6 Vícerovnicové ekonometrické soustavy 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "6 Vícerovnicové ekonometrické soustavy 1"

Transkript

1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese) Panelová data Panelový model s fixními efekty Panelová data s náhodnými efekty Simultánní soustavy rovnic Převod na redukovaný tvar Maticové vyjádření simultánních soustav Problém identifikace Metody odhadu simultánních rovnic Klasická metoda nejmenších čtverců Nepřímá metoda nejmenších čtverců (ILS) Dvoustupňový odhad MNČ Třístupňový odhad MNČ Dynamické simultánní rovnice Ve velké řadě ekonometrických aplikací (a nejenom v ekonometrických) je třeba vysvětlovat chování více vysvětlovaných veličin. Pokud mezi rovnice existuje další souvislost, například se jedná o kauzální vztah dvou proměnných, kdy v jedné rovnici vystupuje veličina v pozici vysvětlující proměnné a v druhé rovnici v pozici proměnné vysvětlované, je výhodné uvažovat o modelu jako o modelu soustavy rovnic a odhadovat parametry simultánně. V takovýchto případech se jedná o vícerovnicové soustavy. Jak uvádí [Cipra] lze k vícerovnicovým soustavám přistupovat i z hlediska datové struktury. Typickým příkladem datové sady pro ekonometrickou analýzu jsou data, která zachycují sadu proměnných, které jsou zároveň pozorovány v určitých časových intervalech (denní výnosy různých akcií, čtvrtletní HDP pro různé státy, ziskovost jednotlivých společností,....) U těchto dat dochází ke kombinaci průřezových informací (různé akcie, různé společnosti, různé státy,... ) a informací časových (jednotlivé burzovní dny, jednotlivá čtvrtletí,... ). Tato data jsou také nazývána poolová data a lze je popsat následujícím modelem y jt = α jt + x jt γ jt + ε jt, j = 1, 2,..., m, t = 1, 2,..., T, Var(ε) = Ω Pracujeme tedy s m vysvětlovanými proměnnými y 1, y 2, ldots, y m v rozdílných čase, celkem uvažujeme T časových jednotek. A dále předpokládáme, že v modelech je absolutní člen α jt a k vysvětlujících proměnných x 1jt, x 2jt,..., x kjt. Tento model je velmi obecný a pro odhad nevhodný, protože obsahuje více parametrů než je počet měření, která máme k dispozici. Počet parametrů je p m T vystupujících v lineární vazbě a m T (m T + 1)/2 je počet parametrů ve varianční matici. Počet měření, které máme k dispozici je pouze m T. V praxi se tedy používají speciální případy tohoto obecného modelu SUR soustavy, kdy α jt = α j, γ jt = γ j pro všechny t = 1, 2,..., T, 1

2 panelová data, kdy uvažujeme stejnou časovou stabilitu parametrů z lineární vazby jaku u SUR a dále navíc uvažujeme, že varianční matice je diagonální s konstantami na diagonále, simultánní soustavy, kdy předpokládáme, že část vysvětlovaných proměnných y j se zároveň objevuje v matici vysvětlujících proměnných x. Uvedeme několik příkladů použití vícerovnicových ekonometrických modelů: Příklad 1 - capital asset pricing model r it... výnos i-té akcie r ft... bezriziková sazba r mt... tržní výnos r it r ft = α i + β i (r mt r ft ) + ε it Příklad 2 I it... investice F it... tržní cena podniku C it... hodnota výrobních prostředků I it = β 1i + β 2i F it + β 3i C it + ɛ it 2

3 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese) Uvažujme vícerovnicový model v následujícím tvaru s parametry α a γ konstantními v čase. y jt = α j + x jt γ j + ɛ jt j = 1, 2,..., m, kde náhodní složka modelu splňuje předpoklady (P1) E(ε it, ε jt ) = σ ij (P2) E(ε is, ε jt ) = 0 i, j = 1, 2,..., m s t Předpoklady tedy zachycují skutečnost, že náhodné složky jsou současně korelovány, ale nejsou časově korelovány, tímto požadavkem je právě zajištěno propojení rovnic. Pokud počet vysvětlujících proměnných x je k a označíme počet odhadovaných parametrů pro každou rovnici p = k + 1. m(m + 1) Počet parametrů soustavy je p m + 2 Zahrneme dále úrovňovou konstantu k parametrům γ a označme β = (α, γ 1, γ 2,..., γ k a přepíšeme model do následujícího tvaru y 1 x β 1 ε 1 y 2. = 0 x β ε x m y m kde y j jsou vektory rozměrů T 1 zachycující hodnoty vysvětlovaných proměnných v jednotlivých časech, x j jsou matice rozměrů T p zachycující vysvětlující proměnné pro jednotlivá j (první sloupec této matice je jednotkový a koresponduje s úrovňovou konstantou α j modelu a zbylých p 1 = k zachycují vysvětlující proměnné. Vektory β j = (α j, γ 1j, γ 2j,..., γ kj ) jsou parametry lineární vazby pro j tou vysvětlovanou proměnnou a ε j je vektor residuálních složek modelu pro j tou proměnnou. Předpokládejme, že pro variační matici platí σ 11 I... σ 1m I σ 21 I... σ 2m I Var (ε) =..... = Σ σ m1 I... σ mm I Označme y = (y 1, y 2,..., y m ), ε = (ε 1, ε 2,..., ε m ) vektory vzniklé naskládáním jednotlivých vektorů do jediného sloupce a dále X blokově diagonální matici s bloky x 1, x 2,..., x m. Pak zapíšeme model ve tvaru y = X β + ε, který koresponduje s klasickým lineárním regresním modelem. Tento model však nelze odhadovat metodou nejmenších čtverců, protože náhodná složka ε nesplňuje předpoklady nezávislosti. Lze však použít zobecněnou metodu nejmenších čtverců s obecnou varianční maticí Σ. β m ε m 3

