Elektřina a magnetizmus

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Elektřina a magnetizmus"

Transkript

1 Elektřina a magnetizmus Elektrický náboj Všechny věci kolem nás se skládají z atomů. Atom obsahuje jádro (tvořené protony a neutrony) a obal tvořený elektrony. Protony a elektrony jsou částice elektricky nabité, neutron je částice elektricky neutrální (bez náboje). Proton má kladný elektrický náboj a elektron stejně velký záporný elektrický náboj. Velikost náboje je u těchto částic velice malá Q = 1, C. Elektrický náboj se značí: Q Jednotka je: C (coulomb) elektrony kladně nabité jádro tvořené protony a neutrony Počet elektronů v obalu neutrálního atomu je stejný jako počet protonů v jádru atomu. Záporný elektrický náboj obalu je tedy stejně velký jako kladný elektrický náboj jádra atomu. Říkáme, že atom je elektricky neutrální. Elektrování těles Při elektrování těles dochází k přechodu elektronů mezi tělesy. Těleso s přebytkem elektronů je nabité záporně (záporný iont aniont) a těleso s nedostatkem elektronů je nabité kladně (kladný iont kationt). Souhlasně nabitá tělesa se odpuzují a nesouhlasně nabitá tělesa se přitahují.

2 Elektrické pole Elektrické pole je kolem každého zelektrovaného tělesa a můžeme je znázornit pomocí elektrických siločar. V elektrickém poli se projevují přitažlivé a odpudivé síly. Velikost těchto síl závisí na velikosti elektrického náboje těles a na jejich vzájemné vzdálenosti. elektrické pole kolem protonu elektrické pole kolem elektronu Elektrické pole mezi kladným a záporným nábojem Stejnorodé elektrické pole Elektroskop Elektroskop je přístroj určený k měření velikosti elektrického náboje. Při dotyku kovové desky elektroskopu zelektrovaným tělesem se vychýlí otočná ručička, která je odpuzována od souhlasně nabité nehybné tyčky. Výchylka je tím větší, čím větší je náboj.

3 Elektrické napětí Elektrické napětí je mezi tělesy s opačnými náboji. Jeho velikost můžeme měřit voltmetrem, který zapojujeme do obvodu vždy paralelně. Elektrické napětí se značí: U Jednotka je: V (volt) Chemické zdroje elektrického napětí 1. Galvanický článek Elektromotorické napětí na galvanickém článku vzniká důsledkem chemických reakcí mezi elektrodami a elektrolytem. Po zapojení článku do elektrického obvodu probíhají uvnitř článku reakce, kterými se postupně snižuje elektrická energie uložená v článku, článek se vybíjí. Galvanický článek je vždy zdroj stejnosměrného proudu. Je proto třeba před zapojením zkontrolovat správnou polaritu elektrod. Složení galvanických článků Vhodnými a nejčastěji používanými látkami pro zápornou elektrodu jsou zinek, kadmium, lithium a hydridy různých kovů, pro kladnou elektrodu uhlík, nikl a stříbro. Jako elektrolyt se používá v suchých článcích a olověném akumulátoru roztok kyselin nebo jejich solí. Galvanické články se používají nejčastěji v přenosných elektrických spotřebičích (svítilnách, hodinkách, mobilních telefonech, přenosných počítačích a fotoaparátech). Výhodou galvanických článků je snadná údržba, malé rozměry a nízká hmotnost. Nevýhodou může být nízké napětí, malý výkon a krátká životnost. 2. Akumulátor Elektrochemický akumulátor je zařízení na opakované uchovávání elektrické energie. Využívají přeměnu elektrické energie na energii chemickou, kterou je možno v případě potřeby přeměnit zpět na elektrickou energii. Mezi nejpoužívanější akumulátory patří Olověný (Pb), Nikl-kadmiový (NiCd), Nikl-metal hydridový (NiMH) a Lithium-iontový (Liion). Životnost většiny elektrochemických akumulátorů se pohybuje řádově ve stovkách nabíjecích/vybíjecích cyklů (NiMH akumulátory cyklů). Po tuto dobu postupně klesá kapacita akumulátoru kvůli chemické korozi jeho elektrod. Životnost je značně ovlivněna způsobem vybíjení a nabíjení a také provozní teplotou. Akumulátory se využívají jako zdroj energie v elektronice (mobilní telefony, notebooky) i v různých strojích (malé ponorky, elektromobily).

