Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Rozměr: px
Začít zobrazení ze stránky:

Download "Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice"

Transkript

1 Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

2 Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u k je vektor tvaru kde a 1, a 2,... a k K. a 1 u 1 + a 2 u a k u k, Definice Neprázdnou podmnožinu V U nazveme vektorovým podprostorem prostoru U, jestliže (1) pro všechna u, v V je u + v V, (2) pro všechna a K, u V je au V.

3 Vlastnosti a příklady vektorových podprostorů Vlastnosti: (i) u 1, u 2,..., u k V, pak k i=1 a iu i V. (ii) o V. (iii) Každý podprostor je vektorový prostor. Příklady: (1) {o} a U jsou triviální podprostory prostoru U. (2) V = {(s + t, s, t) R 3 ; t, s R} je podprostor v R 3. (3) A je matice k n, V = {x R n ; Ax = o} je podprostor v R n. (4) Podprostory v R 2 : {o}, přímky procházející počátkem, R 2. (5) Podprostory v R 3 : {o}, přímky procházející počátkem, roviny procházející počátkem, R 3. (6) Průnik podprostorů je podprostor.

4 Lineární obal vektorů Definice Lineární obal množiny vektorů {u 1, u 2,..., u k } U je množina [u 1, u 2,..., u k ] = {a 1 u 1 + a 2 u a k u k U; a 1, a 2,..., a k K}. Pro prázdnou množinu [ ] = {o}. Lemma Lineární obal konečné množiny vektorů z U je vektorový podprostor. Důkaz: u, v [u 1, u 2,..., u k ] znamená, že u = k i=1 a iu i, v = k i=1 b iu i. Potom u + v = au = k (a i + b i )u i [u 1, u 2,..., u k ], i=1 k aa i u i [u 1, u 2,..., u k ]. i=1

5 Lineární obal úloha Lze definovat lineární obal nekonečné množiny. Je to opět vektorový podprostor. Prakticky budeme počítat jen s lineárními obaly konečných množin. Kdy je daný vektor v prvkem [u 1, u 2,..., u k ]? Právě když rovnice x 1 u 1 + x 2 u x k u k = v o neznámých x 1, x 2,..., x k má nějaké řešení. Příklad U prostor reálných matic 2 2. Je ( ) [( ) , ( )] 0 2? 1 1 ( ) ( ) ( ) Rovnice x 1 + x = vede na soustavu x 1 = 1, 2x 1 + 2x 2 = 2, x 2 = 3, x 1 + x 2 = 4, která nemá řešení.

6 Lineární nezávislost vektorů Vektory u 1, u 2,..., u k U jsou lineárně závislé, existuje-li k-tice (x 1, x 2,..., x k ) (0, 0,..., 0) z K k taková, že ( ) x 1 u 1 + x 2 u x k u k = o. Jinými slovy: Rovnice ( ) o neznámých x 1, x 2,..., x k má netriviální (= nenulové) řešení. Příklad u 1 = (1, 2, 1), u 2 = (1, 1, 1), u 3 = (3, 0, 3) R 3 jsou lineárně závislé, neboť 1 u u 2 + ( 1) u 3 = o. Definice Vektory u 1, u 2,..., u k U jsou lineárně nezávislé, jestliže rovnice ( ) má pouze triviální řešení x 1 = x 2 = = x k = 0. Jinak: x 1 u 1 + x 2 u x k u k = o x 1 = x 2 = = x k = 0.

7 Jak si představit lineární závislost Lemma Vektory u 1, u 2,..., u k U jsou lineárně závislé, právě když lze jeden z nich vyjádřit jako lineární kombinaci ostatních u j = a 1 u a j 1 u j 1 + a j+1 u j a k u k. Důkaz: Nechť u 1 = a 2 u a k u k. Potom ( 1)u 1 + a 2 u a k u k = o a koeficient u u 1 je nenulový. Nechť u 1, u 2,..., u k jsou lineárně závislé. Pak x 1 u 1 + x 2 u x k u k = o a některý koeficient je různý od 0, např. x 1. Proto x 1 u 1 = k ( x i )u i u 1 = i=2 k i=2 ( x i x 1 )u i.