4 Zobecněný odhad má tvar b = (X T Σ 1 X) 1 X T Σ 1 y kde Σ je neznámá varianční matice. V praktických realizacích postupujeme dvoustupňově: 1. V první fázi odhadneme parametry modelu klasickým vztahem b 1 = (X T X) 1 X T y 2. dále na základě získaného odhadu, odhadneme varianční strukturu ˆΣ : σˆ ij = 1 T e it e jt T 3. odhadu varianční matice využijeme k zpřesnění odhadu b 1 a dostáváme ( 1 b 2 = X X) T ˆΣ 1 X T ˆΣ 1 y kroky lze případně i iteračně opakovat a dále tak zlepšovat odhad. Za předpokladů, které bývají v praxi obvykle splněny, je získaný odhad konzistentní, asymptoticky vydatný a s předpokladem normality též asymptoticky normální. t=1 ) b 2 N (β; (X T ˆΣ 1 X) 1 Tato metoda je použitelná, pokud m T, tj. počet rovnic odpovídající průřezovým jednotkám není větší než počet časových intervalů, která máme k dispozici. Odhady lze samozřejmě získat též postupným odhadem pro každou j tou jednotku, simultánně realizovaný odhad však není vydatný (nevyužívá všechny informace, které máme k dispozici). V případě, že je splněna jedna z následujících podmínek i) x j = x pro všechna j, ii) σ ij = 0 pro všechny i j lze použít MNČ pro jednotlivé jednotky samostatně a získat vydatné odhady. Nekorelovanost residuí lze přitom testovat, formulujeme nulovou hypotézu testovací kritérium má tvar T m 1 m i=1 j=i+1 H 0 : σ ij = 0, r 2 ij kde r ij = a při platnosti nulové hypotézy má asymptoticky χ 2 rozdělení, tj. σˆ ij σiiσjj T H0 χ 2 m(m 1) (ν = ) 2 Podobně lze testovat pomocí Waldova testu zda je splněn předpoklad SUR modelů, že β 1 = β 2 =... = β m jsou shodné pro všechny průřezové jednotky. 4

5 6.2 Panelová data Soustava SUR je použitelná pouze v případě, že máme k dispozici dostatečný počet dat (nutný k odhadu varianční struktury residuí). V případě, že máme k dispozici menší počet dat, mluvíme o panelových datech (panel data, longitudial data). V takovýchto případech musíme zesílit předpoklady na varianční strukturu residuí a omezit tak počet parametrů, které bude třeba odhadovat. Zesilující požadavek předpokládá, že residuální složky jsou nekorelované (současně i v různých časech) a homoskedastické, tj. E (ε is, ε jt ) = 0 pro všechny i, j, t, s s výjimkou E (ε is, ε is ) = σ 2. Podle různých formálních zápisů rozlišujeme dva typy panelových modelů Panelový model s fixními efekty V tomto modelu předpokládáme, že všechny odlišnosti mezi jednotlivými průřezovými jednotkami je soustředěn v úrovňové konstantě α. Formálně zapíšeme model ve tvaru y jt = α j + x jt γ + ε jt kde j = 1, 2,..., m, t = 1, 2,..., T a ε jt = i.i.d.(0; σ 2 ). Termín model s fixními efekty je odvozen od skutečnosti, že rozdílnost mezi jednotlivými j jednotkami je pouze v úrovňové konstantě (fixní efekt), ale koeficienty vysvětlujících proměnných jsou pro všechny tyto jednotky shodné. Maticově zapíšeme model y 1 J x 1 ε 1 y 2. = 0 J α + x 2. γ + ε J y m x m ε m kde y j = (y j1, y j2,..., y jt )... je vektor vysvětlovaných proměnných, x j... je matice vysvětlujících proměnných s rozměry T k, označíme x jt její t tý řádek, γ = (γ 1, γ 2,..., γ k )... je vektor odhadovaných parametrů shodných pro všechny jednotky, J = (1, 1,..., 1) T je sloupcový jedničkový vektor rozměrů T 1 α = (α 1, α 2,..., α m )... je vektor odhadovaných úrovňových konstant. Pokud jsou vysvětlující proměnné exogenní (podmíněné rozdělení y za podmínky x se nemění při změnách procesu generujícího x, vstupují do modelu zvnějšku nebo jsou tvořeny v minulém čase), pak lze ukázat, že vydatným odhadem je parametrů γ a α je odhad ve tvaru a c = ( m j=1 T m (x jt x j ) T (x jt x j )) 1 t=1 j=1 a = ˆα = ȳ j x j b T (x jt x j ) T (y jt ȳ j ) Pro konzistenci odhadu parametru β stačí mt. Parametry lze odhadnout i pro poměrně krátké časové řady, pokud máme k dispozici dostatečný počet průřezových jednotek. Naopak pro konzistenci odhadu parametru α je třeba T. t=1 5