4 3. Olověný akumulátor Nejčastěji se používají v automobilech jako zdroj elektrické energie. Jedná se o chemický zdroj elektrické energie. Autobaterie je sestavena z článků, každý má napětí přibližně 2,1 V, které jsou umístěny v plastové nádobě. Každý článek se skládá z deskových elektrod (kladná elektroda z PbO 2, záporná elektroda z houbovitého olova) a elektrolytu (obvykle H 2 SO 4 + H 2 O). Olovo se používá v akumulátoru kvůli schopnosti dodat najednou velký proud, bez poškození, to je vhodné například při startování motoru automobilu. Elektrický proud Elektrický proud v kovech je usměrněný pohyb elektronů. Jeho velikost můžeme měřit ampérmetrem, který zapojujeme v obvodu do série. Elektrický proud se značí: I Jednotka je: A (ampér) I = Q / t Q elektrický náboj t čas Elektrický odpor Elektrický odpor je veličina charakterizující schopnost látky vést elektrický proud. Hodnota elektrického odporu je dána materiálem, tvarem i teplotou vodiče. Odpor vodičů se vzrůstající délkou stoupá. Naopak odpor vodiče je tím menší, čím větší je plocha jeho příčného průřezu. Velikost elektrického odporu měříme ohmmetrem. Elektrický odpor se značí: R Jednotka je: Ω (ohm) R = ρ. l / S ρ - rezistivita l délka S plocha příčného průřezu V praxi je často potřeba v obvodu dosáhnout určitého proudu při daném napětí. K těmto účelům se požívá rezistor. Rezistor je součástka, která má určitý odpor. schematická značka rezistoru Rezistory se vyrábí z drátu (nejčastěji ze slitiny niklu, chrómu, železa a manganu) který je navinut do šroubovice na porcelánový váleček. Menší rezistory se vyrábí nanášením tenkých vrstev grafitu na izolační podložku.

5 Reostat, dělič napětí (potenciometr) Reostat je rezistor, jehož odpor je možné měnit. Můžeme jej používat ke změně proudu v obvodu, nebo jako dělič napětí. Vodivost pevných látek Vodiče jsou látky, které vedou elektrický proud. Mezi tyto látky patří železo, zlato, stříbro, hliník a měď. Elektrický proud vedou díky tomu, že mají dostatek volných elektronů. Nevodiče jsou látky, které nevedou elektrický proud, protože nemají dostatek volných elektronů. Mezi ně patří guma, plast, dřevo a vzduch. Vodivost kapalin Elektrický proud v kapalinách je usměrněný tok iontů. Čistá voda je nevodivá, ale po přidání příměsí (NaCl - kuchyňská sůl) se stává vodivou. Rozpuštěním NaCl ve vodě dochází k uvolňování iontů, které se podílejí na vodivosti kapaliny. Kladné ionty sodíku jsou přitahovány k záporné elektrodě a záporné ionty chlóru jsou přitahovány ke kladné elektrodě. V kapalině dochází k usměrněnému pohybu elektrických nábojů, roztokem prochází elektrický proud. Vodivost plynů Vedení elektrického proudu v plynech je způsobeno volnými elektrony a ionty. Aby byl vzduch vodivý, musíme jej ionizovat zahřáním, nebo ultrafialovým zářením.

6 Plazmová koule Elektrodový výboj v plazmové kouli je napájen střídavým proudem o frekvenci khz a napětím 2-5 kv. Má přitom jen nízkou proudovou intenzitu, takže nám neublíží. Poměrně silně však vyzařuje do okolí parazitní frekvence v rádiovém spektru. Díky tomu ruší příjem rádia a televize a působí problém počítačům. Také úsporné žárovky, nebo zářivky se při přiblížení k zapnuté plazmové kouli rozsvítí. Barva výboje v kouli se liší podle použitého plynu. Koule plněná čistým heliem září jen nevýrazně modře. Nejběžnější plazmové koule jsou plněny směsí neonu a xenonu. K ionizaci plynů v kouli dochází přeskoky a nárazy elektronů, které jsou elektrickým polem mezi sklem a centrální elektrodou urychlovány. Jakmile rychlost elektronů dosáhne několika stovek m/s, roztříští nárazem do atomů jejich elektronové obaly a dojde k uvolnění dalších elektronů. Ty při návratu zpět k atomům vyzáří energii v podobě světla. Pokud k povrchu plazmové koule přiložíme prst, tak se provazce plazmy v daném místě spojí do jediného, protože tím pro elektrický proud vznikne nejkratší možná cesta uzavírající elektrický obvod. Ionty plynu jsou však nabité a odpuzují se, takže jakmile prst oddálíme, zaujmou vzájemnou polohu uvnitř koule tak, aby se k sobě přibližovali co nejméně. Ohmův zákon Elektrický proud procházející kovovým vodičem, na jehož konci je stejné napětí, je nepřímo úměrný odporu vodiče. Tuto závislost (Ohmův zákon) vyjádříme vztahem I = U / R I elektrický proud (A) U elektrické napětí R elektrický odpor (V) (Ω) Úprava vzorečku: I = U / R U = R. I R = U / I

