Průmyslové technologie III.

Rozměr: px
Začít zobrazení ze stránky:

Download "Průmyslové technologie III."

Transkript

1 Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Fakulta životního prostředí Průmyslové technologie III. Otakar Söhnel Miroslav Richter 1999

2 Autoři: Prof. Ing. Otakar Söhnel, DrSc. Ing. Miroslav Richter Recenzovali: Prof. Ing. Milan Kuchler, CSc. Doc. Ing. Ladislav Svoboda, CSc. FŽP UJEP Ústí nad Labem 1999 ISBN: ii

3 OBSAH PŘEDMLUVA ÚVOD DO PROBLEMATIKY ČISTŠÍ PRODUKCE VÝROBA KYSELINY SÍROVÉ Úvod Technologie výroby kyseliny sírové Kalcinační postupy Nitrosní postupy Kontaktní postup Další suroviny pro výrobu kyseliny sírové Sulfan Zpracování sirných rud a síranů Zředěná kyselina sírová Vybrané technicko hospodářské normy výrob kyseliny sírové Závěry VÝROBA KYSELINY DUSIČNÉ Úvod Historický vývoj výrobních postupů Rozklad chilského ledku Obloukový způsob Termický způsob Výroba NO katalytickou oxidací čpavku Vybrané THN vztažené na 1 t 100 %-ní kyseliny dusičné dle údajů firmy UHDE GmBH, SRN: Závěry TECHNOLOGIE SLOUČENIN FOSFORU Úvod Kyselina fosforečná Vlastnosti Výroba kyseliny fosforečné Termický proces Extrakční proces Odpady z výroby kyseliny fosforečné Fosforečnany Jednoduché fosforečnany Kondenzované fosforečnany Závěry TECHNOLOGIE VÝROBY AMONIAKU A AMONNÝCH SOLÍ Úvod Výroba amoniaku Příprava syntézního plynu Komprese syntézního plynu Syntéza amoniaku Zpracování odtahovaných plynů Výroba hlavních amonných sloučenin Dusičnan amonný Síran amonný Fosforečnany amonné Závěry KOMBINOVANÁ PRŮMYSLOVÁ HNOJIVA TYPU NPK, KOMPLEXNÍ VYUŽITÍ SUROVIN Úvod iii

4 6.2. Suroviny pro výrobu kombinovaných hnojiv Technologie výroby kombinovaných hnojiv Komplexní využití surovin Výroba strotnatých solí Možnosti zpracování tetrahydrátu dusičnanu vápenatého Možnosti zpracování vymražené břečky Závěry TECHNOLOGIE VÝROBY ANORGANICKÝCH PIGMENTŮ Úvod Emise těkavých organických látek (VOC) Vznik přízemního ozónu Definice VOC Zdroje VOC Omezování emisí VOC Důsledky omezování emisí VOC Pigmenty Bílé Pigmenty Titanová běloba Vlastnosti TiO Výroba TiO Použití TiO Pigmenty na bázi ZnS Blanc-fix Oxid zinečnatý Barevné pigmenty Železité pigmenty Pigmenty na bázi těžkých kovů Antikorozní pigmenty Závěry TECHNOLOGIE VÝROBY SODY Úvod Chemické vlastnosti sody Leblancův způsob výroby Solvayův způsob Příprava solanky Pálení vápna Amoniakalizace solanky Karbonatace solanky a separace NaHCO Kalcinace Regenerace amoniaku Modifikovaný solvayův postup Výroba sody z trony Závěry TECHNOLOGIE CHLORU Úvod Výroba chloru Princip elektrolýzy Elektrolýza solanky Rtuťový proces Membránový proces Diafragmový proces Porovnání procesů Elektrolýza kyseliny chlorovodíkové Chemická výroba chloru Zpracování chloru Zacházení s chlorem Použití chloru Kyselina chlorovodíková iv

5 9.9. Hydroxid sodný a draselný Závěry PROGRESIVNÍ TECHNOLOGIE Iontové kapaliny Nadkritické kapaliny Nadkritický stav Nadkritická extrakce Chemické reakce v nadkritickém CO Výroba energie Chladiva Zhášedla Likvidace plynných emisí Oxid siřičitý Oxidy dusíku VOC Elektrochemie v

6 vi

7 PŘEDMLUVA Skripta Průmyslová technologie III jsou určena studentům 4. ročníku Fakulty životního prostředí Univerzity Jana Evangelisty Purkyně v Ústí nad Labem studujícím obor Odpadové hospodářství a studentům podobně orientovaných oborů. Základní kurzy průmyslových technologií přednášené na FŽP seznámily posluchače se stěžejními výrobními postupy v chemickém průmyslu. Již v těchto kurzech byly nastíněny možnosti uplatnění tzv. maloodpadových technologií, novou terminologií označovaných jako čistší technologie. V předložených skriptech je na konkrétních případech z praxe chemického průmyslu naznačeno, jak je možno volbou výchozích surovin, modifikací technologických postupů, konstrukčními změnami použitého strojního zařízení, uspořádáním výrobní linky, užitými systémy měření a regulace zlepšovat využití surovin, energií a pomocných látek a tím snižovat objem vznikajících odpadů. Úmyslně jsou voleny příklady z oblasti stěžejních anorganických výrob, kde vývoj vedl často k jednoúčelovým velkokapacitním výrobnám s vysokými pořizovacími a provozními náklady. Tato skutečnost trvale nutila projektanty, technology, výzkumné a vývojové pracovníky k maximální hospodárnosti v nakládání s materiálem a energiemi ve všech stupních daných výrob. Stačí si jen uvědomit, že zvýšení účinnosti o jedno jediné procento ve výrobně produkující např t sody znamená zvýšení obratu o 3 mil. Kč. Proto se zásady čistší produkce, byť motivovány čistě ekonomicky, začaly uplatňovat nejdříve a v největším rozsahu právě u velkokapacitních výrob a také zde dosáhly nejlepších výsledků. Určitým dílem je v textu věnována pozornost vlastnostem zpracovávaných materiálů, produktů a vznikajících odpadů ve vztahu ke kvalitě pracovního a životního prostředí, bezpečnosti práce a pracovní hygieně. Tím je v předložených skriptech zajištěna vazba na další kurzy přednášené na FŽP. Snahou autorů bylo rovněž ukázat hlavní použití základních výrobků chemického průmyslu, bez nichž si dnešní život snad ani neumíme představit. Jde také o to, aby nevznikaly mylné představy, často propagované některými amatérskými rádoby ekology, že řešení dnešních ekologických potíží spočívá v zastavení všech, anebo alespoň valné části chemických výrob. Z textu by mělo studentovi vyplynout, že eliminace jen jediného základního chemického výrobku, jako např. kyseliny sírové, dusičné, fosforečné, sody atd., by vedlo k dominovému efektu s dalekosáhlými důsledky pro současnou kvalitu života, kterou považujeme za samozřejmou a očekáváme jen její zvyšování. Cílem tohoto kurzu je seznámit studenta s metodami a postupy, které byly úspěšně uplatněny k dosažení čistší produkce a dále s některými vývojovými trendy a novými technologiemi, které mohou dojít masového uplatnění v nejbližších letech. Důraz je kladen především na metodickou stránku řešení problémů čistších technologií a nikoliv na úplný výčet technologií a možností jejich dalšího zdokonalování. Student by si měl na základě tohoto kurzu osvojit určité druhy technologických metod, technicko-organizačních opatření a přístupů k řešení vytypovaných problémů, které může aplikovat v praxi. 1

8 1. ÚVOD DO PROBLEMATIKY ČISTŠÍ PRODUKCE Vyčerpávání neobnovitelných přírodních zdrojů surovin a energií, změny jejich kvality a růst cen, zvyšování nároků na užitnou hodnotu výrobku, pracovního a životního prostředí nesou se sebou trvalou potřebu technicko-technologického rozvoje každého průmyslového výrobního postupu. Rozvoj průmyslových výrobních technologií a současné zpřísňování ekologické legislativy v zahraničí i v České republice si vyžaduje změnu v přístupech k řešení problematiky odpadů všech skupenství, které vznikají ve výrobní sféře. Ještě na konci čtyřicátých let tohoto století bylo do značné míry spoléháno na autoregulační a samočistící mechanizmy přírody. Množství a složení vypouštěných odpadů byla věnována jen okrajová pozornost. V 50. a 60. letech ještě nebyla tato filozofie odpadového hospodářství v průmyslu, zemědělství a ani v komunální sféře opuštěna. Prosperita společnosti se posuzovala podle množství zpracovávaného materiálu a podle počtu komínů chrlících do okolí černý kouř, jak ostatně dokládá veršovánka z padesátých let Komíny (Hmuř si oči hmuř, však kdyby jsme nekouřily, bylo by Ti hůř). Problematika odpadů byla řešena nařeďováním škodlivin v odpadních proudech plynů nebo kapalin, popřípadě kontrolou a řízeným vypouštěním odpadních materiálů. Teprve vážné ekologické havárie typu Love Canal v USA (společnost Hooker Chemicals od 1941 do 1953 ukládala chemické odpady do části kanálu vybudovaného v 1894 pro přívod vody k elektrárně produkující stejnosměrný proud pro tuto průmyslovou oblast. Místo skládky bylo r prodáno městu Niagara Falls, které na něm vybudovalo školu a rodinné domky. V zimě 1976 došlo k prudkému tání sněhu následovaným deštivým jarem a létem. To zvedlo úroveň podzemních vod natolik, že v r byly chemikálie ze skládky vyplaveny do kanalizačního systému, na ulice a do sklepů obytných domů. Následující dekontaminační akce byly zmatené, chaotické a nekoordinované v důsledku nedostatku jak zkušeností a odbornosti příslušných úřadů s řešením krizové situace takového rozsahu, tak i peněz a stály více, než představují náklady na úplnou likvidaci skládky. Soudní dohra této havárie stále ještě není ukončena.), těžké poškození nebo úhyn lesních porostů, kritické znečištění povrchových vod a atmosféry v průmyslových regionech, přechodné nebo trvalé poškození zdraví lidí vedlo ke zpřísňování ekologické legislativy, zachycování nebo bezpečnému zneškodňování odpadů pomocí tzv. koncových technologií. Ty zajišťovaly čištění odpadních plynů a vod, případně termické zneškodnění spalitelných odpadů a uložení tuhých odpadů do technicky zabezpečených skládek. Mocným impulsem rozvoje jak koncových tak i výrobních technologií byla energetická a surovinová krize v první polovině sedmdesátých let. Ta měla za následek několikanásobné zdražení přírodních surovin a tím i výrobků. Konkurence na světovém trhu donutila výrobce maximálně šetřit vstupními surovinami a energiemi a zlepšovat jejich využití zvyšováním účinnosti výrobních procesů. Zvýšením výtěžku procesu z 80 na 90% se totiž nejen sníží množství odpadů, který je ukládán na skládku, na polovinu, ale současně stoupne objem výrobku a výrazně poklesnou náklady na shromažďování, další zpracování, transport atd. odpadů. Pro společnost DuPont zvýšení průměrného výtěžku procesů o 10% znamenalo úsporu 2 mil. USD na poplatcích za ukládání odpadů a současně přínos 100 mil. USD důsledkem zvýšení produkce a snížení nákladů na zacházení s odpady. Odpad začal být chápán jako ztráta surovin, energie a vynaložené práce. Proto byl stále větší důraz kladen na recyklaci, tj. využití dříve odpadajícího materiálu v jiné výrobě. Hezkým příkladem recyklace je využití starých nylonových koberců na výrobu kompozitních konstrukčních plastů. Staré nylonové koberce ze všech Fordových afilací na 2