6 6.2.2 Panelová data s náhodnými efekty U tohoto typu panelových modelů předpokládáme, že parametry α a γ jsou shodné pro všechny průřezové jednotky a rozdílnost je mezi jednotkami je obsažena v náhodné složce. Formálně model zapíšeme ve tvaru y jt = α + x jt γ + ω jt kde ω jt = ε jt + η j ε jt iid(0; σ 2 ) η j iid(0; σ 2 α). Na rozdíl od modelu s fixními efekty modelu situaci tak, že jednotlivé efekty lze zapsat ve tvaru α j = α + ω jt a převést tak model s náhodnými efekty na model s efekty fixními. V takovéto formulaci pak platí E(ω jt ) = 0, E(ω 2 jt) = σ 2 + σ 2 α, E(ω is ω it ) = σ 2 α, pro s t, E(ω is ω jt ) = 0, pro i j Pokud model s fixními efekty má celkem p + m parametrů, pak model s náhodnými efekty má p + 2 odhadovaných parametrů. Snížení počtu odhadovaných parametrů zvyšuje obecně stupeň volnosti modelu (umožňuje odhadnout parametry i pro menší počet dat), na druhou stranu je porušen předpoklad nezávislosti náhodné složky a je třeba odhadovat parametry opět ve dvou krocích. Odhad kovarianční struktury se však redukuje na poměrně jednoduchý odhad dvou parametrů σ 2 a σ 2 α. 6.3 Simultánní soustavy rovnic Modely simultánní soustav jsou založeny na předpokladech, že mezi vysvětlovanými a vysvětlujícími proměnnými existuje vzájemný simultánní vztah. V simultánních soustavách existují proměnné, které v jedné rovnici vystupují v pozici vysvětlované proměnné a zároveň v jiné rovnici vystupují jako proměnné vysvětlující. Proměnné vstupujících do modelu tedy rozdělíme do dvou skupin - endogenní proměnné, které vystupují jako vysvětlované proměnné a exogenní proměnné. Počet endogenních proměnných odpovídá počtu rovnic v modelu. Exogenní proměnné lze ještě dále rozdělit na striktně exogenní proměnné, které vstupují do modelu zcela nezávisle a predeterminované proměnné, které jsou nekorelována v daném čase, ale byla modelem vytvořena v minulých obdobích. Problém lze demonstrovat na klasickém modelu nabídky a poptávky q =α + βp + ε je poptávková funkce D 1 p =α + β q + ε je nabídková funkce S V tomto modelu jsou pouze dvě endogenní proměnné a žádná proměnná exogenní. Vzhledem k absolutní provázanosti tohoto modelu nelze parametry modelu jednoduše odhadnout. 6

7 Na druhou stranu u modifikovaného rozšířeného modelu ve tvaru q =a 1 + b 1 p + c 1 y + ε 1 q =a 2 + b 2 p + c 2 R + ε 2 poptávka D nabídka S je model, kde q, p... jsou endogenní proměnné y, R... jsou exogenní proměnné (například důchod y ovlivňující poptávku a R úroveň srážek ovlivňujících nabídku zemědělských komodit) a 1, a 2... jsou strukturní parametry simultánních rovnic. Formě modelu, který je sestaven na základě ekonomických formulací a pravidel se říká strukturní tvar modelu. V rámci strukturního tvaru mají parametry modelu své ekonomické interpretace a omezení. Při analýze soustavy simultánních rovnic tedy začínáme rozlišením, které proměnné jsou endogenního a které exogenního tvaru, odstraněním ekonomických identit a převedením na tvar, kdy každé endogenní proměnné odpovídá právě jedna rovnice soustavy. Tyto kroky se souhrnně označují jako kroky vedoucí k převodu na redukovaný tvar Převod na redukovaný tvar Převod na redukovaný tvar demostrujeme na několika jednoduchých příkladech. Příklad 1: Nabídka a poptávka Postupujeme například tak, že příslušné rovnice odečteme a dostáváme 0 = (a 2 a 1 ) + p( ) + c 2 R c 1 y +... po úpravách dostáváme soustavu v redukovaném tvaru p = a 1 a 2 + c 1 y c 2 + chyba q = a 1b 2 a 2 b 1 + c 1b 2 y c 2b 1 + chyba neboli po přeznačení parametrů q =π 1 + π 2 y + π 3 R + v 1 p =π 4 + π 5 y + π 6 R + v 2 7