8 Geometrická představa Jediný vektor u 1 je lineárně nezávislý, právě když u 1 o. Dva vektory u 1, u 2 jsou lineárně nezavislé, právě když jeden není násobkem druhého. Geometrická představa v R 3 : Dva lin. nezávislé vektory u 1, u 2 určují rovinu. Každý vektor u 3 ležící v této rovině je s nimi lineárně závislý. Každý vektor neležící v této rovině je s nimi lin. nezávislý. Příklad Zjistěte, zda vektory u 1 = (1, 2, 1, 0) T, u 2 = (1, 1, 1, 2) T, u 3 = (1, 0, 1, 1) T R 4 jsou lineárně závislé. Rovnice x 1 (1, 2, 1, 0) T + x 2 (1, 1, 1, 2) T + x 3 (1, 0, 1, 1) T = (0, 0, 0, 0) dává homogenní soustavu x 1 + x 2 + x 3 = 0 2x 1 + x 2 = 0 2x 2 + x 3 = 0

9 Báze konečnědimenzionálního prostoru Vektory u 1, u 2,..., u n generují prostor U, jestliže [u 1, u 2,..., u n ] = U. Jinými slovy: každý vektor u U lze psát jako lineární kombinaci u = a 1 u 1 + a 2 u a n u n. Vektorový prostor se nazývá konečnědimenzionální, jestliže je generován nějakou konečnou množinou vektorů. Definice Báze konečnědimenzionálního prostoru U je posloupnost vektorů (u 1, u 2,..., u n ) taková, že (1) vektory u 1, u 2,..., u n generují U, (2) vektory u 1, u 2,..., u n jsou lineárně nezávislé.

10 Příklady R 3 e 1 = (1, 0, 0) T, e 2 = (0, 1, 0) T, e 3 = (0, 0, 1) T je báze R 3. Říkáme jí standardní. u 1 = (1, 0, 1) T, u 2 = (0, 1, 1), u 3 = (0, 0, 1) je jiná báze R 3. R 3 [x] prostor reálných polynomů v proměnné x stupně 3. Má bázi (1, x, x 2, x 3 ). C[0, 1] prostor spojitých reálných funkcí na intervalu [0, 1] není konečnědimenzionální prostor. Naší snahou bude dokázat, že každý konečnědimenzionální prostor má bázi a že každé dvě báze takového prostoru mají stejný počet prvků.

11 Výběr lineárně nezávislých generátorů Věta Nechť vektory v 1, v 2,..., v k U jsou lineárně nezávislé a nechť vektory u 1, u 2,..., u l U jsou libovolné. Potom lze z druhého seznamu vektorů vybrat vektory u i1, u i2,..., u ir tak, že (1) vektory v 1, v 2,..., v k, u i1, u i2,..., u ir jsou lineárně nezávislé, (2) [v 1, v 2,..., v k, u i1, u i2,..., u ir ] = [v 1, v 2,..., v k, u 1, u 2,..., u l ]. Důsledek V konečnědimenzionálním prostoru U lze každý seznam lineárně nezávislých vektorů doplnit na bázi. Speciálně, v U existuje báze.

12 Důkazy Důkaz důsledku: v 1, v 2,..., v k lineárně nezávislé. U má konečnou dimenzi, tedy existují u 1, u 2,..., u l [u 1, u 2,..., u l ] = U. Podle předchozí věty lze vybrat indexy i 1, i 2,..., i r tak, že vektory v 1, v 2,..., v k, u i1, u i2,..., u ir jsou lineárně nezávislé a [v 1, v 2,..., v k, u i1, u i2,..., u ir ] = [v 1, v 2,..., v k, u 1, u 2,..., u l ] [u 1, u 2,..., u l ]] = U. Tedy v 1, v 2,..., v k, u i1, u i2,..., u ir tvoří bázi prostoru U. Speciálně seznam vektorů v může být prázdný a bázi lze vybrat ze seznamu generátorů. Důkaz věty se provádí indukcí podle čísla n, tj. počtu vektorů u.

13 Algoritmus pro předchozí větu v K n Mějme vektory u 1, u 2,..., u l K n. Chceme z nich vybrat seznam lineárně nezávislých vektorů se stejným lineárním obalem: [u i1, u i2,..., u ir ] = [u 1, u 2,..., u l ]. Algoritmus: Zapíšeme vektory u 1, u 2,..., u l jako sloupce matice. Provedeme řádkové úpravy této matice na schodovitý tvar. V něm určíme sloupce i 1, i 2,..., i r, v nichž leží vedoucí koeficient některého řádku. Vektory u i1, u i2,..., u ir mají výše požadovanou vlastnost. Příklad: 1 ( ) u1 u 2 u 3 u Hledané vektory jsou u 1, u 2, u 4.