9 světě jsou v závodech společnosti DuPont zpracovány na zmíněné kompozitní materiály, které jsou následně využity v autech produkovaných koncernem Ford. Jelikož recyklace některých odpadních materiálů není v dnešní době technologicky možná nebo je příliš nákladná, nastoupily do průmyslové praxe metody prevence vzniku odpadů a tím i prevence znečištění složek životního prostředí. Za příklad prevence vzniku odpadů může sloužit zacházení se syntetickou pryží neopren. Neopren byl tradičně dodáván výrobcem v papírových pytlích. U zpracovatele musel být papírový pytel ručně otevřen, jeho obsah vysypán do hnětáku kde se smísí s různými přísadami a papírový obal byl likvidován ve spalovně, nebo byl ukládán na skládku. Společnost DuPont vyrábějící neopren vyvinula speciální pryskyřici (Surlyn ionomer resin), ze které je možno vyrábět obaly lehčí než papír a která současně zlepšuje vlastnosti směsi neoprenu. Dnes je neopren i s obalem vložen do hnětáku takže odpadá nejen ruční manipulace s obalem, ale i následná likvidace obalu. Mnohá preventivní opatření vedla ke zvýšení investičních a provozních nákladů výrob. Prodlužující se ekonomická návratnost investic vede ke zdražování výrobků, což je však ze strany i ekologicky myslících zákazníků odmítáno. To přimělo některé výrobce investovat v zemích s méně přísnou ekologickou legislativou, čímž se vyhnuli zvýšeným výrobním nákladům a udrželi si získanou pozici na trhu. Pokud k tomu přistupuje i možnost zaměstnávat levné pracovní síly, vede to k zpomalení nástupu čistších technologií v některých oborech (výroba surového železa a oceli, hutnictví barevných kovů aj.) a přenesení těchto výrob do rozvojových zemí. V polovině devadesátých let přišlo uvědomění, že přesun výrob do jiných částí světa neřeší globální ekologickou situaci, protože nemůžeme očekávat od Země neustálý růst toho co poskytuje, ale musíme lépe využívat to, co může poskytovat. Rovněž nemůžeme nadále zatěžovat životní prostředí toxickými látkami uvolňovanými průmyslem do životního prostředí. Tak např. v r bylo jen v USA emitováno do životního prostředí 1.2x10 6 t toxických chemikálií, což je ale o 54% méně než v r V Tabulce 1.1 je uvedeno množství 20 hlavních chemikálií převedených v r v USA do životního prostředí, především jako atmosférické emise, emise do povrchových vod, povrchové skládky tuhého materiálu a injektáže do podzemních ukládacích prostor. Začala druhá průmyslová revoluce pod heslem trvale udržitelného rozvoje, která nepovažuje tvorbu odpadů za nutné zlo a neomezuje se jen na jejich minimalizaci, ale usiluje o úplnou eliminaci odpadů při současném zachování ekonomického růstu. Síla, která jako jediná může komplexně řešit ekologické problémy, je průmysl sám. Vlády mohou pomocí legislativních opatření regulovat, enviromentalisté agitovat, ale jen průmysl může inovovat výrobní procesy tak, aby odpady z jedné výroby představovaly vstupy pro jinou výrobu přeměňující je na produkty s přidanou hodnotou nebo hledat a zavádět progresivní technologie omezující, či zcela zamezující, vznik odpadů. Výsledkem těchto postupů musí být snížení cenové úrovně výrobků při zachování ziskovosti výrobců. Jinými slovy, péče o životní prostředí se musí vyplácet jak výrobcům tak zákazníkům a nikoliv být prodělečnou aktivitou. 3

10 Tabulka 1.1 Emise hlavních toxických chemikálií do životního prostředí v USA v 10 3 t v r Chemikálie Množství Chemikálie Množství Metanol 120 HCl 32 Zn sloučeniny 100 Kys. fosforečná 31 Amoniak 95 Methyl-ethyl-keton 30 Dusičnany 80 Cu sloučeniny 20 Toluen 60 Dichlormethan 27 Xylen 40 Styren 23 Sirouhlík 36 Glykol ethery 20 n-hexan 36 Cr sloučeniny 19 Mn sloučeniny 35 Ethylen 18 Chlor 33 Pb sloučeniny 17 Poškozování životního prostředí není způsobeno jen emisemi z pravidelné výroby, které jsou ostatně většinou pod kontrolou, ale i nepředvídanými haváriemi při provozování technologií, kdy v důsledku výbuchu, požáru nebo poruchy zařízení dochází k masivnímu úniku chemikálií do životního prostředí. Přehled největších havárií v chemickém průmyslu za posledních 25 let je uveden v Tabulce 1.2.Vezmeme-li v úvahu ohromné množství chemických závodů operujících na světě a potenciální rizika skrývající se téměř v každé výrobě (vysoké tlaky, teploty, nebezpečné meziprodukty, značná pravděpodobnost mechanického selhání strojního zařízení atd.), je až překvapující jak málo havárií velkého rozsahu se ve skutečnosti přihodilo. To svědčí o dobře vyvinutém a fungujícím systému havarijní prevence v chemickém průmyslu, který však musí být neustále vylepšován za současného vyhledávání méně rizikových výrobních postupů. Hlavní principy preventivních metod ochrany životního prostředí jsou: Princip prevence - předcházení škodám na životním prostředí před jeho poškozením a dodatečným nápravám. Princip opatrnosti - sledovat i zdánlivě neškodné vlivy na životní prostředí a člověka, které se mohou projevit teprve při dlouhodobém působení. Princip integrace - sledovat jevy a působení integrálně ve vzájemných souvislostech, předcházet synergickým efektům. 4

11 Tabulka 1.2 Největší havárie v chemickém průmyslu za posledních 25 let Rok Místo Příčina Následky 1974 Flixborough, Anglie Výbuch a požár výrobny kaprolaktamu 1976 Seveco, Itálie Explose reaktoru, únik oblaku dioxinu 1980 New Castle, USA Expoze a požár výrobny polypropylenu 1981 Freeport, USA Exploze a požár polyetylenové jednotky Zničený závod, poškozené okolní budovy, 28 mrtvých, 89 raněných 2000 lidí hospitalizováno pro otravu dioxinem 5 mrtvých, 23 raněných 5 mrtvých, 6 raněných 1984 Bhopal, Indie Únik methylisokyanátu 2500 mrtvých, tisíce zraněných 1988 Henderson, USA Požár a výbuch výrobny NH 4 ClO Pasadena, USA Exploze a požár v důsledku úniku etylenu a isobutanu z produktovodu 1990 Channelview, USA 1991 Nižněkamsk, SSSR Exploze a výbuch petrochemického komplexu Výbuch etylenové jednotky 1994 Port Neal, USA Výbuch výrobny NH 4 NO Savannah, USA Výbuch síranu terpentinu, požár 1995 Lodi, USA Výbuch při míšení chemikálií, požár 1997 Deer Park, USA Exploze a požár olefinové jednotky Zničený závod, poškozené okolní budovy, 2 mrtví, 350 zraněných 23 mrtvých, 130 zraněných 17 mrtvých, žádný zraněný Škoda 1 mld. USD Únik 4200 t NH 3, 100 t HNO 3, 4 mrtví, 18 zraněných, 2500 obyvatel evakuováno Únik H 2 S, 2000 obyvatel evakuováno po dobu 1 měsíce Zničení závodu, poškození okolních budov, 5 mrtvých, desítky raněných Zničený závod, 2 ranění Mezi nejvíce užívané technicko-organizační nástroje čistší produkce náleží: Hodnocení možností čistší produkce (Cleaner Production Assesment) - hledání příčin vzniku odpadů zpracováním detailní materiálové a energetické bilance procesu, návrhem opatření a jejich technickým a ekonomickým vyhodnocením. Posuzování životního cyklu výrobku, případně výrobního procesu (Life Cycle Assesment) - stanovení všech přímých i nepřímých spotřeb surovin a energií pro konkrétní výrobky z výchozích surovin, přes vlastní výrobní proces, využití výrobku až po jeho zneškodnění při dožití. Současně jsou sledovány vlivy na globální ekologické problémy, zejména působení na zesílení skleníkového efektu, rozrušování 5

12 ozónové vrstvy, tvorbu fotooxidantů, acidifikaci půdy a horninového prostředí, eutrofizaci povrchových vod, ekotoxicitu vůči biologickým organizmům. Hodnocení ekologického rizika - spočívá v podrobné analýze pravděpodobnosti selhání bezpečnostních opatření u průmyslových zařízení a tím i odhadem pravděpodobnosti vzniku průmyslových havárií a rozsahu vznikajících škod jak v průmyslu, tak i na životním prostředí. Všem uvedeným metodám, nástrojům a zásadám musí být přizpůsobeny výrobní postupy, systémy měření a regulace, automatizace a řízení procesů, jejich nezávislé kontroly, ale i odborné přípravy a doškolování pracovníků na všech úrovních. 6

