrickou analýzu jsou data, která zachycují sadu proměnných, které jsou zároveň pozorovány v určitých časových intervalech (denní výnosy různých akcií, čtvrtletní HDP pro různé státy, ziskovost jednotlivých společností,....) U těchto dat dochází ke kombinaci průřezových informací (různé akcie, různé společnosti, různé státy,... ) a informací časových (jednotlivé burzovní dny, jednotlivá čtvrtletí,... ). Tato data jsou také nazývána poolová data a lze je popsat následujícím modelem y jt = α jt + x jt γ jt + ε jt, j = 1, 2,..., m, t = 1, 2,..., T, Var(ε) = Ω Pracujeme tedy s m vysvětlovanými proměnnými y 1, y 2, ldots, y m v rozdílných čase, celkem uvažujeme T časových jednotek. A dále předpokládáme, že v modelech je absolutní člen α jt a k vysvětlujících proměnných x 1jt, x 2jt,..., x kjt. Tento model je velmi obecný a pro odhad nevhodný, protože obsahuje více parametrů než je počet měření, která máme k dispozici. Počet parametrů je p m T vystupujících v lineární vazbě a m T (m T + 1)/2 je počet parametrů ve varianční matici. Počet měření, které máme k dispozici je pouze m T. V praxi se tedy používají speciální případy tohoto obecného modelu SUR soustavy, kdy α jt = α j, γ jt = γ j pro všechny t = 1, 2,..., T, 1

2 panelová data, kdy uvažujeme stejnou časovou stabilitu parametrů z lineární vazby jaku u SUR a dále navíc uvažujeme, že varianční matice je diagonální s konstantami na diagonále, simultánní soustavy, kdy předpokládáme, že část vysvětlovaných proměnných y j se zároveň objevuje v matici vysvětlujících proměnných x. Uvedeme několik příkladů použití vícerovnicových ekonometrických modelů: Příklad 1 - capital asset pricing model r it... výnos i-té akcie r ft... bezriziková sazba r mt... tržní výnos r it r ft = α i + β i (r mt r ft ) + ε it Příklad 2 I it... investice F it... tržní cena podniku C it... hodnota výrobních prostředků I it = β 1i + β 2i F it + β 3i C it + ɛ it 2

3 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese) Uvažujme vícerovnicový model v následujícím tvaru s parametry α a γ konstantními v čase. y jt = α j + x jt γ j + ɛ jt j = 1, 2,..., m, kde náhodní složka modelu splňuje předpoklady (P1) E(ε it, ε jt ) = σ ij (P2) E(ε is, ε jt ) = 0 i, j = 1, 2,..., m s t Předpoklady tedy zachycují skutečnost, že náhodné složky jsou současně korelovány, ale nejsou časově korelovány, tímto požadavkem je právě zajištěno propojení rovnic. Pokud počet vysvětlujících proměnných x je k a označíme počet odhadovaných parametrů pro každou rovnici p = k + 1. m(m + 1) Počet parametrů soustavy je p m + 2 Zahrneme dále úrovňovou konstantu k parametrům γ a označme β = (α, γ 1, γ 2,..., γ k a přepíšeme model do následujícího tvaru y 1 x β 1 ε 1 y 2. = 0 x β ε x m y m kde y j jsou vektory rozměrů T 1 zachycující hodnoty vysvětlovaných proměnných v jednotlivých časech, x j jsou matice rozměrů T p zachycující vysvětlující proměnné pro jednotlivá j (první sloupec této matice je jednotkový a koresponduje s úrovňovou konstantou α j modelu a zbylých p 1 = k zachycují vysvětlující proměnné. Vektory β j = (α j, γ 1j, γ 2j,..., γ kj ) jsou parametry lineární vazby pro j tou vysvětlovanou proměnnou a ε j je vektor residuálních složek modelu pro j tou proměnnou. Předpokládejme, že pro variační matici platí σ 11 I... σ 1m I σ 21 I... σ 2m I Var (ε) =..... = Σ σ m1 I... σ mm I Označme y = (y 1, y 2,..., y m ), ε = (ε 1, ε 2,..., ε m ) vektory vzniklé naskládáním jednotlivých vektorů do jediného sloupce a dále X blokově diagonální matici s bloky x 1, x 2,..., x m. Pak zapíšeme model ve tvaru y = X β + ε, který koresponduje s klasickým lineárním regresním modelem. Tento model však nelze odhadovat metodou nejmenších čtverců, protože náhodná složka ε nesplňuje předpoklady nezávislosti. Lze však použít zobecněnou metodu nejmenších čtverců s obecnou varianční maticí Σ. β m ε m 3