7 Sériové zapojení rezistorů Sériové zapojení je zapojení elektrotechnických součástek v elektrickém obvodu za sebou. Elektrický proud I je ve všech místech sériového obvodu stejný. Elektrické napětí mezi svorkami jednotlivých součástek (U1, U2, U3) je různé a součet všech těchto napětí je roven napětí U na svorkách zdroje. U = U 1 + U 2 + U 3 Celkový elektrický odpor v sériovém obvodu se rovná součtu odporů jednotlivých součástek. R C = R 1 + R 2 + R 3 Přerušení sériového obvodu v kterémkoli místě má za následek přerušení celého obvodu. Paralelní zapojení rezistorů Paralelní zapojení je zapojení elektrotechnických součástek v elektrickém obvodu vedle sebe. Elektrické napětí U mezi dvěma uzly je stejné pro všechny větve. Elektrický proud procházející jednotlivými větvemi (I 1, I 2, I 3 ) je různý a závisí na odporu součástek ve větvích. Součet těchto proudu je roven celkovému proudu I v obvodu. I = I 1 + I 2 + I 3 Celkový elektrický odpor v paralelním obvodu se vypočítá: 1 / R C = 1 / R / R / R 3 Příkladem paralelního obvodu je současné zapojení více spotřebičů v domácnosti, protože přerušením obvodu v některé větvi (vypnutí spotřebiče) se nepřeruší obvod v jiné větvi (jiný spotřebič funguje dál).

8 Měření elektrického napětí a proudu Elektrické napětí měříme voltmetrem (V), který zapojujeme do obvodu paralelně. Elektrický proud měříme ampérmetrem (A), v obvodu je zapojen do série. V současnosti se pro měření proudu a napětí používají digitální měřicí přístroje, multimetry. Výkon elektrického proudu Výkon elektrického proudu vypočítáme jako součin napětí na spotřebiči a proudu, který spotřebičem protéká. Výkon elektrického proudu se značí: P Jednotka je: W (watt) P = U. I U elektrické napětí I elektrický proud Elektrický příkon Elektrický příkon je výkon elektrického proudu, který potřebuje spotřebič ke své činnosti. Bývá udán na elektrických spotřebičích společně s napětím, pro které je spotřebič určen. Příkon některých spotřebičů: - kalkulačka 0,001 W - úsporná žárovka 10 W - žárovka 100 W - televizor 150 W - notebook 360 W - žehlička, vařič W Elektrická energie Je to energie přeměněná elektrickým spotřebičem na práci nebo na jiný druh energie. Elektrickou energii vypočítáme jako součin elektrického napětí, proudu a času. Elektrická energie se značí: E Jednotka je: kwh (kilowatthodina) E = U. I. t U elektrické napětí I elektrický proud t čas Elektrická energie odebraná z elektrické sítě spotřebičem se měří elektroměrem.

9 Elektromagnet Elektromagnet se používá k vytváření dočasného magnetického pole. Skládá se z cívky a železného jádra, které zesiluje účinky magnetického pole. Když cívkou prochází elektrický proud, vzniká kolem ní magnetické pole. V tomto poli jsou přitahovány všechny kovové předměty. Elektromagnet je používán např. v elektrickém zvonku, v jističích, v hutním průmyslu nebo ve sběrnách kovového šrotu. Elektromagnetická indukce Změnou magnetického pole v okolí cívky se v cívce indukuje elektrické napětí a v uzavřeném obvodu prochází indukovaný proud. Směr proudu je závislý na směru změny magnetického pole a na orientaci pólů magnetu vůči cívce. Velikost indukovaného napětí závisí na rychlosti změny magnetického pole. Elektromotor Elektromotor je zařízení, které přeměňuje elektrickou energii na mechanickou. Používá se například ve spotřební elektronice, elektromobilech, elektrických lokomotivách, elektrických vrtačkách a pilách.

10 Elektromotor má vždy dvě části: stator a rotor. Stator je nehybná (pevná) část elektromotoru a jsou v něm cívky, které vytváří magnetické pole. Toto magnetické pole působí na rotor (otáčivá část elektromotoru), který je tvořený trvalým magnetem nebo elektromagnetem. Působením magnetického pole se jednotlivé části rotoru přitahují k nesouhlasně zmagnetovaným částem statoru a odpuzují se od jeho souhlasně zmagnetovaných částí. Konstrukce elektromotoru umožňuje neustále měnit magnetické póly ve statoru a proto se rotor otáčí. Transformátor Transformátor je elektrický netočivý stroj, který umožňuje přenášet elektrickou energii z jednoho obvodu do jiného pomocí elektromagnetické indukce. Používá se většinou pro přeměnu střídavého napětí (z nízkého napětí na vysoké a naopak) nebo pro galvanické oddělení obvodů. Transformátor se skládá ze dvou vinutí (cívek), primární (vstupní) cívky a sekundární (výstupní) cívky. Střídavý proud v primární cívce vytváří proměnlivé magnetické pole, které v sekundární cívce vyvolá vznik indukovaného napětí. Pro poměr napětí na primární a sekundární cívce platí: U 2 / U 1 = N 2 / N 1 U 1 primární (vstupní) napětí U 2 sekundární (výstupní) napětí N 1 počet závitů v primární cívce N 2 počet závitů v sekundární cívce