13 2. VÝROBA KYSELINY SÍROVÉ 2.1. Úvod Chemické výrobní postupy zpracovávají zpravidla cenné suroviny na investičně drahém jednoúčelově použitelném výrobním zařízení, často s vysokými energetickými nároky. Navíc řada zpracovávaných látek je určitým způsobem nebezpečných (toxické, hořlavé, výbušné, žíravé a pod.). Proto byla prakticky vždy věnována v chemických výrobních postupech značná pozornost stupni využití surovin a pomocných látek, minimalizaci ztrát do odpadních materiálů všech skupenství nebo zhodnocení odpadů, maximálnímu využití pokud možno všech druhů energií, bezpečnosti a hygieně práce. V současnosti se zpravidla jedná o výrobny s kontinuálním provozem a vysokou kapacitou - několika set, dvou i více tisíc tun výrobku za den. Splnění výše uvedených nároků u klasických chemických výrob nebo při produkci stavebních hmot a v hutnictví je velmi významné ve srovnání s jinými výrobními technologiemi. Jedním z možných příkladů, na nichž lze tyto trendy vysledovat a dokumentovat, je vývoj technologií výroby kyseliny sírové. Produkce kyseliny sírové (dále jen KS) po dlouhou dobu náležela k měřítkům průmyslové vyspělosti národních ekonomik. I přes pokles významu KS na úkor jiných komodit - např. petrochemických výrobků - neustále náleží k nejvýznamnějším látkám produkovaným chemickým průmyslem. Všeobecně největšími spotřebiteli KS jsou: výroba průmyslových hnojiv fosforečných na bázi extrakční kyseliny fosforečné a výroba kombinovaných hnojiv, moření ocelí spojené s odstraňováním okují s povrchu válcovaného materiálu, příprava oceli k zinkování, úprava uranových rud, výroba titanové běloby síranovou technologií, výroba viskozového hedvábí textilního nebo kordového a viskozové střiže, výroba kyselin fluorovodíkové, chlorovodíkové, mravenčí, octové aj., organické syntézy - sulfonace s použitím olea a nitrace, výroba solí: CuSO 4 - pesticidní přípravky, úprava vody, Al 2 (SO 4 ) 3 a Fe 2 (SO 4 ) 3 - úprava pitné vody a čištění odpadních vod, NaAl(SO 4 ) H 2 O - klížení papíru, činění kůží, moření bavlny a vlny, Na 2 SO H 2 O - příprava sklářského kmene, výroba pracích prášků, BaSO 4 - pigmentů blanc fix a litoponu (se ZnS). Světová výroba KS se pohybuje kolem 140 mil. t/rok v přepočtu na 100%-ní kyselinu (tzv. monohydrát). V ČR jsou kyselina sírová a oleum vyráběny hlavně ve Spolchemii, a.s. Ústí n.l., Spolaně, a.s. Neratovice, Syntézia, a.s. Pardubice - Semtín, Přerovských chemických závodech, a.s. Přerov a Moravských chemických závodech, a.s. Ostrava. Výrobny v Lovosicích, Kolíně, Poštorné a Kaznějově provozují nepravidelně nebo jsou zakonzervovány. S ohledem na šíři použití KS a jejích solí v průmyslové praxi se často volná KS, sírany, případně i oxid siřičitý nebo oxid sírový vyskytují v odpadových materiálech nebo složkách životního prostředí, které mohou ohrožovat. 7

14 2.2. Technologie výroby kyseliny sírové Technologie výroby kyseliny sírové má zpravidla následující základní technologické operace: příprava plynu s obsahem oxidu siřičitého, výjimečně oxidu sírového, oxidaci oxidu siřičitého na oxid sírový, absorpci oxidu sírového ve zředěné kyselině sírové. V průběhu historie se uplatnily v průmyslové praxi následující výrobní postupy často se lišící i výchozími surovinami, kvalitou produktu a jeho použitelností, spotřebou pomocných látek, možnostmi využití tepelné energie a vznikajícími odpady. Toto vše se rovněž odráží v ekonomice výroby KS s dopady na kvalitu pracovního a životního prostředí Kalcinační postupy První kyselina sírová byla připravena arabskými alchymisty v 9. století n.l. Znalost přípravy kyseliny sírové a olea se rozšířila koncem 15. století do Evropy včetně Čech. Ve větším měřítku bylo oleum vyráběno v Čechách již v 18. století pro přípravu sulfonovaného indiga k barvení mušelínu. Oleum bylo vyráběno hlavně v Břasích a Kaznějově, kde byl z místních zdrojů dostatek jak černého uhlí a přírodních břidlic tak i žáruvzdorných materiálů pro výrobu retort, jak bude uvedeno dále. Kalcinační postup výroby kyseliny sírové a olea spočíval v postupné kalcinaci přírodních břidlic s obsahem zelené skalice v přebytku vzduchu, t.j. v silně oxidačním prostředí při teplotách nad 720 o C. Oxid sírový vznikal kalcinací zelené skalice v retortách umístěných uvnitř tzv. galejních pecí (obr. 2.1.) vytápěných uhlím. Byl jímán ve vodě za vzniku kyseliny sírové, případně olea, které tehdy bylo nazýváno vitriolovým olejem nebo později českou kyselinou sírovou. Probíhající chemické reakce vystihují následující rovnice: FeSO 4. 7 H 2 O FeSO H 2 O 2 FeSO 4 FeS 2 O 7 + FeO 6 FeS 2 O 7 + 3/2 O 2 2 Fe 2 (SO 4 ) 3 + Fe 2 O SO 3 2 FeO + 1/2 O 2 Fe 2 O 3 Fe 2 (SO 4 ) 3 Fe 2 O SO 3 SO 3 + H 2 O H 2 SO 4 Kalcinace zelené skalice s termickými rozklady síranů železnatých nebo železitých jsou chemické reakce silně endotermní. Proto výroba kyseliny sírové a olea tímto postupem byla energeticky velmi náročná. 8

15 Obr.2.1. Galejní pec k pálení české kyseliny sírové Nitrosní postupy Na přelomu 18. a 19. století bylo zjištěno, že při spalování síry za přítomnosti chilského ledku (NaNO 3 ) je oxid siřičitý oxidován na oxid sírový. Použitím pyritu místo síry a kyseliny dusičné místo ledku bylo dosaženo stejného výsledku. To vedlo k zavedení komorové výroby nitrosní kyseliny sírové, tzv. anglické, neboť prvně byla tato výroba realizována v Birminghamu. V Čechách byla komorová technologie zavedena r v Předlicích, dnes čtvrti Ústí n.l., a v r v Lukavicích u Chrudimi. Později následovalo zavedení tohoto výrobních postupu v dalších závodech na území Čech, především pro potřeby výroby superfosfátu. Nitrosní postup výroby kyseliny sírové vystihují následující chemické rovnice: 2 FeS /2 O 2 Fe 2 O SO 2 H o 298 = kj mol -1 SO 2 + H 2 O H 2 SO 3 H 2 SO HNO 2 H 2 SO NO + H 2 O NO + 1/2 O 2 NO 2 NO + NO 2 + H 2 O 2 HNO 2 3 HNO 2 HNO NO + H 2 O 4 HNO 3 4 NO H 2 O + O 2 Oxid siřičitý byl vyráběn pražením jemně rozemletého pyritu, případně flotačního koncentrátu pyritu, za přívodu vzduchu a teploty min. 800 o C. Pyrit je dávkován do pražících pecí v poměru se vzduchem tak, aby na výstupu z pece pražný plyn obsahoval obj.% SO 2 dle typu pražící pece. Přídavkem sekundárního vzduchu je zajištěn přebytek kyslíku nutný pro další oxidaci SO 2 a jeho koncentrace je tak upravena na 9-12 obj.% SO 2. Koncentrace nesmí kolísat o více než 0,5 %abs. Pražení bylo prováděno nejprve v pánvových, později rotačních a etážových pecích (obr. 2.2.). 9

16 Všechny pece na pražení pyritu byly na provozní teplotu zahřívány pomocným zdrojem tepla - hořícím dřevem v případě pánvových nebo etážových pecí, plynovým či olejovým hořákem u pecí prostorových, bubnových nebo fluidních. Nevýhodou etážových pecí byla omezená plynotěsnost, neboť část pražných plynů unikala do okolní atmosféry. Tím byly vyšší ztráty surovin, pracovní prostředí bylo zamořeno oxidem siřičitým i prachem praženého pyritu a vznikajících kyzových výpalků. Proto byly po 1. světové válce etážové pece nahrazovány pecemi prostorovými a po 2. sv. válce pecemi fluidními (obr. 2.3.). Obr Etážová pec 1-hřídel pohonu, 2-ramena, 3-radličky, 4-zásobník, 5-podavač, 6 a 7 výsypky, 8-dvířka s průzory, 9 a 10 převodová kola, 11-hřídel, 12-převodová skříň, 13-řemenice, 14-spojka 1-dávkovací zařízení pyritu, 2-skluz do pece, 3-fluidní pec, 4- zapalovací hořák, 5-rošt, 6-odklápěcí dno, 7-chladiče, 8- přepadové potrubí, 9- turniketové uzávěry, 10- parní kotel, 11-výparník - buben parního kotle, 12-napáječka kotle, 13-trubkovnice parního kotle, 14-Redlerův dopravník výpalků, 15-cyklon, 16-výstup přehřáté páry. Obr Fluidní pec na pražení pyritu 10