4 Zobecněný odhad má tvar b = (X T Σ 1 X) 1 X T Σ 1 y kde Σ je neznámá varianční matice. V praktických realizacích postupujeme dvoustupňově: 1. V první fázi odhadneme parametry modelu klasickým vztahem b 1 = (X T X) 1 X T y 2. dále na základě získaného odhadu, odhadneme varianční strukturu ˆΣ : σˆ ij = 1 T e it e jt T 3. odhadu varianční matice využijeme k zpřesnění odhadu b 1 a dostáváme ( 1 b 2 = X X) T ˆΣ 1 X T ˆΣ 1 y kroky lze případně i iteračně opakovat a dále tak zlepšovat odhad. Za předpokladů, které bývají v praxi obvykle splněny, je získaný odhad konzistentní, asymptoticky vydatný a s předpokladem normality též asymptoticky normální. t=1 ) b 2 N (β; (X T ˆΣ 1 X) 1 Tato metoda je použitelná, pokud m T, tj. počet rovnic odpovídající průřezovým jednotkám není větší než počet časových intervalů, která máme k dispozici. Odhady lze samozřejmě získat též postupným odhadem pro každou j tou jednotku, simultánně realizovaný odhad však není vydatný (nevyužívá všechny informace, které máme k dispozici). V případě, že je splněna jedna z následujících podmínek i) x j = x pro všechna j, ii) σ ij = 0 pro všechny i j lze použít MNČ pro jednotlivé jednotky samostatně a získat vydatné odhady. Nekorelovanost residuí lze přitom testovat, formulujeme nulovou hypotézu testovací kritérium má tvar T m 1 m i=1 j=i+1 H 0 : σ ij = 0, r 2 ij kde r ij = a při platnosti nulové hypotézy má asymptoticky χ 2 rozdělení, tj. σˆ ij σiiσjj T H0 χ 2 m(m 1) (ν = ) 2 Podobně lze testovat pomocí Waldova testu zda je splněn předpoklad SUR modelů, že β 1 = β 2 =... = β m jsou shodné pro všechny průřezové jednotky. 4

5 6.2 Panelová data Soustava SUR je použitelná pouze v případě, že máme k dispozici dostatečný počet dat (nutný k odhadu varianční struktury residuí). V případě, že máme k dispozici menší počet dat, mluvíme o panelových datech (panel data, longitudial data). V takovýchto případech musíme zesílit předpoklady na varianční strukturu residuí a omezit tak počet parametrů, které bude třeba odhadovat. Zesilující požadavek předpokládá, že residuální složky jsou nekorelované (současně i v různých časech) a homoskedastické, tj. E (ε is, ε jt ) = 0 pro všechny i, j, t, s s výjimkou E (ε is, ε is ) = σ 2. Podle různých formálních zápisů rozlišujeme dva typy panelových modelů Panelový model s fixními efekty V tomto modelu předpokládáme, že všechny odlišnosti mezi jednotlivými průřezovými jednotkami je soustředěn v úrovňové konstantě α. Formálně zapíšeme model ve tvaru y jt = α j + x jt γ + ε jt kde j = 1, 2,..., m, t = 1, 2,..., T a ε jt = i.i.d.(0; σ 2 ). Termín model s fixními efekty je odvozen od skutečnosti, že rozdílnost mezi jednotlivými j jednotkami je pouze v úrovňové konstantě (fixní efekt), ale koeficienty vysvětlujících proměnných jsou pro všechny tyto jednotky shodné. Maticově zapíšeme model y 1 J x 1 ε 1 y 2. = 0 J α + x 2. γ + ε J y m x m ε m kde y j = (y j1, y j2,..., y jt )... je vektor vysvětlovaných proměnných, x j... je matice vysvětlujících proměnných s rozměry T k, označíme x jt její t tý řádek, γ = (γ 1, γ 2,..., γ k )... je vektor odhadovaných parametrů shodných pro všechny jednotky, J = (1, 1,..., 1) T je sloupcový jedničkový vektor rozměrů T 1 α = (α 1, α 2,..., α m )... je vektor odhadovaných úrovňových konstant. Pokud jsou vysvětlující proměnné exogenní (podmíněné rozdělení y za podmínky x se nemění při změnách procesu generujícího x, vstupují do modelu zvnějšku nebo jsou tvořeny v minulém čase), pak lze ukázat, že vydatným odhadem je parametrů γ a α je odhad ve tvaru a c = ( m j=1 T m (x jt x j ) T (x jt x j )) 1 t=1 j=1 a = ˆα = ȳ j x j b T (x jt x j ) T (y jt ȳ j ) Pro konzistenci odhadu parametru β stačí mt. Parametry lze odhadnout i pro poměrně krátké časové řady, pokud máme k dispozici dostatečný počet průřezových jednotek. Naopak pro konzistenci odhadu parametru α je třeba T. t=1 5