11 Pro poměr proudu v primární a sekundární cívce platí: U 1 / U 2 = I 2 / I 1 Polovodiče Polovodiče jsou látky, které jsou za určitých podmínek vodivé. Polovodiče dělíme : - vlastní polovodiče (Ge, Si) - příměsové U 1 primární (vstupní) napětí U 2 sekundární (výstupní) napětí I 1 proud v primární cívce I 2 proud v sekundární cívce Vlastní polovodiče Za normálních okolností jsou nevodivé, ale se zvyšující se teplotou se stávají vodivé. Elektrony ve vlastním polovodiči jsou za normální teploty pevně vázány k atomu a podílejí se na vzájemné vazbě se sousedními atomy. Za těchto okolností nemohou přenášet elektrický náboj a látkou nemůže procházet elektrický proud. Při zvýšení teploty se valenční elektrony uvolní z vazeb a mohou se volně pohybovat v látce. Tyto elektrony se pak podílí na vodivosti. Vlastní polovodiče se používají k výrobě termistorů. Příměsové polovodiče Příměsové polovodiče vzniknou přidáním některého prvku do vlastního polovodiče. Dělíme je: - polovodiče typu P - polovodiče typu N Polovodič typu N Polovodič typu N vznikne přidáním arsenu (As) do křemíku (Si). Křemík má 4 valenční elektrony, které se podílejí na vazbě mezi atomy. Nahradíme-li atom křemíku atomem arsenu, který má 5 valenčních elektronů, objeví se ve struktuře jeden volný elektron. Tento elektron se může podílet na vodivosti polovodiče. Polovodič typu P Polovodič typu P vznikne přidáním india (In) do křemíku (Si). Křemík má 4 valenční elektrony, které se podílejí na vazbě mezi atomy. Nahradíme-li atom křemíku atomem india, které má 3 valenčních elektronů, je jeden elektron křemíku neobsazený, vzniká zde díra. Tuto díru může zaplnit elektron ze sousední vazby, ale to neznamená nic jiného, než že se díra objeví na jiném místě. Protože tato díra vzniká přemisťováním elektronů, je tato látka také vodivá.

12 Přechod P-N Dáme-li vedle sebe polovodič typu P a polovodič typu N vznikne přechod P-N. Tento přechod vede elektrický proud jen v propustném směru. To znamená, že pokud k polovodiči typu P připojíme kladnou svorku zdroje a k polovodiči typu N zápornou svorku zdroje je přechod P-N vodivý. Při opačném zapojení P-N přechod elektrický proud nevede. Přechod PN se používá u moderních polovodičových součástek jako je dioda, tranzistor, integrovaný obvod a mikroprocesor. P-N přechod: a) v propustném směru b) v závěrném směru Polovodičová dioda Polovodičová dioda je nejjednodušší součástka s PN přechodem. Dioda vede elektrický proud pouze v propustném směru. V závěrném směru je dioda nevodivá. Toho se využívá například při přeměně střídavého napětí na stejnosměrné. Volt ampérová charakteristika polovodičové diody. Tranzistor PNP NPN Tranzistor je polovodičová součástka, kterou tvoří dvojice přechodů PN. Je základem všech dnešních integrovaných obvodů, procesorů a pamětí. Základní vlastností tranzistoru je schopnost zesilovat elektrický signál - malé změny napětí nebo proudu na vstupu mohou vyvolat velké změny napětí nebo proudu na výstupu. Podle principu činnosti se tranzistory dělí na bipolární a unipolární. Každý tranzistor má (nejméně) tři elektrody, které se u bipolárních tranzistorů označují jako kolektor, báze a emitor, u unipolárních jako drain, gate a source. Podle uspořádání použitých polovodičů