17 Výhodou fluidních pecí byla vysoká těsnost a intenzivní kontakt praženého pyritu se vzduchem, nízká koroze a abraze zařízení. Poslední dva typy pecí byly vždy vybavovány kotli, kde byl pražný plyn chlazen při současné výrobě syté nebo přehřáté páry. Ta byla využitelná pro výrobu elektřiny na turbogenerátorech, technologické účely závodů, vytápění a přípravu teplé užitkové vody. Tak se výrobny kyseliny sírové staly v průmyslových podnicích významnými zdroji tepelné energie. Těmito změnami v technologii výroby oxidu siřičitého se podařilo významně snížit výrobní náklady na tunu KS (všechny THN u výroben KS se přepočítávají na tzv. monohydrát, t.j. 100 %-ní kyselinu sírovou). Ztráty oxidů dusíku do plynných emisí z výrobny byly hrazeny trvalým dávkováním zředěné kyseliny dusičné. Oxidačně absorpční systém je citlivý na teplotní režim, který významně ovlivňuje udržení ustálených poměrů mezi oxidy dusíku, kyselinou dusitou, kyselinou dusičnou a vodou. Jelikož procesy oxidace a absorpce jsou exotermní, musel být roztok kyselin trvale chlazen, zpravidla ve sprchových chladičích skrápěných surovou říční vodou (obr. 2.4.). Obr Sprchový chladič 1-trubky chladících sekcí, 2- spojovací kolena, 3-rozváděcí žlab chladící vody, 4-pomocný žlab, 5-sběrná vana. Na výstupu z výrobny byla rovněž stejným způsobem chlazena produkční kyselina. Rychlost oxidace a zejména absorpce jako difusního procesu je silně závislá na intenzitě styku kapalné a plynné fáze, t.j. velikosti mezifázového rozhraní. Nejstarší výrobny kyseliny sírové pracující s nitrósním postupem byly vybaveny pouze komorami bez výplně se skrápěnými stěnami vyloženými olověným plechem a prostorovými rozstřikovači. Důvodem pro toto uspořádání byla skutečnost, že veškerý objem plynů pražícími pecemi a oxidačně absorpčním prostorem byl prosáván jen přirozeným tahem komína. Teprve po zkonstruování ventilátorů dostatečně výkonných a provozně spolehlivých (později dmychadel), bylo možné postupně zvýšit hydraulický odpor celého systému náhradou absorpčních komor absorpčními kolonami s výplní Raschigových kroužků. 11

18 Obr Schéma sedmivěžové výrobny kyseliny sírové 1- denitrační věž, 2,3- produkční věže, 4-oxidační věž, 5,6,7- absorpční věže, 8-mokrý elektrofiltr Výrobny kyseliny sírové s nitrosním postupem stavěné po 1. sv. válce již měli pouze absorpční kolony, nejčastěji 5 až 7. Byly členěny na absorpční zónu, kde docházelo k absorpci oxidů dusíku a produkční zónu, kde probíhala oxidace SO 2 spojená s produkcí kyseliny sírové. Mezi nimi byla oxidační zóna tvořená zpravidla jednou kolonou bez výplně, v níž probíhala oxidace NO na NO 2 v plynné fázi (obr. 2.5.). Nevýhodou nitrosního postupu výroby kyseliny sírové je, že nedovoluje produkci kyseliny s koncentrací vyšší než 80% hm. To je dáno pomalou a stále nižší rozpustností oxidů dusíku v koncentrovanější kyselině sírové během absorpce. Zpravidla byla vyráběna kyselina s koncentrací kolem 75%. Volba této koncentrace byla kompromisem mezi přiměřeným výkonem produkčních kolon výroben KS a žádanou koncentrací kyseliny v navazujících výrobách, hlavně průmyslových hnojiv (nejčastěji jednoduchého superfosfátu). Emise oxidů dusíku s koncovými plyny obsahujícími nezreagovaný oxid siřičitý znečišťovaly atmosféru a zvyšovaly výrobní náklady. To byly hlavní důvody spolu s omezenou koncentrací produkční kyseliny, proč byla nitrosní technologie od 70. let opouštěna. V České republice byly poslední výrobny tohoto typu zastaveny v 80. letech v SCHZ, s.p. Lovosice a Precheza, s.p. Přerov Kontaktní postup Kontaktní postup výroby kyseliny sírové byl postupně vyvíjen od r. 1831, kdy byl B.Philipsem prokázán katalytický účinek kovové platiny a oxidů kovů (např. železa, chrómu, mědi, vanadu) na reakci oxidu siřičitého s čistým nebo vzdušným kyslíkem. Prvním technologickým krokem kontaktního postupu výroby KS je výroba oxidu siřičitého. Ten byl vyráběn jednak pražením pyritu nebo jiných sulfidických rud v pecích stejné konstrukce, jak již bylo uvedeno v kap Nevýhodou pražení pyritu je vznik 12

19 pražných plynů s vysokým obsahem prachu, který je nezbytné z plynu oddělit, zpravidla v několikastupňových elektrostatických odlučovačích. Hlavním důvodem odprašování siřičitého plynu je vyloučení zanášení pórů katalyzátorů prachem v kontaktním reaktoru umístěném dále. Jelikož dokonalé odprašování je strojně a technologicky složité, investičně i provozně drahé, je nyní v kontaktní výrobnách KS základní surovinou převážně elementární síra. Nejčastější je nyní výroba oxidu siřičitého přímým spalováním roztavené síry se vzduchem. Dodávaná kusová síra je v parou vytápěných nádržích roztavena a přefiltrována na keramických svíčkových filtrech, kde je zbavena mechanických nečistot. Do některých zpracovatelských závodů je roztavená filtrovaná síra dopravována přímo od dodavatelů v izolovaných železničních cisternách s parním otopem. Méně často je spalována kusová síra se vzduchem v bubnových pecích. Vzduch je zbavován prachu na tkaninových filtrech a sušen v koloně s výplní Raschigových kroužků koncentrovanou kyselinou sírovou odebíranou z absorpce (viz dále). Vzdušné vodní páry absorbované koncentrovanou kyselinou sírovou v sušící koloně nahrazují větší část spotřeby vody absorpce výroben KS. Spalováním roztavené filtrované síry v proudu odprášeného vzduchu je získáván velmi čistý a koncentrovaný siřičitý plyn bez potřeby dalšího čištění. Poměr mezi sírou a kyslíkem je řízen tak, aby plyn na výstupu ze spalovací pece obsahoval do 12 obj.% SO 2. Za této podmínky je ve vystupujícím plynu dostatečný přebytek kyslíku pro navazující oxidaci SO 2 v kontaktním reaktoru. Síra je spalována na rozprašovacím hořáku v proudu vzduchu dle rovnice: S + O 2 SO 2 Δ H o 298 = - 297,89 kj mol -1 V tomto směru se nejvíce uplatnil systém KREBS, kde rotační hořák spalující síru je umístěn v čelním víku spalovací komory. V ní je vestavěna trubkovnice parního kotle (obr a 2.7.). Obr Pec na síru kombinovaná s kotlem Obr Hořák na síru 1-plášť pece, 2-bubny parního kotle, 3,4,5- trubkovnice kotle a přehříváku páry, 6-spalovací prostor 1-přívod vzduchu, 2-přívod roztavené síry, 3-parní duplikátor, 4- vzduchové trysky, 5-tryska na rozstřikování síry 13

20 V kotli je vyráběna sytá nebo přehřátá pára zpravidla o tlaku kolem 5,0 MPa vhodná pro pohon protitlakých parních turbin spojených s generátory na výrobu elektřiny. Pára po expanzi v parní turbíně je dále využívána pro technologické účely a vytápění. Tímto způsobem je siřičitý plyn předchlazen na teplotu cca 450 o C, se kterou vstupuje do kontaktního reaktoru. V kontaktním reaktoru je zpravidla ve třech až pěti vrstvách nad sebou umístěn katalyzátor zajišťující oxidaci oxidu siřičitého na oxid sírový: SO 2 + 1/2 O 2 SO 3 Δ H o 298 = - 99,0 kj mol -1 V průmyslové praxi je reakce katalyzována oxidem železitým nebo oxidem vanadičným, jehož nosičem je oxid křemičitý. Katalyzátory bývají aktivovány ionty lehkých kovů, hlavně skupiny kovů alkalických případně skupiny kovů alkalických zemin. Tyto katalyzátory vykazují nejvyšší aktivitu při teplotách kolem 450 o C, při teplotách nad 600 o C se znehodnocují. Jelikož uvedená oxidační reakce je exotermní a reagující směs plynů se zahřívá, je reagující směs plynů chlazena v interních nebo externích výměnících tepla. Někdy je směs plynů za prvním ložem katalyzátoru chlazena přívodem čerstvé směsi od spalovací komory. V kontaktních reaktorech starší konstrukce byl katalyzátor uložen v trubkách nebo v mezitrubkovém prostoru s chlazením vnější nebo vnitřní strany trubek. V současné době je katalyzátor v kontaktních reaktorech uložen na etážích (zpravidla pěti) mezi nimiž jsou zařazeny výměníky tepla. Ve výměnících tepla kontaktního reaktoru je plyn chlazen demineralizovanou vodou, která je po předehřátí na teplotu až 200 o C používána pro napájení kotle spalovací komory, kde je z ní vyrobena pára. Pracovní charakteristiku pětietážového kontaktního reaktoru vystihuje obrázek č Obr Pracovní charakteristika pětietážového kontaktního reaktoru s vnější výměnou tepla 14