6 6.2.2 Panelová data s náhodnými efekty U tohoto typu panelových modelů předpokládáme, že parametry α a γ jsou shodné pro všechny průřezové jednotky a rozdílnost je mezi jednotkami je obsažena v náhodné složce. Formálně model zapíšeme ve tvaru y jt = α + x jt γ + ω jt kde ω jt = ε jt + η j ε jt iid(0; σ 2 ) η j iid(0; σ 2 α). Na rozdíl od modelu s fixními efekty modelu situaci tak, že jednotlivé efekty lze zapsat ve tvaru α j = α + ω jt a převést tak model s náhodnými efekty na model s efekty fixními. V takovéto formulaci pak platí E(ω jt ) = 0, E(ω 2 jt) = σ 2 + σ 2 α, E(ω is ω it ) = σ 2 α, pro s t, E(ω is ω jt ) = 0, pro i j Pokud model s fixními efekty má celkem p + m parametrů, pak model s náhodnými efekty má p + 2 odhadovaných parametrů. Snížení počtu odhadovaných parametrů zvyšuje obecně stupeň volnosti modelu (umožňuje odhadnout parametry i pro menší počet dat), na druhou stranu je porušen předpoklad nezávislosti náhodné složky a je třeba odhadovat parametry opět ve dvou krocích. Odhad kovarianční struktury se však redukuje na poměrně jednoduchý odhad dvou parametrů σ 2 a σ 2 α. 6.3 Simultánní soustavy rovnic Modely simultánní soustav jsou založeny na předpokladech, že mezi vysvětlovanými a vysvětlujícími proměnnými existuje vzájemný simultánní vztah. V simultánních soustavách existují proměnné, které v jedné rovnici vystupují v pozici vysvětlované proměnné a zároveň v jiné rovnici vystupují jako proměnné vysvětlující. Proměnné vstupujících do modelu tedy rozdělíme do dvou skupin - endogenní proměnné, které vystupují jako vysvětlované proměnné a exogenní proměnné. Počet endogenních proměnných odpovídá počtu rovnic v modelu. Exogenní proměnné lze ještě dále rozdělit na striktně exogenní proměnné, které vstupují do modelu zcela nezávisle a predeterminované proměnné, které jsou nekorelována v daném čase, ale byla modelem vytvořena v minulých obdobích. Problém lze demonstrovat na klasickém modelu nabídky a poptávky q =α + βp + ε je poptávková funkce D 1 p =α + β q + ε je nabídková funkce S V tomto modelu jsou pouze dvě endogenní proměnné a žádná proměnná exogenní. Vzhledem k absolutní provázanosti tohoto modelu nelze parametry modelu jednoduše odhadnout. 6

7 Na druhou stranu u modifikovaného rozšířeného modelu ve tvaru q =a 1 + b 1 p + c 1 y + ε 1 q =a 2 + b 2 p + c 2 R + ε 2 poptávka D nabídka S je model, kde q, p... jsou endogenní proměnné y, R... jsou exogenní proměnné (například důchod y ovlivňující poptávku a R úroveň srážek ovlivňujících nabídku zemědělských komodit) a 1, a 2... jsou strukturní parametry simultánních rovnic. Formě modelu, který je sestaven na základě ekonomických formulací a pravidel se říká strukturní tvar modelu. V rámci strukturního tvaru mají parametry modelu své ekonomické interpretace a omezení. Při analýze soustavy simultánních rovnic tedy začínáme rozlišením, které proměnné jsou endogenního a které exogenního tvaru, odstraněním ekonomických identit a převedením na tvar, kdy každé endogenní proměnné odpovídá právě jedna rovnice soustavy. Tyto kroky se souhrnně označují jako kroky vedoucí k převodu na redukovaný tvar Převod na redukovaný tvar Převod na redukovaný tvar demostrujeme na několika jednoduchých příkladech. Příklad 1: Nabídka a poptávka Postupujeme například tak, že příslušné rovnice odečteme a dostáváme 0 = (a 2 a 1 ) + p( ) + c 2 R c 1 y +... po úpravách dostáváme soustavu v redukovaném tvaru p = a 1 a 2 + c 1 y c 2 + chyba q = a 1b 2 a 2 b 1 + c 1b 2 y c 2b 1 + chyba neboli po přeznačení parametrů q =π 1 + π 2 y + π 3 R + v 1 p =π 4 + π 5 y + π 6 R + v 2 7