13 se rozlišují dva typy bipolárních tranzistorů, NPN a PNP (prostřední písmeno odpovídá bázi). Unipolární tranzistory jsou označovány jako N-FET nebo P-FET. Integrovaný obvod Integrovaný obvod je moderní elektronická součástka. Jedná se o spojení (integraci) mnoha jednoduchých elektrických součástek (rezistorů, kondenzátorů, cívek, diod a tranzistorů), které společně tvoří elektrický obvod vykonávající nějakou složitější funkci. Integrované obvody dělíme na monolitické a hybridní. V dnešní době mají největší využití monolitické integrované obvody. Jejich jednotlivé součástky jsou vytvořeny a vzájemně spojeny na jediné polovodičové, nejčastěji křemíkové, destičce. Mikroprocesor Procesor je základní součást počítače, která vykonává strojový kód spuštěného počítačového programu. Ten je složen z jednotlivých instrukcí (příkazů), které jsou uloženy v operační paměti počítače. Procesory prvních počítačů se skládaly z obvodů obsahujících množství tzv. diskrétních součástek (elektronek nebo tranzistorů, rezistorů a kondenzátorů). Počátkem 70. let 20. století započala miniaturizace procesorů. Nejprve byly složeny z několika desítek nebo stovek integrovaných obvodů. V současné době obsahuje procesor miliony základních stavebních součástek na křemíkové destičce, která je umístěna v kompaktním pouzdře. Dělení procesorů podle délky operandu v bitech Základní vlastností procesoru je počet bitů, tj. šířka operandu, který je procesor schopen zpracovat v jednom kroku. Dá se říci, že např. 8bitový procesor umí přímo počítat s čísly od 0 do 255, 16bitový s čísly od 0 do atd. Pro velmi jednoduché aplikace se používají 4bitové nebo 8bitové procesory. To platí například pro zabudované systémy např. v mikrovlnných troubách, kalkulačkách, počítačových klávesnicích a infračervených dálkových ovládání. Pro středně složité aplikace, jako jsou programovatelné automaty, jednoduché mobilní telefony, PDA nebo přenosné videohry se používají zpravidla 8bitové nebo 16bitové procesory. Současné osobní počítače již většinou obsahují vícejádrové 64bitové procesory. Starší osobní počítače, laserové tiskárny, mobilní telefony střední a vyšší třídy a jiná komplikovaná zařízení většinou obsahují 32bitové procesory.

14 Výroba elektrické energie Tepelná elektrárna Elektrická energie se získává z tepla, které vzniká spalováním fosilních paliv (uhlí, ropy a zemního plynu). Vzniklé teplo ohřívá vodu na teplotu varu a vzniklá pára pohání lopatky turbíny, ke které je připojen elektrický generátor. Ten vyrábí elektrickou energii, která je dodává do rozvodné sítě. Nevýhodou tepelné elektrárny je velké množství zplodin, které vznikají při spalování fosilních paliv a jsou vypouštěny do ovzduší. Jaderná elektrárna Jaderná elektrárna je velice podobná elektrárně tepelné, jen s tím rozdílem, že kotel je nahrazen jaderným reaktorem a parogenerátorem. V jaderném reaktoru dochází ke štěpení jader uranu a vzniklé teplo se využívá k ohřevu vody primárního okruhu. Přehřátá voda s velkým tlakem vyrábí páru v parogenerátoru a ta následně pohání lopatky turbíny. K turbíně je připojen elektrický generátor, který vyrábí elektrickou energii. Nevýhodou jaderných elektráren je jaderný odpad, který vzniká při štěpení uranu. Ten je velice nebezpečný a proto je třeba jej uchovávat po dlouhou dobu ve speciálních kontejnerech umístěných v meziskladu vyhořelého jaderného paliva.

15 Vodní elektrárny Vodní elektrárny jsou většinou součástí přehrad, které se staví v údolí větších řek. Voda vytékající tlakovým přivaděčem z nádrže přehrady roztáčí díky své kinetické energii turbínu, která je spojena s elektrickým generátorem. Ten vyrábí elektrickou energii, která je dodávána do elektrické sítě. Sluneční (solární) elektrárny Sluneční elektrárny přeměňují sluneční energii na energii elektrickou pomocí slunečních baterií. Ty jsou tvořeny křemíkovými destičkami, na kterých vzniká při osvícení malé elektrické napětí. Protože vzniklé napětí je velmi malé, jsou destičky zapojeny do série. Velkou nevýhodou slunečních elektráren je, že nepracují stále. Při špatném počasí je vyráběná energie velmi malá, v noci nepracují vůbec. Větrné elektrárny Větrné elektrárny využívají k výrobě elektrické energie sílu větru. Ten roztáčí vrtule elektrárny, na které je připojen elektrický generátor. Podobně jako solární elektrárny mají i větrné nevýhodu v tom, že nepracují stále. Když fouká slabý vítr, je dodávaná elektrická energie velice malá, při bezvětří nepracují vůbec.

16 Použité zdroje a literatura:

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

3. Elektrický náboj Q [C]

3. Elektrický náboj Q [C] 3. Elektrický náboj Q [C] Atom se skládá z neutronů, protonů a elektronů. Elektrony mají záporný náboj, protony mají kladný náboj a neutrony jsou bez náboje. Protony jsou společně s neutrony v jádře atomu

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

Elektřina a magnetizmus rozvod elektrické energie

Elektřina a magnetizmus rozvod elektrické energie DUM Základy přírodních věd DUM III/2-T3-19 Téma: rozvod elektrické energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus rozvod

Více

Zdroje elektrického napětí

Zdroje elektrického napětí Anotace Učební materiál EU V2 1/F15 je určen k výkladu učiva zdroje elektrického napětí fyzika 8. ročník. UM se váže k výstupu: žák uvede hlavní jednotku elektrického napětí, její násobky a díly Zdroje

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z

Více

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny.