21 Stupeň konverze SO 2 na SO 3 v popsaném uspořádání kontaktního reaktoru dosahuje až 98,0%. Pokud se použije proces dvoustupňové konverze s meziabsorpcí, tzv. vloženou absorpcí (obr. 2.9.), lze dosáhnout konverze přesahující 99,5%. Tím je poklesem ztrát oxidu siřičitého dosaženo zvýšeného využití výchozích sirných surovin, úměrně růstu konverze se zvýší využití tepelné energie a zlepší se efektivnost produkce kyseliny sírové. Obr Dvoustupňová oxidace SO 2 s vloženou absorpcí SO 3 1-přívod plynu ze sušící věže, 2-odlučovač kapek, 3-výměníky tepla, 4-kontaktní reaktor, 5-vložený absorbér, 6-výstup předchlazeného SO 3 do koncových absorbérů. Plyn s obsahem 7-8 %obj. oxidu sírového je za kontaktním reaktorem ochlazen ve vodním a vzduchovém výměníku tepla na teplotu cca 80 o C, se kterou vstupuje do absorpčních kolon. Absorpce je realizována zpravidla ve dvou seriově spojených kolonách s výplní keramických Raschigových kroužků. Koncová kolona je skrápěna kyselinou sírovou o koncentraci 98%hm. Důvodem pro tuto koncentraci skrápěcí kyseliny je nízká tenze SO 3 na roztokem azeotropu s koncentrací 98,3%hm., minimální tvorba mlhy kyseliny sírové a proto nejvyšší účinnost absorpce. Voda do absorpce je přiváděna buď jen ze sušení vzduchu pro spalování síry, nebo je ředěna kyselina do absorpce vodou. Je-li relativní vlhkost atmosférického vzduchu příliš vysoká, která by nedovolila dosažená požadované koncentrace produkční kyseliny, musí být vzduch zbaven části vody kondenzací jeho chlazením. Bez ohledu na skutečné podmínky během absorpce lze vznik kyseliny sírové obecně vyjádřit rovnicí: n SO 3 + H 2 O H 2 SO 4. (n - 1) SO 3 Pokud je n menší než 1, je vyráběna kyselina sírová s koncentrací zpravidla 92,0 nebo 98,3%hm. Je-li n větší než jedna, je vyráběn roztok oxidu sírového v koncentrované kyselině sírové - oleum. Koncentrace volného oxidu sírového v oleu bývá standardně 20%hm. Oleum s koncentrací SO 3 vyšší než 30% je vyráběno v omezeném množství rozpouštěním kapalného oxidu sírového v oleu 30 %-ním. Všechny kvalitativní znaky produkční kyseliny sírové a olea jsou specifikovány příslušnými státními normami, např. ČSN Kyselina sírová. Schema kontaktní výrobny kyseliny sírové ze síry je na obrázku č

22 Obr Schéma kontaktní výroby kyseliny sírové z čisté síry 1-sušící věž, 2-nádrž roztavené síry, 3-spalovací pec s parním kotlem, 4,6,7-výměníky tepla, 5-kontaktní reaktor, 8-oleový absorbér, 9-koncový absorbér, 10-čerpadla, 11-předlohové nádrže cirkulačních kyselin, 12-směšovače, 13-sprchové chladiče. Koncové plyny na výstupu z absorpce bývají dočišťovány tak, aby vyhovovaly platným emisním limitům. K tomu účelu jsou používány následující metody: a) alkalická absorpce oxidu siřičitého, kapek a mlhy kyseliny sírové ve vodných roztocích NaOH nebo čpavkové vodě: NaOH + SO 2 NaHSO 3 2 NaOH + H 2 SO 4 Na 2 SO H 2 O NH 4 OH + SO 2 NH 4 HSO 3 NH 4 OH + H 2 SO 4 (NH 4 ) 2 SO H 2 O Vždy je snaha volit takové absorpční kapaliny, které umožní zpracování vznikajících roztoků, výrobu prodejných solí nebo desorpci oxidu siřičitého a výrobu čistého SO 2 plynného nebo kapalného. Na výrobnách s vloženou absorpcí nebývá alkalická absorpce zařazena, neboť za absorpcí oxidu sírového je koncentrace oxidu siřičitého hluboko pod emisními normami. b) filtrace koncových plynů na keramických nebo polymerních vláknitých materiálech v demisterech, kde jsou zbavovány mlhy kyseliny sírové, která se absorbuje v alkalických roztocích s omezenou účinností. 16

23 2.3. Další suroviny pro výrobu kyseliny sírové Sulfan Sulfan může být použit pro výrobu kyseliny sírové přímou oxidací - spalováním se vzduchem na oxid siřičitý: H 2 S + 3/2 O 2 SO 2 + H 2 O a jeho další oxidací na SO 3 jak je uvedeno v kapitole 2.2. Nepřímý postup zpracování sulfanu spočívá ve výrobě síry Clausovým procesem a jejím dalším zpracováním, jak bylo uvedeno v kapitole Tento proces je užíván zpravidla v závodech, které nemají vlastní výrobnu kyseliny sírové, např. rafinériích ropy, kde sulfan odpadá při jejím katalytickém odsiřování. Clausův proces parciální oxidace sulfanu popisují následující chemické reakce: 2 H 2 S + O 2 S H 2 O 2 H 2 S + SO 2 3/8 S H 2 O V prvním kroku je sulfan smíchán ve stechiometrickém poměru se vzduchem a topným plynem. Po zapálení ve spalovací komoře zreaguje asi % sulfanu na síru. Po ochlazení na 300 o C je směs plynů vedena do prvního kontaktního reaktoru s náplní kobalto-molybdenového katalyzátoru na oxidu hlinitém jako nosiči. Zde zreaguje dalších cca 20 % z celkového vstupního množství sulfanu na síru. Po kondenzaci síry při teplotách pod 170 o C se zbývající plyny zahřejí na teplotu cca 220 o C a vedou se do druhého kontaktního reaktoru, kde probíhají opět dále výše uvedené reakce. Výtěžky síry dosahují asi 96 % při dvou kontaktních reaktorech, při třech kontaktních reaktorech je dosahováno výtěžku 98 %. Zbývající koncové plyny musí být dále čištěny např. absorpcí v mono- nebo di-etanolaminu, kde se absorbuje oxid siřičitý Zpracování sirných rud a síranů Sirné rudy barevných kovů, např. sirník zinečnatý (blejno zinkové), sirník železnatoměďnatý (chalkopyrit), sirník olovnatý (leštěnec olověný, galenit), jsou zpracovávány oxidačním pražením shodně jako pyrit - viz kapitola Sírany jsou zpracovatelné na oxid siřičitý redukcí fosilními palivy při teplotách kolem o C. Pro vysokou energetickou náročnost je tento postup používán pouze vyjímečně v případě produkce dalších cenných složek, kterými jsou například oxid barnatý nebo oxid strontnatý. Zpracování vznikajících plynů s obsahem oxidu siřičitého je po odprášení prováděno kontaktním postupem - viz. kap Zředěná kyselina sírová Zředěná kyselina sírová je zpracovávána na koncentrovanou kyselinu sírovou odpařováním pokud je dostatečně čistá a její koncentrace je alespoň 60 %. Zahušťování kyseliny sírové s nižší koncentrací odpařováním je neefektivní. Konstrukce odparek s trubkovými nebo duplikátorovými výměníky tepla vyhřívanými sytou parou je velmi náročná. Nároky na korozní odolnost materiálů odparek kyseliny sírové jsou mimořádné zejména u teplosměnných ploch. Teplota v odparkách se pohybuje cca od 130 o C do 240 o C při výstupní koncentraci kyseliny 93 %. Často je použitelný pro konstrukci odparek jen grafit, méně často grafodur (tvrdá pryž s vysokým podílem sazí - grafitického uhlíku) nebo 17

24 litina a titan. Tento problém je z části obcházen na odparkách vyhřívaných spalinami zemního plynu. Horké spaliny jsou dmýchány na hladinu zahušťované kyseliny nebo je zemní plyn spalován přímo pod hladinou kyseliny v odparkách s ponorným hořákem. Zde teplotně a korozně nejexponovanější částí je prstencový okraj hořáku. Ten bývá vyroben, podobně jako ostatní části odparky, z keramiky, nejlépe z oxidu zirkoničitého. Vedle problémů korozních musí být na odpařovacích zařízeních řešeno odlučování jemných kapek a zejména mlhy kyseliny sírové na mokrých elektrostatických odlučovačích. Pro vysokou teplotu plynů a par je použitelnost demisterů s polymerní výplní pro zachycení kapek a mlhy kyseliny sírové prakticky vyloučena. Zahuštění odpadní kyseliny sírové odpařováním zajišťuje její opětnou zpracovatelnost v chemických výrobách Vybrané technicko hospodářské normy výroby kyseliny sírové parametr na t 100% komorová t. věžová t. kontaktní technologie pyrit síra S kg/t Využití S 94,65% 94,65% 90,70% 98,05% HNO 3 kg/t el.kwh/t voda m 3 /t inves.kč/t 2000,- 800,- 1400,- 350,- nákl.kč/t 410,- 375,- 375,- 280,- SO 2 obj.% 0,2-0,6 0,2-0,4 SO 3 obj.% do 0,1 do 0,06 Teoretická spotřeba síry na výrobu kyseliny sírové je 326,53 kg/t. Největší ztráty síry při zpracování pyritu jsou způsobeny konverzí SO 2 na SO 3 v průběhu pražení a jeho vazbou na kyzové výpalky formou síranu železitého Závěry Základní vývojové trendy ve výrobě kyseliny sírové lze shrnout do následujících bodů: - volba suroviny technologicky účinně zpracovatelné na kyselinu sírovou žádané kvality s minimem znečišťujících složek, - přednostní uplatnění katalytické oxidace oxidu siřičitého na oxid sírový zaručuje vysoký stupeň konverze a tím minimální ztráty sirné suroviny, - uplatnění účinných absorpčních systémů včetně systému tzv. vložené absorpce, - zdokonalování systémů měření, regulace a řízení s cílem optimalizace technologického režimu především optimalizací teplotního režimu katalytického reaktoru vzhledem k užitému katalyzátoru, - minimalizace vzniku odpadů ve všech fázích výroby, resp. využití odpadů pro výrobu síry, oxidu siřičitého nebo solí kyseliny sírové, - maximální využití exotermních reakcí k produkci horké vody nebo páry technologicky dále využitelné. 18

25 Všechny dosud provozované výrobny kyseliny sírové využívají pro oxidaci síry a oxidu siřičitého na oxid sírový vzdušný kyslík. Pokud by byl ve výrobním procesu vzduch nahrazen čistým kyslíkem, mohl by se ve srovnatelném reakčním objemu produkovat cca pětinásobek kyseliny sírové. Vzdušný dusík, který je v systému výroby KS inertním plynem, by pak nesnižoval parciální tlak reagujících složek, rychlost všech reakcí by vzrostla. Měrný výkon všech aparátů technologie vyjádřený v kg reagující složky/m 3 reakčního prostoru aparátů by několikanásobně vzrostl. Toto by umožnilo konstrukci méně objemné aparatury při srovnatelném výkonu výrobní jednotky a tím úsporu investičních nákladů. Provozní náklady by se vyvíjely závisle na ceně zpracovávaného kyslíku a úspor elektrické energie pro turbodmychadla. Důležitou podmínkou bude intenzivnější chlazení všech reagujících složek včetně produkované kyseliny sírové. Měrné ztráty tepelné energie by poklesly a tím by se využití tepla v procesu výroby KS dále zvýšilo. 19