8 kde π 1, π 2,..., π 6 jsou redukované parametry a v 1, v 2, jsou náhodné složky redukovaného modelu. V tomto jednoduchém modelu lze i přímo vyjádřit vztah mezi parametry strukturními a parametry redukovaného tvaru. ˆb 1 = ˆπ 3 ˆπ 6, ˆb2 = ˆπ 2 ˆπ 5 ĉ 2 = ˆπ 6 ( ˆb 1 ˆb 2 ), ĉ 1 = ˆπ 5 ( ˆb 1 ˆb 2 ) a 1 = ˆπ 1 b 1 π 4, â 2 = ˆπ 1 b 2 π 4 Je vidět, že i u velmi jednoduchého modelu může být vztah mezi strukturními parametry a redukovanými parametry velmi složitý. Příklad 2: Spotřební funkce (1) C t = β 1 + β 2 y t + u t 0 < β 2 < 1 (2) y t = C t + I t t = 1, 2,..., T C t y t I t add (1) spotřební funkce: mezní sklon ke spotřebě spotřeba ve stálých cenách HDP čisté investiční výdaje MP C = C y = β 2 add (2) identita (! není náhodná složka) C, Y endogenní I exogenní existuje zpětná vazba Strukturní vzorec Převod na redukovaný tvar (1) dosadíme do (2) (3) y t = β β 2 y t = π 1 + π 2 I t + v t I t + 1 u t 1 β 2 1 β 2 π i... přímé (běžné) multiplikátory 8

9 ... okamžitá očekávaná reakce... výsledky komparativní stability... mezní veličiny Maticové vyjádření simultánních soustav Obecně uvažujme, že v modelu vystupují následující skupiny proměnných proměnné: y 1, y 2,..., y G... endogenní proměnné a x 1, x 2,..., x k... exogenní proměnné. Maticově zapisujeme strukturní tvar následovně. kde By + Γx = ε - B... matice G G představuje matici strukturních odhadovaných parametrů efektů mezi endogenními proměnnými, - y... vektor G 1 je vektor endogenních proměnných, - Γ... matice G k představuje matici exogenních odhadovaných parametrů efektů mezi endogenními a exogenními proměnnými, - x... vektor k 1 exogenních proměnných, - ε... vektor G 1 vektor náhodných složek. s podmínkami podmínky: E(ε t ) = 0 E(ε t ε s ) = 0 [t s] resp. maticově zapsáno ε N (0, Σ), kde Σ je pozitivně definitní kovarianční matice náhodných složek Pokud je matice B čtvercová a regulární, lze vynásobit strukturní tvar inverzní maticí zleva a dostaneme B 1 By + B 1 Γx = B 1 ε přeznačením dostáváme redukovaný tvar y = ΠX + w 9

10 kde Π = B 1 Γ je matice parametrů rozměrů G k redukovaného tvaru. Podmínky na náhodnou složku se transformují do tvaru w = B 1 ε a zachovávají si své vlastnosti. tj. E(w t ) = 0 E(w t w s ) = 0 [t s] maticově zapsáno w N (0, Ω) kde Ω = B 1 Σ(B 1 ) T V redukovaném tvaru pohlížíme tedy na všechny endogenní proměnné jako na výstupy ostatních proměnných Problém identifikace Problém identifikace strukturálního tvaru soustavy simultánních rovnic je problém soustřed ující se na otázku, zda a za jakých předpokladů lze z matice koeficientů redukovaného tvaru Π získat odhady koeficienty strukturálního tvaru. Vzhledem ke vztahu mezi těmito koeficienty Π = B 1 Γ je zřejmé, že obecně tato úloha nemusí být řešitelná. Problém lze demonstrovat na jednoduchých příkladech poptávkové a nabídkové funkce: Příklad 1 q = a 1 + b 1 p + c 1 y + ɛ 1 q = a 2 + b 2 p + ɛ 2 q = a 1b 2 a 2 b 1 + c 1b 2 y + v 1 q = π 3 + π 4 y + v 1 p = a 1 a 2 + c 1 y + v 2 p = π 1 + π 2 y + v 2 b 2 = π 2 π 4 a 2 = π 1 b 2 π 3 a 1 =? b 1 =? c 1 =? 10