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny. Psaní testu Pokyny k vypracování testu: Za nesprávné odpovědi se poměrově odečítají body. Pro splnění testu je možné využít možnosti neodpovědět maximálně u šesti o tázek. Doba trvání je 90 minut. Způsob

Více

Elektrotechnika - test

Elektrotechnika - test Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Elektrotechnika

Více

Předmět: Ročník: Vytvořil: Datum:

Předmět: Ročník: Vytvořil: Datum: Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 7. 203 Ele stejnosměrný proud (Ohmův zákon, řazení odporů, elektrická práce, výkon, účinnost, Kirchhofovy

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více

Plán doučování z fyziky kvarta Učebnice: Fyzika 9 učebnice pro základní školy a víceletá gymnázia Nakladatelství Fraus 2007

Plán doučování z fyziky kvarta Učebnice: Fyzika 9 učebnice pro základní školy a víceletá gymnázia Nakladatelství Fraus 2007 Plán doučování z fyziky kvarta Učebnice: Fyzika 9 učebnice pro základní školy a víceletá gymnázia Nakladatelství Fraus 2007 1. pololetí Elektrodynamika - magnetická a elektromagnetická indukce - generátory

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

23-41-M/01 Strojírenství. Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009

23-41-M/01 Strojírenství. Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009 Učební osnova vyučovacího předmětu elektrotechnika Obor vzdělání: 23-41-M/01 Strojírenství Délka a forma studia: 4 roky, denní studium Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009 Pojetí

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_2_Elektrický proud v kovech Ing. Jakub Ulmann 1 Elektrický proud a jeho vlastnosti 1.1 Elektrický proud

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Garant přípravného studia: Střední průmyslová škola elektrotechnická a ZDVPP, spol. s r. o. IČ: 25115138 Učební osnova: Základní

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek Fyzika 6. ročník Očekávaný výstup Školní výstup Učivo Mezipředmětové vztahy, průřezová témata Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí.

Více

Historie elektromobil ekonal jako první v z na sv v roce 1899 hranici 100 km/h

Historie elektromobil ekonal jako první v z na sv v roce 1899 hranici 100 km/h Elektromobily Historie Za nejstarší elektromobil je uváděn elektrický vozík Skota Roberta Andersona sestrojený mezi lety 1832-1839. Vznik opravdové tržní nabídky se však např. v USA datuje až k roku 1893,

Více

14. ELEKTRICKÉ TEPLO. Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava

14. ELEKTRICKÉ TEPLO. Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava 14. ELEKTRICKÉ TEPLO Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 Osnova přednp ednášky Úvod, výhody, zdroje Elektrické odporové a obloukové pece Indukční a dielektrický ohřev Elektrický

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá ČLOVĚK A PŘÍRODA FYZIKA 8. JOSKA Pohybová a polohová energie Přeměna polohové a pohybové energie

vzdělávací oblast vyučovací předmět ročník zodpovídá ČLOVĚK A PŘÍRODA FYZIKA 8. JOSKA Pohybová a polohová energie Přeměna polohové a pohybové energie Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky Uvede hlavní jednotky práce a výkonu, jejich díly a násobky

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

Elektrický proud v kapalinách

Elektrický proud v kapalinách Elektrický proud v kapalinách Kovy obsahují volné (valenční) elektrony a ty způsobují el. proud. Látka se chemicky nemění (vodiče 1. třídy). V polovodičích volné náboje připravíme uměle (teplota, příměsi,

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Měření délky Jak se nazývá základní jednotka délky? Jaká délková měřidla používáme k měření rozměrů a) knihy b) okenní tabule c) třídy.. d) obvodu svého pasu.. Jaké díly a násobky

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Obrázek a/struktura atomů čistého polovodičeb/polovodič typu N

Obrázek a/struktura atomů čistého polovodičeb/polovodič typu N POLOVODIČE Vlastnosti polovodičů Polovodiče jsou materiály ze 4. skupiny Mendělejevovy tabulky. Nejznámější jsou germanium (Ge) a křemík (Si). Každý atom má 4 vazby, pomocí kterých se váže na sousední

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Bc. Josef Mahdal Střední průmyslová škola Uherský Brod, 2010

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Diody a usměrňova ovače Přednáška č. 2 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Diody a usměrňova ovače 1 Voltampérová charakteristika

Více

Rozdělení transformátorů

Rozdělení transformátorů Rozdělení transformátorů Druh transformátoru Spojovací Pojízdné Ohřívací Pecové Svařovací Obloukové Rozmrazovací Natáčivé Spouštěcí Nevýbušné Oddělovací/Izolační Bezpečnostní Usměrňovačové Trakční Lokomotivní

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 503 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 21. 3. 2012 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

Elektrické vlastnosti látek

Elektrické vlastnosti látek Elektrické vlastnosti látek A) Výklad: Co mají popsané jevy společného? Při česání se vlasy přitahují k hřebenu, polyethylenový sáček se nechce oddělit od skleněné desky, proč se nám lepí kalhoty nebo