26 3. VÝROBA KYSELINY DUSIČNÉ 3.1. Úvod Kyselina dusičná (KD) má vedle čpavku klíčové postavení v chemii dusíku. Její spotřeba postupně stoupala s rozvojem zpracovatelských odvětví. Současná světová produkce KD přesahuje 40 mil. tun/rok v přepočtu na 100 %-ní kyselinu. Rozdělení spotřeby kyseliny dusičné ve světě: - 75 % dusičnan amonný (z toho 85 % průmyslová hnojiva, 15 % výbušniny), - 10 % výroba vláken a plastů na bázi kyseliny adipové, - 10 % nitrované organické sloučeniny (trhaviny, výroba barviv a laků), - 5 % povrchové úpravy kovů, hlavně vysoce legovaných ocelí. Podobná struktura spotřeby KD je i v ČR, kde je vyráběna pouze v závodech Lovochemie, a.s. Lovosice, Synthezia, a.s. Parbubice a Moravských chemických závodech, a.s. Ostrava Historický vývoj výrobních postupů Rozklad chilského ledku Rozklad chilského ledku kyselinou sírovou je nejstarším výrobním postupem zavedeným do průmyslové praxe ve druhé polovině 19. stol.: NaNO 3 + H 2 SO 4 HNO 3 + NaHSO 4 Rozklad byl prováděn kyselinou sírovou s koncentrací % při teplotách C. Dusičnan sodný a kyselina sírová musely být v uvedeném molárním poměru 1 : 1, aby nevznikal síran sodný - přebytek kyseliny sírové způsobuje vysoké zahřívání reakční směsi až na teploty kolem 400 o C a rozklad kyseliny dusičné. Výtěžky kyseliny dusičné i přesto byly nízké. Z tohoto důvodu, společně s vysokou cenou chilského ledku, byla cena vyrobené KD vysoká. S ohledem na strategický význam KD pro národní ekonomiky a obranyschopnost států (viz. použití) byly hledány technologicky schůdné výrobní postupy nezávislé na dovozu chilského ledku Obloukový způsob V roce 1905 byl u firmy Norsk Hydro zaveden tzv. obloukový postup výroby kyseliny dusičné. Jeho autory byli Kristian Birkeland a Samuel Eyde. Klíčovou technologickou operací výroby KD je příprava oxidu dusnatého: O 2 + N 2 2 NO Δ H o 298 = + 180,58 kj Syntéza byla realizována přímým slučováním vzdušného kyslíku a dusíku v elektrickém oblouku střídavého proudu v magnetickém poli za teploty až C. Výtěžnost oxidu dusnatého byla velmi nízká, jeho koncentrace za obloukovou pecí se pohybovala mezi 1,5-2,0 obj.% NO. Důležitou podmínkou dosažení této koncentrace bylo prudké ochlazení směsi plynů na teploty pod 1000 o C, aby nedošlo ke zpětnému rozkladu NO na výchozí složky. Výroba oxidu dusnatého a dále kyseliny dusičné tímto postupem byla vysoce náročná na spotřebu elektřiny. Nároky na objem reakčních prostor při práci s málo koncentrovanými nitrosními plyny (směs oxidů dusnatého a dusičitého) v dalších fázích 20

27 výroby byly značné. Oxidaci oxidu dusnatého na oxid dusičitý a jeho absorpci ve vodě vystihují následující chemické rovnice: 2 NO + O 2 2 NO 2 Δ H o 291 = -112,6 kj 2 NO 2 N 2 O 4 Δ H = -56,9 kj NO + NO 2 N 2 O 3 Δ H = -40,2 kj N 2 O 3 + H 2 O 2 HNO 2 Δ H = -55,68 kj 2 NO 2 + H 2 O HNO 3 + HNO 2 Δ H o 291 = -116,1 kj 3 HNO 2 HNO NO + H 2 O Δ H = +75,9 kj Oxidace NO a dimerizace NO 2 probíhají velmi rychle při nízkých teplotách. Totéž platí o absorpci oxidů dusíku ve vodě, resp. zředěné kyselině dusičné. Navíc většina uvedených chemických reakcí je exotermních a složky systému se reakcemi zahřívají. Proto je nezbytné intenzivní chlazení celého oxidačně absorpčního systému vodou. Chlazení je zajištěno vodou cirkulující trubkovými výměníky vloženými v oxidačně absorpčních věžích (obr. 3.1.). Oxidačně absorpční systémy výroben kyseliny dusičné je nutné trvale chladit na teploty nižší než 50 o C. Oteplená voda je většinou chlazena na chladících věžích s přirozenou nebo nucenou cirkulací vzduchu a je opětně využívána pro chlazení vyráběné KD. Do okruhů chladících věží musí být doplňovány ztráty vody odparem, které jsou v letních měsících nejvyšší. S ohledem na teplotu atmosférického vzduchu je účinnost chladících věží v tomto období také nejnižší. Proto je výhodné provozovat výrobny kyseliny dusičné mimo nejteplejší měsíce roku (červenec, srpen), kdy je účinnost systémů chlazení nízká. Právě do těchto měsíců jsou směrovány střední a generální opravy výroben kyseliny dusičné. Obr Schema absorpční kolony se sítovými patry 1 - chladící trubkové hady, 2 - přepadové trubky Jelikož při oxidaci dle dříve uvedených chemických reakcí dochází ke snižování objemu reakční směsi, je z hlediska termodynamiky (reakční rovnováhy) i kinetiky procesu (reakčních rychlostí) významný parciální tlak reagujících složek. Je výhodné pracovat při oxidaci a absorpci za zvýšeného tlaku. Nejstarší výrobny KD pracovaly za atmosférického tlaku. Teprve po 2. světové válce byla zvládnuta výroba turbokompresorů, expanzních turbin a svařovaných tlakových nádob objemů desítek až stovek m 3 z nerezavějících vysoce legovaných ocelí třídy 17 dle ČSN. Od padesátých let 20. století byly stavěny výrobny s tlakovou absorpcí. Proto je také žádoucí pracovat s koncentrovanějšími plyny, než jaké se získají obloukovým postupem. 21

28 Obloukový způsob výroby byl v průmyslovém měřítku zaveden prakticky pouze v Norsku díky levné elektrické energii vyráběné ve vodních elektrárnách vlastněných firmou Norsk Hydro. Ve třicátých letech byl zcela vytlačen postupem založeným na katalytické oxidaci čpavku, jak bude uvedeno dále Termický způsob Analogií obloukového způsobu byl termický způsob výroby oxidu dusnatého založený na spalování zemního plynu v přebytku vzduchu: CH O 2 CO H 2 O N 2 + O 2 2 NO Uvedené reakce probíhají při teplotách 2100 o C. Koncentrace NO za spalovací pecí se pohybovala od 1,5-2,0 % obj. Účinnost přeměny dusíku na oxid dusnatý se tedy ani u termického postupu díky termodynamickým podmínkám nezměnila. Vznikající NO byl po ochlazení adsorbován na silikagelu a oxidován vzdušným kyslíkem na NO 2. Desorpcí po snížení tlaku byly získány nitrosní plyny o cca 4x vyšší koncentraci, než byla za spalovací pecí. Absorpce a další oxidace NO na NO 2 je popsána stechiometrickými rovnicemi v b Termický postup byl realizován v USA firmou Wisconsin Alumini Research Fundation mezi válkami. Z důvodu vysoké energetické náročnosti a nízké účinnosti se rovněž neujal a byl zcela nahrazen katalytickou oxidací čpavku Výroba NO katalytickou oxidací čpavku Možnost oxidace čpavku vzduchem byla prokázána již v r a již v polovině 19. stol. byl znám katalytický účinek platiny. Rovněž bylo známo, že doba styku směsi vzduchu se čpavkem na platinovém katalyzátoru musí být velmi krátká, cca 0,001 sec. Průmyslové využití těchto poznatků bylo vázáno na dostupnost čpavku jako výchozí suroviny. Ta byla velmi omezená až do konce 19. století, kdy jediným významnějším zdrojem čpavku byla čpavková voda z čištění svítiplynu nebo koksárenských plynů. Proto ho byl nedostatek a jeho cena byla značně vysoká. To uplatnění čpavku pro výrobu kyseliny dusičné prakticky vylučovalo - produkce KD rozkladem chilského ledku kyselinou sírovou byla v tu dobu nejlevnější. Teprve v době před 1. sv. válkou byl technologicky v průmyslovém měřítku zvládnut kyanamidový způsob výroby čpavku z kyanamidu vápenatého. Potom byla v r uvedena do provozu v Opau (Německo) Haber-Boschova přímá relativně levná středotlaká katalytická syntéza čpavku z dusíko-vodíkové směsi. To umožnilo využití synteticky vyrobeného čpavku pro výrobu kyseliny dusičné. Katalytickou výrobu NO ze čpavku vystihuje rovnice: 4 NH O 2 4 NO + 6 H 2 O Δ H o 291 = - 907,28 kj Vedlejšími reakcemi může vznikat N 2 a N 2 O. Uspořádání katalytického reaktoru je patrné z (obr. 3.2.). Vedle doby styku katalyzátoru s reakční směsí se uplatňuje také jeho chemické složení. Nejlépe se v tomto směru osvědčila platina se 7,5-10 % rhodia. Katalyzátor je vyráběn ve formě jemné sítoviny s průměrem drátků 0,05-0,09 mm a s ok/cm 2. V kontaktním reaktoru je oxidován - spalován čpavek ve směsi se vzduchem. Vzduch před vstupem do přípravy směsi se čpavkem je vícestupňovou filtrací 22

Příklady úspěšných projektů čistší produkce (Cleaner Production) Výroba: kyseliny sírové mikrokorundu

Příklady úspěšných projektů čistší produkce (Cleaner Production) Výroba: kyseliny sírové mikrokorundu Příklady úspěšných projektů čistší produkce (Cleaner Production) Výroba: kyseliny sírové mikrokorundu Ing. Miroslav Richter, PhD., EUR ING Fakulta životního prostředí Univerzity J.E.Purkyně v Ústí n.l.