11 poptávková funkce není identifikována Příklad 2 nabídková funkce není identifikována Příklad 3 q = a 1 + b 1 p + ɛ 1 q = a 2 + b 2 p + c 2 R + ɛ 2 q = a 1 + b 1 p + c 1 y + d 1 R + ɛ 1 q = a 2 + b 2 p + ɛ 2 q = a 1b 2 a 2 b 1 + c 1b 2 y + d 1b 2 R + v 1 q = π 1 + π 2 y + π 3 R + v 1 p = a 1 a 2 + c 1 y + d 1 R + v 2 ˆb 2 = π 2 π 5, ˆb2 = π 3 π 6, dva odhady Z uvedených příkladů je vidět, že pro každou rovnici ve studované soustavě mohou nastat následující situace z redukovaných parametrů lze získat právě jeden soubor strukturních parametrů z redukovaných parametrů lze získat soubor strukturních parametrů, ale tento soubor není jednoznačný (Příklad 3) z redukovaných parametrů nelze strukturní parametry získat (Příklad 1 a 2). Identifikaci ekonometrických modelů se věnuje celá řada literatury a jednotlivé výše uvedené situace lze najít pod různými názvy. Řekneme, že rovnice se nazývá Přesně identifikovaná rovnice (dobře identifikována, exactly identified, just identified) pokud lze z parametrů redukovaného tvaru získat jednoznačné vyjádření pro parametry strukturního tvaru. Podidentifikovaná rovnice (neidentifikovaná, under-identified, unidentified) pokud z parametrů redukovaného tvaru nelze získat žádné vyjádření pro parametry strukturního tvaru. Přeidentifikovaná rovnice (over-identified) pokud lze z parametrů redukovaného tvaru získat vyjádření pro parametry strukturního tvaru, ale toto vyjádření není jednoznačné. 11

12 Je možné si všimnout, že v jedné soustavě může být některá z rovnic přesně identifikována a jiná podidentifikována. Problém identifikace tedy není problém celé soustavy, ale problém konkrétní rovnice v dané soustavě. Navíc problém špatné identifikovatelnosti jedné rovnice lze vyřešit přidáním další proměnné do jiné rovnice. Identifikaci lze tedy zlepšit, pokud modifikujeme jinou rovnici. tento jev nazýváme identifikačním paradoxem. K ověřování identifikovatelnosti jednotlivých rovnic používáme u rozsáhlých simultánních soustav lze použít kritéria identifikace ve formě nutných a postačující podmínek k identifikaci rovnic. Nutné podmínky jsou obvykle nazývány rozměrovými podmínkami identifikace (order condition) a jsou založeny na porovnání počtu endogenních a exogenních proměnných v celé soustavě a ve studované rovnici. Naproti tomu nutná a postačující podmínka, která je založena na hodnostech matic parametrů, se nazývá podmínkou hodnostní (rank condition). Její praktické ověření je však u rozsáhlých soustav již náročnější. Nutná podmínka identifikace Nejprve zavedeme následující značení pro počet proměnných: G... celkový počet endogenních proměnných (zároveň se jedná o počet rovnic) G 1... celkový počet endogenních proměnných v dané rovnici K... celkový počet exogenních proměnných... celkový počet exogenních proměnných v dané rovnici K 1 Pak pokud platí K K 1 = G 1 1, pak je rovnice přesně identifikovaná, pokud přepíšeme podmínku do tvaru (K K 1 ) + (G G 1 ) = G 1 pak lze vztah interpretovat také takto: počet vynechaných proměnných (exogenních i endogenních) ve studované rovnici je roven zbylému počtu rovnic soustavy), K K 1 > G 1 1, pak je rovnice přeidentifikovaná (počet vynechaných proměnných - exogenních i endogenních je větší než počet zbylých rovnic v soustavě), K K 1 < G 1 1, pak je rovnice podidentifikovaná. Použití nutné podmínky ukážeme na příkladech poptávkové a nabídkové funkce: viz. Příklad 1 - poptávková funkce G = 2, G 1 = 2 K = 1, K 1 = 1 0 < 1 podidentifikovaná funkce viz. Příklad 1 - nabídková funkce G = 2, G 1 = 2 K = 1, K 1 = 0 1 = 1 přesně identifikovaná funkce viz. Příklad 2 - poptávková funkce G = 2, G 1 = 2 12