14 Zdůvodnění algoritmu na příkladu 1 ( ) u1 u 2 u 3 u u 1, u 2, u 4 jsou lin. nezávislé, neboť soustava x 1 u 1 + x 2 u 2 + x 4 u 4 = o má pouze triviální řešení. 1 ( ) u1 u 2 u u 3 je lineární kombinací předchozích vybraných vektorů u 1, u 2. Soustava x 1 u 1 + x 2 u 2 = u 3 má totiž řešení 1 ( ) u1 u 2 u

15 Steinitzova věta Následující věta nám umožní dokázat, že každé dvě báze prostoru U mají stejný počet vektorů. Věta (Steinitzova) Nechť v 1, v 2,..., v k [u 1, u 2,..., u n ] U. Jestliže jsou vektory v 1, v 2,..., v k lineárně nezávislé, pak k n. Provedeme nepřímý důkaz. Místo implikace p q, budeme dokazovat implikaci non q non p. Výrok p: Vektory v 1, v 2,..., v k jsou lineárně nezávislé. Výrok q: k n

16 Důkaz Steinitzovy věty 1. část Nechť k > n. Každý z vektorů v i je lineární kombinací vektorů u 1, u 2,..., u n, v i = a 1i u 1 + a 2i u a ni u n = (u 1, u 2,..., u n ) a 2i.... Pro všechny vektory to můžeme zapsat takto: a 11 a a 1k (v 1, v 2,..., v k ) = (u 1, u 2,..., u n ) a 21 a a 2k a n1 a n2... a nk Matice A = (a ij ) má n řádků a k sloupců. Uvažujme homogenní soustavu rovnic Ax = o s neznámou x K k. a 1i a ni

17 Důkaz Steinitzovy věty 2. část Matice A má více sloupců (k) než řádků (n), takže po úpravě na schodovitý tvar existuje sloupec (j-tý), v němž neleží vedoucí koeficient žádného řádku. Tedy při řešení můžeme neznámou x j zvolit libovolně, například různou od 0. Tedy soustava má netriviální řešení (x 1, x 2,..., x k ) K k. Potom x 1 v 1 + x 2 v x k v k = (v 1, v 2,..., v k ) x 2... = [(u 1, u 2,..., u n ) A] x = (u 1, u 2,..., u n ) [A x] 0 = (u 1, u 2,..., u n ) 0... = o. 0 Tedy vektory v 1, v 2,..., v k jsou lineárně závislé. x 1 x k

18 Důsledek Steinitzovy věty a definice dimenze Důsledek Jsou-li (u 1, u 2,..., u n ) a (v 1, v 2,..., v k ) dvě báze vektorového prostoru U, pak n = k. Důkaz: Vektory (v 1, v 2,..., v k ) jsou lineárně nezávislé a leží v U = [u 1, u 2,..., u n ]. Podle SV je k n. Vektory (u 1, u 2,..., u n ) jsou lineárně nezávislé a leží v U = [v 1, v 2,..., v k ]. Podle SV je n k. Tedy k = n. Definice Nechť U je konečnědimenzionální vektorový prostor nad K. Počet prvků nějaké báze se nazývá dimenze prostoru U nad K, označení dim K U.

19 Dimenze konkrétních prostorů dim K K n = n Tento prostor má bázi e 1, e 2,..., e n, přitom e i je vektor, který má na i-tém místě 1, všude jinde nuly. dim K K n [x] = n + 1 Báze tohoto prostoru je (1, x, x 2,..., x n ). dim R C = 2 Báze vektorového prostoru C nad R je například tvořena dvěma komplexními čísly 1 a i. dim K Mat k n (K) = n k Najděte nějakou bázi!

20 Čtyři užitečné věty o dimenzi první dvě o bázi První věta Nechť dim K U = n. Jsou-li vektory v 1, v 2,..., v n lineárně nezávislé, pak tvoří bázi prostoru U. Důkaz: Již víme, že každý seznam lineárně nezávislých vektorů lze doplnit na bázi. Ta bude mít n prvků. K v 1, v 2,..., v n není tedy potřeba přidávat žádný další vektor. Druhá věta Nechť dim K U = n. Jestliže vektory u 1, u 2,..., u n generují U, pak tvoří bázi prostoru U. Důkaz: Z daných vektorů u 1, u 2,..., u n lze vybrat lineárně nezávislé se stejným lineárním obalem. Ten je roven U. Proto vybrané vektory tvoří bázi. Ta musí mít n prvků. Je tedy tvořena všemi vektory u 1, u 2,..., u n.