8 kde π 1, π 2,..., π 6 jsou redukované parametry a v 1, v 2, jsou náhodné složky redukovaného modelu. V tomto jednoduchém modelu lze i přímo vyjádřit vztah mezi parametry strukturními a parametry redukovaného tvaru. ˆb 1 = ˆπ 3 ˆπ 6, ˆb2 = ˆπ 2 ˆπ 5 ĉ 2 = ˆπ 6 ( ˆb 1 ˆb 2 ), ĉ 1 = ˆπ 5 ( ˆb 1 ˆb 2 ) a 1 = ˆπ 1 b 1 π 4, â 2 = ˆπ 1 b 2 π 4 Je vidět, že i u velmi jednoduchého modelu může být vztah mezi strukturními parametry a redukovanými parametry velmi složitý. Příklad 2: Spotřební funkce (1) C t = β 1 + β 2 y t + u t 0 < β 2 < 1 (2) y t = C t + I t t = 1, 2,..., T C t y t I t add (1) spotřební funkce: mezní sklon ke spotřebě spotřeba ve stálých cenách HDP čisté investiční výdaje MP C = C y = β 2 add (2) identita (! není náhodná složka) C, Y endogenní I exogenní existuje zpětná vazba Strukturní vzorec Převod na redukovaný tvar (1) dosadíme do (2) (3) y t = β β 2 y t = π 1 + π 2 I t + v t I t + 1 u t 1 β 2 1 β 2 π i... přímé (běžné) multiplikátory 8

9 ... okamžitá očekávaná reakce... výsledky komparativní stability... mezní veličiny Maticové vyjádření simultánních soustav Obecně uvažujme, že v modelu vystupují následující skupiny proměnných proměnné: y 1, y 2,..., y G... endogenní proměnné a x 1, x 2,..., x k... exogenní proměnné. Maticově zapisujeme strukturní tvar následovně. kde By + Γx = ε - B... matice G G představuje matici strukturních odhadovaných parametrů efektů mezi endogenními proměnnými, - y... vektor G 1 je vektor endogenních proměnných, - Γ... matice G k představuje matici exogenních odhadovaných parametrů efektů mezi endogenními a exogenními proměnnými, - x... vektor k 1 exogenních proměnných, - ε... vektor G 1 vektor náhodných složek. s podmínkami podmínky: E(ε t ) = 0 E(ε t ε s ) = 0 [t s] resp. maticově zapsáno ε N (0, Σ), kde Σ je pozitivně definitní kovarianční matice náhodných složek Pokud je matice B čtvercová a regulární, lze vynásobit strukturní tvar inverzní maticí zleva a dostaneme B 1 By + B 1 Γx = B 1 ε přeznačením dostáváme redukovaný tvar y = ΠX + w 9

10 kde Π = B 1 Γ je matice parametrů rozměrů G k redukovaného tvaru. Podmínky na náhodnou složku se transformují do tvaru w = B 1 ε a zachovávají si své vlastnosti. tj. E(w t ) = 0 E(w t w s ) = 0 [t s] maticově zapsáno w N (0, Ω) kde Ω = B 1 Σ(B 1 ) T V redukovaném tvaru pohlížíme tedy na všechny endogenní proměnné jako na výstupy ostatních proměnných Problém identifikace Problém identifikace strukturálního tvaru soustavy simultánních rovnic je problém soustřed ující se na otázku, zda a za jakých předpokladů lze z matice koeficientů redukovaného tvaru Π získat odhady koeficienty strukturálního tvaru. Vzhledem ke vztahu mezi těmito koeficienty Π = B 1 Γ je zřejmé, že obecně tato úloha nemusí být řešitelná. Problém lze demonstrovat na jednoduchých příkladech poptávkové a nabídkové funkce: Příklad 1 q = a 1 + b 1 p + c 1 y + ɛ 1 q = a 2 + b 2 p + ɛ 2 q = a 1b 2 a 2 b 1 + c 1b 2 y + v 1 q = π 3 + π 4 y + v 1 p = a 1 a 2 + c 1 y + v 2 p = π 1 + π 2 y + v 2 b 2 = π 2 π 4 a 2 = π 1 b 2 π 3 a 1 =? b 1 =? c 1 =? 10