Více

1 Jednoduchý reflexní přijímač pro střední vlny

1 Jednoduchý reflexní přijímač pro střední vlny 1 Jednoduchý reflexní přijímač pro střední vlny Popsaný přijímač slouží k poslechu rozhlasových stanic v pásmu středních vln. Přijímač je napájen z USB portu počítače přijímaný signál je pak připojen na

Více

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů G Gymnázium Hranice Přírodní vědy

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

Bipolární tranzistory. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

Bipolární tranzistory. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

Tematické okruhy průřezových témat zařazené do předmětu fyzikální praktika

Tematické okruhy průřezových témat zařazené do předmětu fyzikální praktika Vzdělávací oblast Člověk a příroda Vyučovací předmět Fyzikální praktika Charakteristika předmětu Obor, vzdělávací oblasti Člověk a příroda, Fyzika, jehož součástí je předmět Fyzikální praktika, svým činnostním

Více

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce 6 ČLOVĚK A PŘÍRODA UČEBNÍ OSNOVY 6. 1 Fyzika Časová dotace 6. ročník 1 hodina 7. ročník 2 hodiny 8. ročník 2 hodiny 9. ročník 2 hodiny Celková dotace na 2. stupni je 7 hodin. Charakteristika: Fyzika navazuje

Více

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles 6.ročník Výstupy Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles určí, zda je daná látka plynná, kapalná či pevná, a popíše rozdíl ve vlastnostech správně používá pojem

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

1.1 Usměrňovací dioda

1.1 Usměrňovací dioda 1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru

Více

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze ZDROJE A PŘEMĚNY ENERGIE JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze Formy energie Energie rozdělení podle působící síly omechanická energie Kinetická (Pohybová) Potenciální

Více

3. Maturitní otázka PC komponenty 1. Počítačová skříň 2. Základní deska

3. Maturitní otázka PC komponenty 1. Počítačová skříň 2. Základní deska 3. Maturitní otázka Počítač, jeho komponenty a periferní zařízení (principy fungování, digitální záznam informací, propojení počítače s dalšími (digitálními) zařízeními) Počítač je elektronické zařízení,

Více

Solární dům. Vybrané experimenty

Solární dům. Vybrané experimenty Solární dům Vybrané experimenty 1. Závislost U a I na úhlu osvitu stolní lampa, multimetr a) Zapojíme články sériově. b) Na výstup připojíme multimetr. c) Lampou budeme články nasvěcovat pod proměnlivým

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření hodnoty ph a vodivosti

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Elektrický

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

Elektrolýza Ch_022_Chemické reakce_elektrolýza Autor: Ing. Mariana Mrázková

Elektrolýza Ch_022_Chemické reakce_elektrolýza Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

CZ.1.07/1.1.30/01,0038

CZ.1.07/1.1.30/01,0038 Jitka oubalová Elektrotechnika Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost Z..7/../,8 Automatizace výrobních procesů ve strojírenství a řemeslech Střední průmyslová škola

Více

T03 Voda v anorganické chemii e-learning pro žáky

T03 Voda v anorganické chemii e-learning pro žáky T03 Voda v anorganické chemii e-learning pro žáky Elektrochemie Protože redoxní reakce jsou děje spojené s přenosem elektronů z redukčního činidla, které elektrony odevzdává, na oxidační činidlo, které

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: ELEKTŘINA A MAGNETISMUS FYZIKA JANA SUCHOMELOVÁ 01 - Elektrické pole elektrická síla

Více

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru.

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru. Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz;

Více

5.6 ČLOVĚK A PŘÍRODA. 5.6.1. Fyzika

5.6 ČLOVĚK A PŘÍRODA. 5.6.1. Fyzika 5.6 ČLOVĚK A PŘÍRODA Vzdělávací oblast Člověk a příroda zahrnuje okruh problémů spojených se zkoumáním přírody. Poskytuje žákům prostředky a metody pro hlubší porozumění přírodním faktům a jejich zákonitostem.

Více

VÝKON ELEKTRICKÉHO SPOTŘEBIČE

VÝKON ELEKTRICKÉHO SPOTŘEBIČE Mateřská škola, Základní škola a Dětský domov, Ivančice VÝKON ELEKTRICKÉHO SPOTŘEBIČE Autor: PaedDr. Miroslava Křupalová III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Vzdělávací oblast: Člověk

Více

Dioda jako usměrňovač

Dioda jako usměrňovač Dioda A K K A Dioda je polovodičová součástka s jedním P-N přechodem. Její vývody se nazývají anoda a katoda. Je-li na anodě kladný pól napětí a na katodě záporný, dioda vede (propustný směr), obráceně

Více

Elektrotechnika. Bc. Mgr. Roman Hodslavský. Elektronická učebnice

Elektrotechnika. Bc. Mgr. Roman Hodslavský. Elektronická učebnice Elektrotechnika Elektronická učebnice Bc. Mgr. Roman Hodslavský Tento materiál byl vytvořen v rámci projektu CZ..07/..07/03.007 Tvorba elektronických učebnic O B S A H Přehled fyzikálních veličin a symbolů...