13 K = 2, K 1 = 2 0 < 1 podidentifikovaná funkce viz. Příklad 2 - nabídková funkce G = 2, G 1 = 2 K = 2, K 1 = 0 2 > 1 přeidentifikovaná funkce Rozměrová podmínky vypovídá tedy o přiměřenosti počtu vynechaných proměnných ve studované rovnici. Pokud vynecháme příliš mnoho proměnných, pak nelze jednoznačně odvodit hodnoty parametrů strukturního tvaru z parametrů tvaru redukovaného a rovnice je přeidentifikována. Pokud naopak vynecháme málo proměnných (nebo žádnou), pak matice B a Γ mají příliš nenulových prvků a nelze je zpětně zrekonstruovat z matice Π. Postačující podmínka identifikace je založena na studiu hodnosti submatic parametrů soustavy a lze ji formulovat v následujícím tvaru. Studovaná strukturní rovnice je přesně identifikována právě tehdy, když hodnost matice vytvořené ze strukturních koeficientů nevyskytujících se ve zkoumané rovnici je G 1 (neboli, pokud existuje alespoň jeden nenulový subdeterminant řádu (G 1) (G 1). Příklad y 1 +β 12 y 2 +β 13 y 3 +γ 11 x 1 =v 1 β 21 y 1 +y 2 +γ 21 x 1 +γ 22 x 2 +γ 23 x 3 =v 2 β 31 y 1 +β 33 y 3 +γ 31 x 1 +γ 32 x 2 +γ 33 x 3 =v 3 y 1 y 2 y 3 x 1 x 2 x 3 1 β 12 β 13 γ β γ 21 γ 22 γ 23 β γ 31 γ 32 γ rovnice je identifikována, 2. a 3. rovnice jsou podidentifikovány. V praktických ekonomických modelech se obvykle setkáváme s přeidentifikovanými rovnicemi. Znalost identifikovatelnosti jednotlivých rovnic nám slouží ke správně volbě odhadovacích postupů. Pokud je z podmínek identifikovatelnosti jasné, že nelze z parametrů redukovaného tvaru odvodit parametry tvaru strukturního, nemá smysl rovnici do tohoto tvaru převádět a snažit se takto parametry odhadnout. Pokud je rovnice přeidentifikována, tj. existuje více odhadů odvozených z redukovaného tvaru, budou tyto odhady sice konzistentní, ale nebudou vydatné, protože nevyužívají všech informací, které máme k dispozici. 13

14 6.3.4 Metody odhadu simultánních rovnic Odhadové funkce pro soustavy simultánních rovnic jsou založeny na kritériích nejmenších čtverců nebo na principech maximální věrohodnosti. Všechny odvozené způsoby odhadu mají charakter odhadů single - odhady s omezenou informací nebo system - odhady s úplnou informací. Metody odhadu s omezenou informací (limited information methods) nevyužívají všechny informace, které máme k dispozici a odhadují každou z rovnic zvlášt. Mezi její představitele patří: Klasická metoda nejmenších čtverců (odhadujeme každou z rovnic zvlášt ). Nepřímá metoda nejmenších čtverců (ILS) Dvoustupňová metoda nejmenších čtverců (2SLS) Metody odhadu s úplnou informací(full information methods) odhadují najednou všechny rovnice a využijí tak veškeré informace v datech. Do této skupiny řadíme zejména Třístupňová metoda nejmenších čtverců (3SLS) Maximálně věrohodné odhady s úplnou informací Klasická metoda nejmenších čtverců Pokud použijeme klasický přístup pro odhad parametrů založený na předpokladu vzájemné nezávislosti rovnic obsažených v soustavě dostaneme odhady, které jsou vychýlené a nekonzistentní. Vychýlenost odhadů je důsledkem porušení předpokladu nezávislosti vysvětlující náhodné proměnné a náhodné složky. V soustavách simultánních rovnic tuto podmínku porušují právě proměnné, které vystupují jak na pozici vysvětlující tak vysvětlované proměnné. Na příkladu y 1t = a 14