11 poptávková funkce není identifikována Příklad 2 nabídková funkce není identifikována Příklad 3 q = a 1 + b 1 p + ɛ 1 q = a 2 + b 2 p + c 2 R + ɛ 2 q = a 1 + b 1 p + c 1 y + d 1 R + ɛ 1 q = a 2 + b 2 p + ɛ 2 q = a 1b 2 a 2 b 1 + c 1b 2 y + d 1b 2 R + v 1 q = π 1 + π 2 y + π 3 R + v 1 p = a 1 a 2 + c 1 y + d 1 R + v 2 ˆb 2 = π 2 π 5, ˆb2 = π 3 π 6, dva odhady Z uvedených příkladů je vidět, že pro každou rovnici ve studované soustavě mohou nastat následující situace z redukovaných parametrů lze získat právě jeden soubor strukturních parametrů z redukovaných parametrů lze získat soubor strukturních parametrů, ale tento soubor není jednoznačný (Příklad 3) z redukovaných parametrů nelze strukturní parametry získat (Příklad 1 a 2). Identifikaci ekonometrických modelů se věnuje celá řada literatury a jednotlivé výše uvedené situace lze najít pod různými názvy. Řekneme, že rovnice se nazývá Přesně identifikovaná rovnice (dobře identifikována, exactly identified, just identified) pokud lze z parametrů redukovaného tvaru získat jednoznačné vyjádření pro parametry strukturního tvaru. Podidentifikovaná rovnice (neidentifikovaná, under-identified, unidentified) pokud z parametrů redukovaného tvaru nelze získat žádné vyjádření pro parametry strukturního tvaru. Přeidentifikovaná rovnice (over-identified) pokud lze z parametrů redukovaného tvaru získat vyjádření pro parametry strukturního tvaru, ale toto vyjádření není jednoznačné. 11

12 Je možné si všimnout, že v jedné soustavě může být některá z rovnic přesně identifikována a jiná podidentifikována. Problém identifikace tedy není problém celé soustavy, ale problém konkrétní rovnice v dané soustavě. Navíc problém špatné identifikovatelnosti jedné rovnice lze vyřešit přidáním další proměnné do jiné rovnice. Identifikaci lze tedy zlepšit, pokud modifikujeme jinou rovnici. tento jev nazýváme identifikačním paradoxem. K ověřování identifikovatelnosti jednotlivých rovnic používáme u rozsáhlých simultánních soustav lze použít kritéria identifikace ve formě nutných a postačující podmínek k identifikaci rovnic. Nutné podmínky jsou obvykle nazývány rozměrovými podmínkami identifikace (order condition) a jsou založeny na porovnání počtu endogenních a exogenních proměnných v celé soustavě a ve studované rovnici. Naproti tomu nutná a postačující podmínka, která je založena na hodnostech matic parametrů, se nazývá podmínkou hodnostní (rank condition). Její praktické ověření je však u rozsáhlých soustav již náročnější. Nutná podmínka identifikace Nejprve zavedeme následující značení pro počet proměnných: G... celkový počet endogenních proměnných (zároveň se jedná o počet rovnic) G 1... celkový počet endogenních proměnných v dané rovnici K... celkový počet exogenních proměnných... celkový počet exogenních proměnných v dané rovnici K 1 Pak pokud platí K K 1 = G 1 1, pak je rovnice přesně identifikovaná, pokud přepíšeme podmínku do tvaru (K K 1 ) + (G G 1 ) = G 1 pak lze vztah interpretovat také takto: počet vynechaných proměnných (exogenních i endogenních) ve studované rovnici je roven zbylému počtu rovnic soustavy), K K 1 > G 1 1, pak je rovnice přeidentifikovaná (počet vynechaných proměnných - exogenních i endogenních je větší než počet zbylých rovnic v soustavě), K K 1 < G 1 1, pak je rovnice podidentifikovaná. Použití nutné podmínky ukážeme na příkladech poptávkové a nabídkové funkce: viz. Příklad 1 - poptávková funkce G = 2, G 1 = 2 K = 1, K 1 = 1 0 < 1 podidentifikovaná funkce viz. Příklad 1 - nabídková funkce G = 2, G 1 = 2 K = 1, K 1 = 0 1 = 1 přesně identifikovaná funkce viz. Příklad 2 - poptávková funkce G = 2, G 1 = 2 12