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více

MĚŘENÍ ELEKTRICKÉHO NAPĚTÍ

MĚŘENÍ ELEKTRICKÉHO NAPĚTÍ ZÁKLADY ELEKTROTECHNIKY pro 1. ročníky tříletých učebních oborů MĚŘENÍ ELEKTRICKÉHO NAPĚTÍ Ing. Arnošt Kabát červenec 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

4. Výboje v plynech. 4.1. Jiskrový výboj

4. Výboje v plynech. 4.1. Jiskrový výboj 4. Výboje v plynech Plyny jsou za obvyklých podmínek nevodivé. Ionizujeme-li je, stanou se prostřednictvím kladných iontů a elektronů vodivými a pokud se nacházejí v elektrickém poli, vzniká elektrický

Více

NÍZKOFREKVENČNÍ GENERÁTOR BG3

NÍZKOFREKVENČNÍ GENERÁTOR BG3 NÍZKOFREKVENČNÍ GENERÁTOR BG3 Popis a provoz zařízení bg3 Jiří Matějka, Čtvrtky 702, Kvasice, 768 21, e-mail: podpora@wmmagazin.cz Obsah: 1. Určení výrobku 2. Technické parametry generátoru 3. Indikační

Více

5. Materiály pro MAGNETICKÉ OBVODY

5. Materiály pro MAGNETICKÉ OBVODY 5. Materiály pro MAGNETICKÉ OBVODY Požadavky: získání vysokých magnetických kvalit, úspora drahých kovů a náhrada běžnými materiály. Podle magnetických vlastností dělíme na: 1. Diamagnetické látky 2. Paramagnetické

Více

Základní poznatky o vedení elektrického proudu, základy elektroniky

Základní poznatky o vedení elektrického proudu, základy elektroniky Pedagogická fakulta Masarykovy univerzity Katedra technické a informační výchovy Základní poznatky o vedení elektrického proudu, základy elektroniky PaedDr. Ing. Josef Pecina, CSc. Mgr. Pavel Pecina, Ph.D.

Více

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 žák řeší úlohy na vztah pro okamžitou výchylku kmitavého pohybu, určí z rovnice periodu frekvenci, počáteční fázi kmitání vypočítá periodu a

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

Fyzika úprava platná od 1. 9. 2009

Fyzika úprava platná od 1. 9. 2009 Fyzika úprava platná od 1. 9. 2009 Charakteristika vyučovacího předmětu Vzdělávací oblast Člověk a příroda je realizována ve vyučovacím předmětu Fyzika. Navazuje na předměty 1. stupně - prvouku a přírodovědu.

Více

Tematický plán učiva z fyziky pro 6. ročník na školní rok 2012-2013

Tematický plán učiva z fyziky pro 6. ročník na školní rok 2012-2013 Tematický plán učiva z fyziky pro 6. ročník na školní rok 2012-2013 Měsíc: Září Učivo: Látka a těleso Co nás obklopuje Z čeho se tělesa skládají Skupenství látek Atomy a molekuly Opakování a shrnutí Dovede

Více

PODPORA ELEKTRONICKÝCH FOREM VÝUKY

PODPORA ELEKTRONICKÝCH FOREM VÝUKY I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í PODPORA ELEKTRONICKÝCH FOREM VÝUKY CZ.1.07/1.1.06/01.0043 Tento projekt je financován z prostředků ESF a státního rozpočtu ČR. SOŠ informatiky a

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 17. 4. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 24

Více

A. Obsahové, časové a organizační vymezení vyučovacího předmětu

A. Obsahové, časové a organizační vymezení vyučovacího předmětu 5.6.1 Fyzika (F) 5.6.1.1 Charakteristika vyučovacího předmětu Fyzika A. Obsahové, časové a organizační vymezení vyučovacího předmětu Vyučovací předmět Fyzika vede žáky k hledání a poznávání fyzikálních

Více

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky 6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu zdroje

Více

6.10 Fyzika. Člověk a příroda VZDĚLÁVACÍ OBLAST : Fyzika VZDĚLÁVACÍ OBOR: VYUČOVACÍ PŘEDMĚT: CHARAKTERISTIKA PŘEDMĚTU:

6.10 Fyzika. Člověk a příroda VZDĚLÁVACÍ OBLAST : Fyzika VZDĚLÁVACÍ OBOR: VYUČOVACÍ PŘEDMĚT: CHARAKTERISTIKA PŘEDMĚTU: VZDĚLÁVACÍ OBLAST : VZDĚLÁVACÍ OBOR: VYUČOVACÍ PŘEDMĚT: CHARAKTERISTIKA PŘEDMĚTU: Člověk a příroda Fyzika 6.10 Fyzika Vyučovací předmět Fyzika je jedním z vyučovacích předmětů ŠVP (Fyzika, Chemie, Přírodopis,

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více