15 6.3.6 Nepřímá metoda nejmenších čtverců (ILS) Simultánní soustavu převedeme na redukovaný tvar y = Πx + w ˆΠ = (X T X) 1 X T y 15

16 6.3.7 Dvoustupňový odhad MNČ y j = β j Y j + Γ j X j + ɛ j Nejprve odhadneme endogenní proměnné na pravé straně pomocí dalších rovnic a všech exogenních proměnných. V původní rovnici nahradíme ŷ na pravé straně. Příklad y 1 +β 12 y 2 +β 13 y 3 +γ 11 x 1 =v 1 β 21 y 1 +y 2 +γ 21 x 1 +γ 22 x 2 +γ 23 x 3 =v 2 β 31 y 1 +y 3 +γ 31 x 1 +γ 32 x 2 +γ 33 x 3 =v 3 1. y 2 = f 1 (x 1, x 2, x 3 ) ŷ 2 y 3 = f 2 (x 1, x 2, x 3 ) ŷ 3 y 1 = f 3 (ŷ 2, ŷ 3, x 1 ) odhad 2SLS 2. y 1 = f(x 1, x 2, x 3 ) ŷ 1 y 3 = f(x 1, x 2, x 3 ) ŷ 3 y 2 = f(ŷ 1, x 1, x 2, x 3 ) 3. y 1 = f(x 1, x 2, x 3 ) ŷ 1 y 2 = f(x 1, x 2, x 3 ) ŷ 2 y 3 = f(ŷ 3, x 1, x 2, x 3 ) 16

17 6.3.8 Třístupňový odhad MNČ První a druhý stupeň jsou shodné s dvoustupňovou metodou. Třetí stupeň je odhad ˆΣ s použitím GLS. 17

18 6.4 Dynamické simultánní rovnice Obsahují zpoždění endogenních proměnných. By t + Γ 1 x t + Γ 2 y t 1 = ɛ t y t = Π 1 x t + Π 2 y t 1 + ɛ t y t 1 = Π 1 x t 1 + Π 2 y t 2 + ɛ t 1 Pokud Potom s C s = n=0 C = n=0 M r M r y t = Π 1 x t + Π 2 Π 1 x t 1 + Π 2 2y t 2 + ɛ t + Π 2 ɛ t 1 Π t 2 t 0 y t = M 0 x t + M 1 x t 1 + M 2 x t w t kumulativní multiplikátory dlouhodobé multiplikátory C = (Π Π Π )Π 1 C = Π 1 1 Π 2 Příklad (1) C t = β 1 + β 2 y t + u t1 (2) I t = α 1 + α 2 y t + α 3 y t 1 + u t2 (3) y t = C t + I t + G t C I G spotřeba investice veřejné výdaje add(1) spotřební funkce add(2) investiční funkce add(3) definiční funkce (identita) C, y, I endogenní G exogenní y predeterminovaná (zpožděná) 0 < β 2 < 1 mezní sklon ke spotřebě 0 < α 2, α 3 < 1 mezní sklon k investicím Redukovaný tvar 18