13 K = 2, K 1 = 2 0 < 1 podidentifikovaná funkce viz. Příklad 2 - nabídková funkce G = 2, G 1 = 2 K = 2, K 1 = 0 2 > 1 přeidentifikovaná funkce Rozměrová podmínky vypovídá tedy o přiměřenosti počtu vynechaných proměnných ve studované rovnici. Pokud vynecháme příliš mnoho proměnných, pak nelze jednoznačně odvodit hodnoty parametrů strukturního tvaru z parametrů tvaru redukovaného a rovnice je přeidentifikována. Pokud naopak vynecháme málo proměnných (nebo žádnou), pak matice B a Γ mají příliš nenulových prvků a nelze je zpětně zrekonstruovat z matice Π. Postačující podmínka identifikace je založena na studiu hodnosti submatic parametrů soustavy a lze ji formulovat v následujícím tvaru. Studovaná strukturní rovnice je přesně identifikována právě tehdy, když hodnost matice vytvořené ze strukturních koeficientů nevyskytujících se ve zkoumané rovnici je G 1 (neboli, pokud existuje alespoň jeden nenulový subdeterminant řádu (G 1) (G 1). Příklad y 1 +β 12 y 2 +β 13 y 3 +γ 11 x 1 =v 1 β 21 y 1 +y 2 +γ 21 x 1 +γ 22 x 2 +γ 23 x 3 =v 2 β 31 y 1 +β 33 y 3 +γ 31 x 1 +γ 32 x 2 +γ 33 x 3 =v 3 y 1 y 2 y 3 x 1 x 2 x 3 1 β 12 β 13 γ β γ 21 γ 22 γ 23 β γ 31 γ 32 γ rovnice je identifikována, 2. a 3. rovnice jsou podidentifikovány. V praktických ekonomických modelech se obvykle setkáváme s přeidentifikovanými rovnicemi. Znalost identifikovatelnosti jednotlivých rovnic nám slouží ke správně volbě odhadovacích postupů. Pokud je z podmínek identifikovatelnosti jasné, že nelze z parametrů redukovaného tvaru odvodit parametry tvaru strukturního, nemá smysl rovnici do tohoto tvaru převádět a snažit se takto parametry odhadnout. Pokud je rovnice přeidentifikována, tj. existuje více odhadů odvozených z redukovaného tvaru, budou tyto odhady sice konzistentní, ale nebudou vydatné, protože nevyužívají všech informací, které máme k dispozici. 13

14 6.3.4 Metody odhadu simultánních rovnic Odhadové funkce pro soustavy simultánních rovnic jsou založeny na kritériích nejmenších čtverců nebo na principech maximální věrohodnosti. Všechny odvozené způsoby odhadu mají charakter odhadů single - odhady s omezenou informací nebo system - odhady s úplnou informací. Metody odhadu s omezenou informací (limited information methods) nevyužívají všechny informace, které máme k dispozici a odhadují každou z rovnic zvlášt. Mezi její představitele patří: Klasická metoda nejmenších čtverců (odhadujeme každou z rovnic zvlášt ). Nepřímá metoda nejmenších čtverců (ILS) Dvoustupňová metoda nejmenších čtverců (2SLS) Metody odhadu s úplnou informací(full information methods) odhadují najednou všechny rovnice a využijí tak veškeré informace v datech. Do této skupiny řadíme zejména Třístupňová metoda nejmenších čtverců (3SLS) Maximálně věrohodné odhady s úplnou informací Klasická metoda nejmenších čtverců Pokud použijeme klasický přístup pro odhad parametrů založený na předpokladu vzájemné nezávislosti rovnic obsažených v soustavě dostaneme odhady, které jsou vychýlené a nekonzistentní. Vychýlenost odhadů je důsledkem porušení předpokladu nezávislosti vysvětlující náhodné proměnné a náhodné složky. V soustavách simultánních rovnic tuto podmínku porušují právě proměnné, které vystupují jak na pozici vysvětlující tak vysvětlované proměnné. Na příkladu y 1t = a 14

15 6.3.6 Nepřímá metoda nejmenších čtverců (ILS) Simultánní soustavu převedeme na redukovaný tvar y = Πx + w ˆΠ = (X T X) 1 X T y 15

16 6.3.7 Dvoustupňový odhad MNČ y j = β j Y j + Γ j X j + ɛ j Nejprve odhadneme endogenní proměnné na pravé straně pomocí dalších rovnic a všech exogenních proměnných. V původní rovnici nahradíme ŷ na pravé straně. Příklad y 1 +β 12 y 2 +β 13 y 3 +γ 11 x 1 =v 1 β 21 y 1 +y 2 +γ 21 x 1 +γ 22 x 2 +γ 23 x 3 =v 2 β 31 y 1 +y 3 +γ 31 x 1 +γ 32 x 2 +γ 33 x 3 =v 3 1. y 2 = f 1 (x 1, x 2, x 3 ) ŷ 2 y 3 = f 2 (x 1, x 2, x 3 ) ŷ 3 y 1 = f 3 (ŷ 2, ŷ 3, x 1 ) odhad 2SLS 2. y 1 = f(x 1, x 2, x 3 ) ŷ 1 y 3 = f(x 1, x 2, x 3 ) ŷ 3 y 2 = f(ŷ 1, x 1, x 2, x 3 ) 3. y 1 = f(x 1, x 2, x 3 ) ŷ 1 y 2 = f(x 1, x 2, x 3 ) ŷ 2 y 3 = f(ŷ 3, x 1, x 2, x 3 ) 16