21 Další dvě o podprostorech Třetí věta Nechť V je podprostor v konečnědimenzionálním vektorovém prostoru U nad K. Potom má V konečnou dimenzi a platí dim K V dim K U. Důkaz: Nechť dim K U = n. Kdyby V nebyl generován konečným počtem vektorů, dostaneme postupně posloupnost v 1, v 2,..., v n+1 V lin. nezávislých vektorů ve V, tudíž i v U. To je však ve sporu se Steinitzovou větou. Tedy V je konečné dimenze a má proto bázi v 1, v 2,..., v k. Tento seznam lineárně nezávislých vektorů lze doplnit na bázi prostoru U. Tedy dim K V = k n = dim K U. Čtvrtá věta Nechť V je podprostor v konečnědimenzionálním vektorovém prostoru U nad K. Jestliže dim K V = dim K U, pak V = U. Důkaz: Nechť dim K U = n = dim K V. Nechť v 1, v 2,..., v n je báze podprostoru V. Tyto vektory jsou lineárně nezávislé v U, a proto podle První věty tvoří bázi prostoru U. Tedy V = [v 1, v 2,..., v n ] = U.

22 Souřadnice vektoru Věta Nechť U je vektorový prostor konečné dimenze. Posloupnost vektorů u 1, u 2,..., u n je báze prostoru U, právě když každý vektor u U lze psát právě jedním způsobem ve tvaru ( ) u = a 1 u 1 + a 2 u a n u n. Důkaz provedeme na tabuli. Definice Nechť α = (u 1, u 2,..., u n ) je báze prostoru U. Každý vektor u U lze psát ve tvaru ( ). n-tici koeficientů (a 1, a 2,..., a n ) nazýváme souřadnice vektoru u v bázi α a zapisujeme ve tvaru sloupce a 1 (u) α = a 2... Kn, u = (u 1, u 2,..., u n ) a a n a 1 a n

23 Příklady Příklad α = (1, x 1, (x 1) 2 je báze prostoru polynomů R 2 [x]. Polynom x 2 + x 1 má v této bázi souřadnice (x 2 + x 1) α = 1 3, 1 neboť x 2 + x 1 = (x 1) + 1 (x 1) 2. Příklad Bázi ε = (e 1, e 2,..., e n ) vektorového prostoru K n nazývame standardní bazí. Pro každý vektor x K n platí x 1 x = x 2... = x 1e 1 + x 2 e x n e n, (x) ε = x x n x 1 x n

24 Přiřazení souřadnic jako zobrazení Každá báze α v prostoru U nad K dimenze n definuje zobrazení ( ) α : U K n, které vektoru přiřazuje jeho souřadnice v bázi α. Toto zobrazení je bijekce a navíc platí (u + v) α = (u) α + (v) α, (au) α = a(u) α. Důkaz je jednoduchý důsledek definice souřadnic.

25 Průnik a součet podprostorů Věta Průnik libovolného počtu vektorových podprostorů prostoru U je opět podporostor v U. Pozor! Sjednocení vektorových podprostorů není obecně vektorový podprostor. Najděte příklad! Místo sjednocení pracujeme v lineární algebře se součtem podprostorů. Definice Nechť V, W a V i jsou vektorové podprostory v U. Definujeme V + W = {v + w U; v V, w W }, V 1 + V V k = {v 1 + v v k U; v i V i }. Věta Součet vektorových podprostorů je opět podprostor.

26 Direktní součet Příklad U = R 4, V = {(x 1, x 2, x 3, x 4 ) R 4 ; x 1 + x 2 + x 3 + x 4 = 0}, W = {(0, y 2, 0, y 4 ) R 4 }. Potom V + W = R 4, neboť (x 1, x 2, x 3, x 4 ) = (x 1, x 2, x 3, x 1 x 2 x 3 ) + (0, 0, 0, x 1 + x 2 + x 3 + x 4 ) V + W. Definice Součet podprostorů V + W se nazývá direktní, jesliže V W = {o}. Direktní součet zapisujeme V W. Součet v příkladu není direktní, neboť (0, 1, 0, 1) V W. Věta Součet podprostorů V + W je direktní, právě když každý vektor u V + W lze psát ve tvaru u = v + w, v V, w W, právě jedním způsobem.

27 Věta o dimenzi součtu a průniku Předchozí tvrzení umožňuje definovat direktní součet více podprostorů takto: Definice Nechť k 2. Součet podprostorů V 1 + V V k je direktní, jestliže každý vektor u V 1 + V V k lze psát ve tvaru u = v 1 + v v k, v i V i, právě jedním způsobem. Příklad Nechť V = [v 1, v 2,..., v k ], W = [w 1, w 2,..., w l ]. Potom V + W = [v 1, v 2,..., v k, w 1, w 2,..., w l ]. Každý vektor z V + W je totiž součet k i=1 a iu i + l j=1 b jw j. Věta Nechť V a W jsou podprostory ve vektorovém prostoru U konečné dimenze nad K. Potom dim K V + dim K U = dim K (V U) + dim K (V + W ).