19 dosadíme (1) do (3) dosadíme: (2) I t = α 1 + α 2 y t + α 3 y t 1 + u t2 (3) + (1) y t = β I t + 1 G t + u t1 1 β 2 1 β 2 1 β 2 1 β 2 [β 2 1] y t = β 1 1 β β 2 α β 2 α 2 y t β 2 α 3 y t G t + u t1 + u t2 1 β 2 1 β 1 1 β 2 y t (1 α 2 ) = α 1 + β 1 + α 3 y t G t + u t1 + u t2 1 β 2 1 β 2 1 β 2 1 β 2 1 β 1 1 β 2 (4) y t = v t1 = α 1 + β 1 α y t 1 + G t + v t1 1 α 2 β } {{ 2 1 α } 2 β } {{ 2 1 α } 2 β } {{ 2 } π 11 π 12 π 13 u t1 + u t2 1 α 2 β 2 (5) I t = α 1 α 1 β 2 + α 2 β 1 + α 3 α 3 β 2 y t 1 + G t + v t2 1 α 2 β } {{ 2 1 α } 2 β } {{ 2 1 α } 2 β } {{ 2 } π 21 π 22 π 23 v t2 = α 2u t1 + u t2 β 2 u t2 1 α 2 β 2 α 2 a dostáváme redukovaný tvar ( ) y t = π 11 + π 12 y t 1 + π 13 G t + v t1 ( ) I t = π 21 + π 22 y t 1 + π 23 G t + v t2 t = 1, 2,..., T Rovnice (*) má autoregresní charakter (diferenční rovnice) vyjádříme (*) pro y t 1 = π 11 + π 12 y t 2 + π 13 G t 1 + v t 1,1 : y t = ( ) y t = π 11 (1 + π 12 ) + π 2 12y t 2 + π 13 (G t + π 12 G t 1 ) + v t1 + π 12 v t 1,1 π 11 (1 + π 12 + π π t 1 12 )+ absolutní člen +π t 12y 0 +π13(g t t + π 12 G t 1 + π12g 2 t π12 t 1 G 1 ) +v t1 + π 12 v t 1,1 + π12v 2 t 2, π12 t 1 v 1,1 ) náhodná složka 19

20 Rovnice konečného tvaru Multiplikátory HDP: y t = π 13 G t y t = π 13 π 12 G t 1 π 13 + π 13 π 12 π 13 (1 + π 12 + π ) π 13 = (1 π 12 ) přímý, běžný multiplikátor dynamický multiplikátor krátkodobý kumulovaný multiplikátor (za 2 období) dlouhodobí (celkový) multiplikátor 20

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

OPTIMÁLNÍ ŘÍZENÍ V EKONOMETRII. METODA CÍLOVÝCH PROMĚNNÝCH A JEJÍ OMEZENÍ.

OPTIMÁLNÍ ŘÍZENÍ V EKONOMETRII. METODA CÍLOVÝCH PROMĚNNÝCH A JEJÍ OMEZENÍ. OPTIMÁLNÍ ŘÍZENÍ V EKONOMETRII. METODA CÍLOVÝCH PROMĚNNÝCH A JEJÍ OMEZENÍ. Ekonometrické modely jsou využívány i na makroúrovni či v podnikové sféře při řešení různých rozhodovacích problémů. Lze pomocí

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Popis modelu pro odhady PH mléčné užitkovosti

Popis modelu pro odhady PH mléčné užitkovosti Popis modelu pro odhady PH mléčné užitkovosti Zvířata zařazená do hodnocení V modelu plemene H jsou hodnoceny krávy s podílem krve H nebo 75% a výše. V modelu plemene C jsou hodnoceny krávy s podílem krve

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

DIPLOMOVÁ PRÁCE. Ekonometrické modely

DIPLOMOVÁ PRÁCE. Ekonometrické modely UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Ekonometrické modely Vedoucí diplomové práce: Mgr. Jaroslav Marek, Ph.D. Rok odevzdání:

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Cvičení z optimalizace Markowitzův model

Cvičení z optimalizace Markowitzův model Cvičení z optimalizace Markowitzův model Vojtěch Franc, 29 1 Úvod V tomto cvičení se budeme zabývat aplikací kvadratického programování v ekonomii a sice v úloze, jejímž cílem bude optimalizovat portfolio

Více

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY. APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 10 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

Ekonomický a ekonometrický model. Předpoklady, formulace EKO modelu a očekávání o chování proměnných

Ekonomický a ekonometrický model. Předpoklady, formulace EKO modelu a očekávání o chování proměnných Exogenní (γ) Simultánní dynamický model Tento model zkoumá vzájemné závislosti vývoje tempa růstu/poklesu HDP, míry nezaměstnanosti a míry inflace v České republice v závislosti na indexu spotřebitelských

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Přednáška č.7 Ing. Sylvie Riederová

Přednáška č.7 Ing. Sylvie Riederová Přednáška č.7 Ing. Sylvie Riederová 1. Aplikace klasifikace nákladů na změnu objemu výroby 2. Modelování nákladů Podstata modelování nákladů Nákladové funkce Stanovení parametrů nákladových funkcí Klasifikační

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní

I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní Náklady na kapitál I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní fond - statutární a ostatní fondy 4)

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více