17 6.3.8 Třístupňový odhad MNČ První a druhý stupeň jsou shodné s dvoustupňovou metodou. Třetí stupeň je odhad ˆΣ s použitím GLS. 17

18 6.4 Dynamické simultánní rovnice Obsahují zpoždění endogenních proměnných. By t + Γ 1 x t + Γ 2 y t 1 = ɛ t y t = Π 1 x t + Π 2 y t 1 + ɛ t y t 1 = Π 1 x t 1 + Π 2 y t 2 + ɛ t 1 Pokud Potom s C s = n=0 C = n=0 M r M r y t = Π 1 x t + Π 2 Π 1 x t 1 + Π 2 2y t 2 + ɛ t + Π 2 ɛ t 1 Π t 2 t 0 y t = M 0 x t + M 1 x t 1 + M 2 x t w t kumulativní multiplikátory dlouhodobé multiplikátory C = (Π Π Π )Π 1 C = Π 1 1 Π 2 Příklad (1) C t = β 1 + β 2 y t + u t1 (2) I t = α 1 + α 2 y t + α 3 y t 1 + u t2 (3) y t = C t + I t + G t C I G spotřeba investice veřejné výdaje add(1) spotřební funkce add(2) investiční funkce add(3) definiční funkce (identita) C, y, I endogenní G exogenní y predeterminovaná (zpožděná) 0 < β 2 < 1 mezní sklon ke spotřebě 0 < α 2, α 3 < 1 mezní sklon k investicím Redukovaný tvar 18

19 dosadíme (1) do (3) dosadíme: (2) I t = α 1 + α 2 y t + α 3 y t 1 + u t2 (3) + (1) y t = β I t + 1 G t + u t1 1 β 2 1 β 2 1 β 2 1 β 2 [β 2 1] y t = β 1 1 β β 2 α β 2 α 2 y t β 2 α 3 y t G t + u t1 + u t2 1 β 2 1 β 1 1 β 2 y t (1 α 2 ) = α 1 + β 1 + α 3 y t G t + u t1 + u t2 1 β 2 1 β 2 1 β 2 1 β 2 1 β 1 1 β 2 (4) y t = v t1 = α 1 + β 1 α y t 1 + G t + v t1 1 α 2 β } {{ 2 1 α } 2 β } {{ 2 1 α } 2 β } {{ 2 } π 11 π 12 π 13 u t1 + u t2 1 α 2 β 2 (5) I t = α 1 α 1 β 2 + α 2 β 1 + α 3 α 3 β 2 y t 1 + G t + v t2 1 α 2 β } {{ 2 1 α } 2 β } {{ 2 1 α } 2 β } {{ 2 } π 21 π 22 π 23 v t2 = α 2u t1 + u t2 β 2 u t2 1 α 2 β 2 α 2 a dostáváme redukovaný tvar ( ) y t = π 11 + π 12 y t 1 + π 13 G t + v t1 ( ) I t = π 21 + π 22 y t 1 + π 23 G t + v t2 t = 1, 2,..., T Rovnice (*) má autoregresní charakter (diferenční rovnice) vyjádříme (*) pro y t 1 = π 11 + π 12 y t 2 + π 13 G t 1 + v t 1,1 : y t = ( ) y t = π 11 (1 + π 12 ) + π 2 12y t 2 + π 13 (G t + π 12 G t 1 ) + v t1 + π 12 v t 1,1 π 11 (1 + π 12 + π π t 1 12 )+ absolutní člen +π t 12y 0 +π13(g t t + π 12 G t 1 + π12g 2 t π12 t 1 G 1 ) +v t1 + π 12 v t 1,1 + π12v 2 t 2, π12 t 1 v 1,1 ) náhodná složka 19

20 Rovnice konečného tvaru Multiplikátory HDP: y t = π 13 G t y t = π 13 π 12 G t 1 π 13 + π 13 π 12 π 13 (1 + π 12 + π ) π 13 = (1 π 12 ) přímý, běžný multiplikátor dynamický multiplikátor krátkodobý kumulovaný multiplikátor (za 2 období) dlouhodobí (celkový) multiplikátor 20

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Popis modelu pro odhady PH mléčné užitkovosti

Popis modelu pro odhady PH mléčné užitkovosti Popis modelu pro odhady PH mléčné užitkovosti Zvířata zařazená do hodnocení V modelu plemene H jsou hodnoceny krávy s podílem krve H nebo 75% a výše. V modelu plemene C jsou hodnoceny krávy s podílem krve

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

DIPLOMOVÁ PRÁCE. Ekonometrické modely

DIPLOMOVÁ PRÁCE. Ekonometrické modely UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Ekonometrické modely Vedoucí diplomové práce: Mgr. Jaroslav Marek, Ph.D. Rok odevzdání:

Více

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY. APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Cvičení z ekonometrie

Cvičení z ekonometrie Cvičení z ekonometrie Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Katedra ekonomiky Ing. Lukáš Čechura, Ph.D. Dr. Ing. Pavlína Hálová Ing. Zdeňka Kroupová Ing. Michal Malý, Ph.D. Ing.