Více

1.1 Suroviny síry Průmyslově využitelné suroviny pro zisk síry nebo jejích sloučenin nebo dalších složek obsažených v příslušných minerálech výskyt:

1.1 Suroviny síry Průmyslově využitelné suroviny pro zisk síry nebo jejích sloučenin nebo dalších složek obsažených v příslušných minerálech výskyt: 1. Chemie a technologie sloučenin síry 1.1 Suroviny síry Průmyslově využitelné suroviny pro zisk síry nebo jejích sloučenin nebo dalších složek obsažených v příslušných minerálech výskyt: Elementární síra:

Více

Průmyslové technologie III

Průmyslové technologie III Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Fakulta životního prostředí Průmyslové technologie III Prof. Ing. Otakar Söhnel, DrSc. Ing. Miroslav Richter Ústí nad Labem 1999 Předmluva Skripta Průmyslová

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013 Omezování plynných emisí Ochrana ovzduší ZS 2012/2013 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,

Více

Kyselina dusičná. jedna z nejdůležitějších chemikálií

Kyselina dusičná. jedna z nejdůležitějších chemikálií Kyselina dusičná jedna z nejdůležitějších chemikálií Výroba: minulost - surovinou pro průmyslovou výrobu dusičnan sodný (ledek sodný, guano) současnost - katalytické spalování amoniaku (první výrobní jednotka

Více

3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING

3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE 3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING Výroby sody a potaše Suroviny, Přehled výrobních technologií

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011 Omezování plynných emisí Ochrana ovzduší ZS 2010/2011 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) 3. část ODSTRANĚNÍ SO 2 A HCl ZE SPALIN Zpracoval: Tým autorů EVECO Brno, s.r.o. ODSTRANĚNÍ SO 2 A HCl ZE SPALIN Množství SO 2, HCl,

Více

Tematický blok 2 Zdroje znečišťování ovzduší Chemický průmysl Ing. Miroslav Richter, Ph.D., EUR ING miroslav.richter@ujep.cz

Tematický blok 2 Zdroje znečišťování ovzduší Chemický průmysl Ing. Miroslav Richter, Ph.D., EUR ING miroslav.richter@ujep.cz ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Tematický blok 2 Zdroje znečišťování ovzduší Chemický průmysl Ing. Miroslav Richter, Ph.D., EUR ING miroslav.richter@ujep.cz

Více

integrované povolení

integrované povolení V rámci aktuálního znění výrokové části integrovaného povolení jsou zapracovány dosud vydané změny příslušného integrovaného povolení. Uvedený dokument má pouze informativní charakter a není závazný. Aktuální

Více

Průmysl dusíku. amoniak - kyselina dusičná - dusičnan amonný - močovina - chloramin - hydrazin. NaClO NaOH CO(NH 2 ) 2.

Průmysl dusíku. amoniak - kyselina dusičná - dusičnan amonný - močovina - chloramin - hydrazin. NaClO NaOH CO(NH 2 ) 2. Průmysl dusíku amoniak - kyselina dusičná - dusičnan amonný - močovina - chloramin - hydrazin CO(NH 2 ) 2 NaClO NaOH NH 2 Cl N 2 H 4 methan CO 2 (uhlí, ropa) H 2 NH 3 NO 2 HNO 3 O 2 vzduch voda vzduch

Více

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo

Více

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti 5. Nekovy sı ra 1) Obecná charakteristika nekovů 2) Síra a její vlastnosti 1) Obecná charakteristika nekovů Jedna ze tří chemických skupin prvků. Nekovy mají vysokou elektronegativitu. Jsou to prvky uspořádané

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob Kyselina fosforečná bezbarvá krystalická sloučenina snadno rozpustná ve vodě komerčně dodávané koncentrace 75% H 3 PO 4 s 54,3% P 2 O 5 80% H 3 PO 4 s 58.0% P 2 O 5 85% H 3 PO 4 s 61.6% P 2 O 5 po kyselině

Více

Amoniak. 1913 průmyslová výroba syntetického amoniaku

Amoniak. 1913 průmyslová výroba syntetického amoniaku Amoniak 1913 průmyslová výroba syntetického amoniaku využití 20 % výroba dusíkatých hnojiv 80 % nejrůznější odvětví průmyslu (plasty, vlákna, výbušiny, hydrazin, aminy, amidy, nitrily a další organické

Více

Fosfor a sloučeniny fosforu. Suroviny. Sloučeniny. kalcinace pro oddělení organických. Kyselina trihydrogenfosforečná H3PO4

Fosfor a sloučeniny fosforu. Suroviny. Sloučeniny. kalcinace pro oddělení organických. Kyselina trihydrogenfosforečná H3PO4 Fosfor a sloučeniny fosforu Sloučeniny Fosfor bílý Kyselina trihydrogenfosforečná H3PO4 Suroviny Apatit Ca5 (PO4)3(F, OH, Cl) fluoroapatity úpravy mletí promývání sítování magnetické oddělování oxidů železa

Více

CHEMICKÝ PRŮMYSL V ČR

CHEMICKÝ PRŮMYSL V ČR CHEMICKÝ PRŮMYSL V ČR Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 4. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemie a společnost 1 Anotace: Žáci se seznámí s oblastmi

Více

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel FLUIDNÍ KOTLE Osvědčená technologie pro spalování paliv na pevném roštu s fontánovou fluidní vrstvou. Možnost spalování široké palety spalování pevných paliv s velkým rozpětím výhřevnosti uhlí, biomasy

Více

integrované povolení

integrované povolení V rámci aktuálního znění výrokové části integrovaného povolení jsou zapracovány dosud vydané změny příslušného integrovaného povolení. Uvedený dokument má pouze informativní charakter a není závazný. Aktuální

Více

ZÁKLADNÍ CHEMICKÉ VÝPOČTY

ZÁKLADNÍ CHEMICKÉ VÝPOČTY ZÁKLADNÍ CHEMICKÉ VÝPOČTY Látkové množství - vyjadřování množství: jablka pivo chleba uhlí - (téměř každá míra má svojí jednotku) v chemii existuje univerzální veličina pro vyjádření množství látky LÁTKOVÉ

Více

Denitrifikace. Ochrana ovzduší ZS 2012/2013

Denitrifikace. Ochrana ovzduší ZS 2012/2013 Denitrifikace Ochrana ovzduší ZS 2012/2013 1 Úvod Pojem oxidy dusíku NO NO 2 Další formy NO x Vznik NO x 2 Vlastnosti NO Oxid dusnatý Vlastnosti M mol,no = 30,01 kg/kmol V mol,no,n = 22,41 m 3 /kmol ρ

Více

ZPRÁVA O VLIVU NA ŽIVOTNÍ PROSTŘEDÍ 2007

ZPRÁVA O VLIVU NA ŽIVOTNÍ PROSTŘEDÍ 2007 ZPRÁVA O VLIVU NA ŽIVOTNÍ PROSTŘEDÍ 27 Vážení čtenáři, Lovochemie, a.s., věnuje ochraně životního prostředí mimořádnou pozornost. Postupné snižování emisí do všech složek životního prostředí, vytváření

Více

Zákon 86/2002 Sb. o ochraně ovzduší a o změně některých dalších zákonů

Zákon 86/2002 Sb. o ochraně ovzduší a o změně některých dalších zákonů Zákon 86/2002 Sb. o ochraně ovzduší a o změně některých dalších zákonů 1 Zákon 86/2002 Sb. řeší ochranu ovzduší před znečišťujícími látkami ochranu ozonové vrstvy Země ochranu klimatického systému Země

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

ENERGETIKA TŘINEC, a.s. Horní Lomná

ENERGETIKA TŘINEC, a.s. Horní Lomná ENERGETIKA TŘINEC, a.s. Horní Lomná 21. 06. 2016. Charakteristika společnosti ENERGETIKA TŘINEC, a.s. je 100 % dceřiná společnost Třineckých železáren, a.s. Zásobuje energiemi především mateřský podnik,

Více

PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ

PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ Energetické využití odpadů PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ komunální a průmyslové odpady patří do kategorie tzv. druhotných energetických

Více

Biologické odsiřování bioplynu. Ing. Dana Pokorná, CSc.

Biologické odsiřování bioplynu. Ing. Dana Pokorná, CSc. Biologické odsiřování bioplynu Ing. Dana Pokorná, CSc. Sulfan problematická složka bioplynu Odkud se sulfan v bioplynu bere? Organická síra proteiny s inkorporovanou sírou Odpady a odpadní vody z průmyslu

Více

Moderní kotelní zařízení

Moderní kotelní zařízení Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Moderní kotelní zařízení Text byl vypracován s podporou projektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství Vodík jako alternativní ekologické palivo palivové články a vodíkové hospodářství Charakteristika vodíku vodík je nejrozšířenějším prvkem ve vesmíru na Zemi je třetím nejrozšířenějším prvkem po kyslíku

Více

Chemie a technologie sloučenin dusíku. 1.0. Výskyt dusíku a jeho sloučenin

Chemie a technologie sloučenin dusíku. 1.0. Výskyt dusíku a jeho sloučenin Chemie a technologie sloučenin dusíku 1.0. Výskyt dusíku a jeho sloučenin V atmosféře je 79 % obj. dusíku. Zároveň se v atmosféře vyskytují stopová množství oxidů dusíku souhrnně označovaných jako NO x

Více

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy obsah Prezentace cíl společnosti Odpadní komodity a jejich složení Nakládání s komunálním odpadem Thermo-katalitická

Více

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace VY_52_INOVACE_737 8. Chemie notebook Směsi Materiál slouží k vyvození a objasnění pojmů (klíčová slova - chemická látka, směs,

Více

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY Jan Škvařil Článek se zabývá energetickými trendy v oblasti využívání obnovitelného zdroje s největším potenciálem v České republice. Prezentuje výzkumnou práci prováděnou

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_SZ_20. 9. Autor: Ing. Luboš Veselý Datum vypracování: 15. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu

Více

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH Teplárenské dny 2015 Hradec Králové J. Hyžík STEO, Praha, E.I.C. spol. s r.o., Praha, EIC AG, Baden (CH), TU v Liberci,

Více

ZELENÁ ZPRÁVA O OCHRANĚ ŽIVOTNÍHO PROSTŘEDÍ

ZELENÁ ZPRÁVA O OCHRANĚ ŽIVOTNÍHO PROSTŘEDÍ ZELENÁ ZPRÁVA O OCHRANĚ ŽIVOTNÍHO PROSTŘEDÍ 214 1 Lovochemie, a.s. věnuje ochraně životního prostředí mimořádnou pozornost. Postupné snižování emisí do všech složek životního prostředí, vytváření bezpečných

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Chemie 9. ročník Zpracovala: Mgr. Michaela Krůtová ANORGANICKÉ SLOUČENINY KYSELINY porovná vlastnosti a použití vybraných prakticky významných kyselin orientuje se

Více

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Prof. Ing. Petr Stehlík, CSc. Vysoké učení technické v Brně Ústav procesního a ekologického inženýrství Ing.