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Odpřednesenou látku naleznete v kapitole 3.1 skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitole 3.1 skript Abstraktní a konkrétní lineární algebra. Odpřednesenou látku naleznete v kapitole 3.1 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 14.10.2016: 1/13 Minulé přednášky 1 Lineární kombinace. 2 Definice lineárního

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra.

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra. Báze a dimense Odpřednesenou látku naleznete v kapitolách 3.1 3.3 a 3.6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 15.10.2015: Báze a dimense 1/19 Minulé přednášky 1 Lineární

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

6.1 Vektorový prostor

6.1 Vektorový prostor 6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0 Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

ftp://math.feld.cvut.cz/pub/olsak/linal/

ftp://math.feld.cvut.cz/pub/olsak/linal/ Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

z textu Lineární algebra

z textu Lineární algebra 2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008 Aritmetické vektory Martina Šimůnková Katedra aplikované matematiky 16. března 2008 Martina Šimůnková (KAP) Aritmetické vektory 16. března 2008 1/ 34 Úvod 1Úvod Definice aritmetických vektorů a operací

Více

Výběr báze. u n. a 1 u 1

Výběr báze. u n. a 1 u 1 Výběr báze Mějme vektorový prostor zadán množinou generátorů. To jest V = M, kde M = {u,..., u n }. Pokud je naším úkolem najít nějakou bázi V, nejpřímočařejším postupem je napsat si vektory jako řádky

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

6. Lineární nezávislost a báze p. 1/18

6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze 6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze p. 2/18 Lineární nezávislost a báze 1. Závislé a nezávislé vektory 2. Lineární kombinace a závislost

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n. 7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Lineární algebra : Vlastní čísla, vektory a diagonalizace Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je

Více

Lineární (ne)závislost

Lineární (ne)závislost Kapitola 6 Lineární (ne)závislost Také tuto kapitolu zahájíme základní definicí. Definice 6.1 Předpokládáme, že V je vektorový prostor nad tělesem T. Říkáme, že posloupnost vektorů x 1, x 2,..., x n prostoru

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

ALGEBRA A TEORETICKÁ ARITMETIKA. 1. část - Lineární algebra. doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc.

ALGEBRA A TEORETICKÁ ARITMETIKA. 1. část - Lineární algebra. doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc. ALGEBRA A TEORETICKÁ ARITMETIKA 1. část - Lineární algebra doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc. Obsah 1 Aritmetické vektory 2 1.1 Základní pojmy............................ 2 1.2

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Obsah 1 KOMPLEXNÍ ROZŠÍŘENÍ PROSTORU 7 1 Komplexní rozšíření vektorového prostoru........... 7 Komplexní rozšíření reálného afinního

Více

Datum sestavení dokumentu: 9. srpna Lineární algebra 1

Datum sestavení dokumentu: 9. srpna Lineární algebra 1 Datum sestavení dokumentu: 9 srpna 22 Lineární algebra L ubomíra Balková e-mail: lubomirabalkova@fjficvutcz Slovo na úvod: Abstraktnost, logická výstavba a univerzálnost lineární algebry jsou výhodami

Více

Lineární algebra : Úvod a opakování

Lineární algebra : Úvod a opakování Lineární algebra : Úvod a opakování (1. přednáška) František Štampach, Karel Klouda LS 013/014 vytvořeno: 19. února 014, 13:15 1 0.1 Lineární prostory R a R 3 V této přednášce si na jednoduchém příkladu

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

18. První rozklad lineární transformace

18. První rozklad lineární transformace Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 18. První rozklad lineární transformace Úmluva. Vtéto přednášce V je vektorový prostor

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Lineární Algebra I. Adam Liška 8. prosince 2014. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008

Lineární Algebra I. Adam Liška 8. prosince 2014. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008 Lineární Algebra I. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008 Adam Liška 8. prosince 2014 http://kam.mff.cuni.cz/~fiala http://www.adliska.com 1 Obsah 1 Soustavy lineárních

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

NAIVNÍ TEORIE MNOŽIN, okruh č. 5 NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla

Více

7 Ortogonální a ortonormální vektory

7 Ortogonální a ortonormální vektory 7 Ortogonální a ortonormální vektory Ze vztahu (5) pro výpočet odchylky dvou vektorů vyplývá, že nenulové vektory u, v jsou na sebe kolmé právě tehdy, když u v =0. Tato skutečnost nám poslouží k zavedení

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více