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Modelování výnosové křivky a modelování úrokových nákladů státního dluhu Kamil Kladívko Odbor řízení státního dluhu a finančního majetku Úrokové náklady portfolia státního dluhu 2 Úrokové náklady státního

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e Téma 8: Chování cen akcií a investiční management Struktura přednášky: 1. Chování cen akcií fundamentální a technická analýza a teorie efektivních trhů. Riziko a výnos Markowitzův model 3. Kapitálový trh

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX.

1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX. 1/30 31.3.2006 Seminář z aktuárských věd Slides by LATEX Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení 2/30 Obsah 1 Zobecněné lineární modely (GLZ 1 ) Obecný lineární model (GLM)

Více

PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: 7.2.2 STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28.

PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: 7.2.2 STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28. ANALÝZA VÍCEROZMĚRNÝCH DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH JOSEF TVRDÍK ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Propenzitní modelování. Veronika Počerová 10. 4. 2015

Propenzitní modelování. Veronika Počerová 10. 4. 2015 Propenzitní modelování Veronika Počerová 10. 4. 2015 motivace 2 definice Prediktivní analytika je disciplína, která využívá metod Data Miningu k tomu, aby na základě historického chování sledovaného jevu

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno SOCIOLOGIE A STATISTIKA nadindividuální společenské struktury podmiňují lidské chování (Durkheim)

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých

Více

ANALÝZA VÍCEROZMĚRNÝCH DAT

ANALÝZA VÍCEROZMĚRNÝCH DAT UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA VÍCEROZMĚRNÝCH DAT Josef Tvrdík OSTRAVSKÁ UNIVERZITA 2003 Obsah 1 Vektory a matice 4 1.1 Základní pojmy......................... 4 1.2 Vlastní

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

SPECIFIKACE, KLASIFIKACE A IDENTIFIKACE SIMULTÁNNÍCH EKONOMETRICKÝCH MODELŮ. INVESTIČNÍ FUNKCE A FAKTORY URČUJÍCÍ INVESTICE

SPECIFIKACE, KLASIFIKACE A IDENTIFIKACE SIMULTÁNNÍCH EKONOMETRICKÝCH MODELŮ. INVESTIČNÍ FUNKCE A FAKTORY URČUJÍCÍ INVESTICE SPECIFIKACE, KLASIFIKACE A IDENTIFIKACE SIMULTÁNNÍCH EKONOMETRICKÝCH MODELŮ. INVESTIČNÍ FUNKCE A FAKTORY URČUJÍCÍ INVESTICE SPECIFIKACE, KLASIFIKACE A IDENTIFIKACE SIMULTÁNNÍCH EKONOMETRICKÝCH MODELŮ viz

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Praha 8. prosince 2011 čj. ČTÚ-91 855/2011-611

Praha 8. prosince 2011 čj. ČTÚ-91 855/2011-611 Praha 8. prosince 2011 čj. ČTÚ-91 855/2011-611 Český telekomunikační úřad (dále jen Úřad ) jako příslušný orgán státní správy podle 108 odst. 1 písm. b) zákona č. 127/2005 Sb., o elektronických komunikacích

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

13 Specifika formování poptávky firem po práci a kapitálu

13 Specifika formování poptávky firem po práci a kapitálu 13 Specifika formování poptávky firem po práci a kapitálu Na rozdíl od trhu finálních statků, kde stranu poptávky tvořili jednotlivci (domácnosti) a stranu nabídky firmy, na trhu vstupů vytvářejí jednotlivci

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Jakub Mikulka. Exponenciální vyrovnávání

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Jakub Mikulka. Exponenciální vyrovnávání Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jakub Mikulka Exponenciální vyrovnávání Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Mgr. Tomáš

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M3 ZÁKLADY TEORIE ODHADU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07

Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07 Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07 var. 07, úloha č. 51 Úloha č. 51 Víme, že polovina trasy z A do B měří na

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

15 Poptávka na nedokonale konkurenčním trhu práce

15 Poptávka na nedokonale konkurenčním trhu práce 15 Poptávka na nedokonale konkurenčním trhu práce Existuje-li na trhu výstupu omezený počet firem nabízejících svou produkci, hovoříme o nedokonalé konkurenci, jejíž jednotlivé formy (monopol, oligopol

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Investice a investiční činnost Ekonomika lesního hospodářství 4. cvičení Investice Investice

Více