Více

integrované povolení

integrované povolení V rámci aktuálního znění výrokové části integrovaného povolení jsou zapracovány dosud vydané změny příslušného integrovaného povolení. Uvedený dokument má pouze informativní charakter a není závazný. Aktuální

Více

Zpráva o ochraně životního prostředí

Zpráva o ochraně životního prostředí Zpráva o ochraně životního prostředí Zpráva o ochraně životního prostředí shrnuje důležité aspekty výrobních i nevýrobních činností Lučebních závodů a.s. Kolín a jejich dopady na životní prostředí. Poskytuje

Více

Ing. Radim Staněk, prof. Ing. Jana Zábranská CSc. Čištění odpadních vod z výroby nitrocelulózy

Ing. Radim Staněk, prof. Ing. Jana Zábranská CSc. Čištění odpadních vod z výroby nitrocelulózy Ing. Radim Staněk, prof. Ing. Jana Zábranská CSc. Čištění odpadních vod z výroby nitrocelulózy 20.10.2017 1 Nitrocelulóza Synthesia, a.s. Pardubice vyrábí jako jeden ze svých stěžejních produktů nitrocelulózu.

Více

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: PRVKY PÁTÉ SKUPINY Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: Obecná konfigurace: ns np Nejvyšší kladné

Více

Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0

Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0 Otázka: Prvky V. A skupiny Předmět: Chemie Přidal(a): kevina.h Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0 valenční

Více

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VÝPOČET HMOTNOSTI REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI

Více

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD.

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD. KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení Ing. Miroslav Richter, PhD., EUR ING 2014 Materiálové bilance 3.5.1 Do tkaninového filtru vstupuje 10000

Více

Předmět: CHEMIE Ročník: 8. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu

Předmět: CHEMIE Ročník: 8. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu Chemie ukázka chemického skla Chemie přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce práce s dostupnými a běžně používanými látkami (směsmi). Na základě piktogramů žák posoudí nebezpečnost

Více

Dusík a fosfor. Dusík

Dusík a fosfor. Dusík 5.9.010 Dusík a fosfor Dusík lyn Bezbarvý, bez chuti a zápachu Vyskytuje se v dvouatomových molekulách N Molekuly dusíku extremně stabilní říprava: reakce dusitanů s amonnými ionty NH N N ( ( ( ( Výroba:

Více

Učební osnova předmětu Chemická technologie

Učební osnova předmětu Chemická technologie Učební osnova předmětu Chemická technologie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: ochrana životního prostředí analytická chemie chemická technologie denní Celkový počet vyučovacích

Více

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky Příloha č. 20 (Příloha č. 1 NV č. 352/2002 Sb.) Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky 1. Emisní limity

Více

ODSTRANĚNÍ CHEMICKÝCH ODPADŮ VE SPALOVNÁCH 1 POSTAVENÍ SITA CZ NA TRHU SPALITELNÝCH ODPADU

ODSTRANĚNÍ CHEMICKÝCH ODPADŮ VE SPALOVNÁCH 1 POSTAVENÍ SITA CZ NA TRHU SPALITELNÝCH ODPADU ODSTRANĚNÍ CHEMICKÝCH ODPADŮ VE SPALOVNÁCH Autoři: Ing. DAVID BÍBRLÍK, Ing. LUKÁŠ HURDÁLEK M.B.A., Mgr. TOMÁŠ ONDRŮŠEK, SITA CZ a.s. Španělská 10/1073, 120 00 Praha 2 email: david.bibrlik@sita.cz, tomas.ondrusek@sita.cz,

Více

Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením).

Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením). 10. VÝMĚNÍKY TEPLA Výměníky tepla jsou zařízení, ve kterých se jeden proud ohřívá a druhý ochlazuje sdílením tepla. Nezáleží přitom na konečném cíli operace, tj. zda chceme proud ochladit nebo ohřát, ani

Více

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ Provoz automobilových PSM je provázen produkcí škodlivin, které jsou emitovány do okolí: škodliviny chemické (výfuk.škodliviny, kontaminace),

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

W E M A K E Y O U R I D E A S A R E A L I T Y SUCHÉ KONDICIONOVANÉ ODSÍŘENÍ ZNEČIŠŤOVÁNÍ

W E M A K E Y O U R I D E A S A R E A L I T Y SUCHÉ KONDICIONOVANÉ ODSÍŘENÍ ZNEČIŠŤOVÁNÍ KOTLE 2013 BRNO 18. - 20. března 2013 SUCHÉ KONDICIONOVANÉ ODSÍŘENÍ ZEJMÉNA PRO MALÉ A STŘEDNÍ ZDROJE ZNEČIŠŤOVÁNÍ Změna emisních limitů SO 2 pro starší zdroje spalující uhlí (vyhláška 415/2012) LIMITY

Více

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody.

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody. Proces Biodestil Biodestil je nový pokrokový proces pro zpracování vysoce kontaminovaných nebo zasolených odpadních vod, které jsou obtížně likvidovatelné ostatními konvenčními metodami. Tento proces je

Více

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ)

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) Úloha 1 Ic), IIa), IIId), IVb) za každé správné přiřazení po 1 bodu; celkem Úloha 2 8 bodů 1. Sodík reaguje s vodou za vzniku hydroxidu sodného a dalšího produktu.

Více

VODA A PRŮMYSL Konference Voda jako strategický faktor konkurenceschopnosti ČR příležitosti a rizika

VODA A PRŮMYSL Konference Voda jako strategický faktor konkurenceschopnosti ČR příležitosti a rizika bcsd VODA A PRŮMYSL Konference Voda jako strategický faktor konkurenceschopnosti ČR příležitosti a rizika Jan Čermák Praha, 3.12.2014 PRŮMYSL VS. VODA ČASOVÁ HISTORIE PRŮMYSL -PŮDA VODA MALÝ PRŮMYSL =/=

Více

Úprava vody v elektrárnách a teplárnách Bezodpadové technologie Petra Křížová

Úprava vody v elektrárnách a teplárnách Bezodpadové technologie Petra Křížová Úprava vody v elektrárnách a teplárnách Bezodpadové technologie Petra Křížová MemBrain s.r.o., Pod Vinicí 87, 471 27 Stráž pod Ralskem 1 Úprava vody v elektrárnách a teplárnách a bezodpadové technologie

Více

Ing. David Kupka, Ph.D. Řešeno v rámci projektu Nakládání s odpady v Moravskoslezském a Žilinském kraji

Ing. David Kupka, Ph.D. Řešeno v rámci projektu Nakládání s odpady v Moravskoslezském a Žilinském kraji Ing. David Kupka, Ph.D. Řešeno v rámci projektu Nakládání s odpady v Moravskoslezském a Žilinském kraji Nakládání s odpady Předcházení vzniku Opětovné použití Materiálově využití by mělo být upřednostněno

Více

J i h l a v a Základy ekologie

J i h l a v a Základy ekologie S třední škola stavební J i h l a v a Základy ekologie 14. Energie klasické zdroje Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský

Více

Energetické využití odpadu. 200 let První brněnské strojírny

Energetické využití odpadu. 200 let První brněnské strojírny 200 let První brněnské strojírny Řešení využití odpadů v nové produktové linii PBS Spalování odpadů Technologie spalování vytříděného odpadu, kontaminované dřevní hmoty Depolymerizace a možnosti využití

Více

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Celkový dusík Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka, rizika

Více

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU Sídlo/kancelář: Březinova 42, Brno Pobočka: Místecká 901, Paskov Česká Republika eveco@evecobrno.cz www.evecobrno.cz INTRODUCTION Společnost EVECO

Více

Síra a sloučeniny síry. 1. Síra S. Sloučeniny. rekuperace síry z jiných průmyslových surovin a produktů. vulkanizační přísady. Kyselina sírová H2SO4

Síra a sloučeniny síry. 1. Síra S. Sloučeniny. rekuperace síry z jiných průmyslových surovin a produktů. vulkanizační přísady. Kyselina sírová H2SO4 Síra a sloučeniny síry Sloučeniny Kyselina sírová H2SO4 Oxidy síry Sirouhlík CS2 (viskózní vlákna) 1. Síra S Zdroje: těžba elementární síry rekuperace síry z jiných průmyslových surovin a produktů (např.

Více

Co udělaly (a musí udělat) teplárny pro splnění limitů? Co přinesla ekologizace?

Co udělaly (a musí udělat) teplárny pro splnění limitů? Co přinesla ekologizace? Co udělaly (a musí udělat) teplárny pro splnění limitů? Co přinesla ekologizace? Petr Matuszek XXIX. SEMINÁŘ ENERGETIKŮ Luhačovice 22. 24. 1. 2019 1. Obsah Charakteristika společnosti Teplárna E2 Teplárna

Více

1 mol (ideálního) plynu, zaujímá za normálních podmínek objem 22,4 litru. , Cl 2 , O 2

1 mol (ideálního) plynu, zaujímá za normálních podmínek objem 22,4 litru. , Cl 2 , O 2 10.výpočty z rovnic praktické provádění výpočtů z rovnic K výpočtu chemických rovnic je důležité si shrnout tyto poznatky: Potřebujem znát vyjadřování koncentrací, objemový zlomek, molární zlomek, molární

Více

Název odpadu. 010307 N Jiné odpady z fyzikálního a chemického zpracování rudných nerostů obsahující nebezpečné látky x

Název odpadu. 010307 N Jiné odpady z fyzikálního a chemického zpracování rudných nerostů obsahující nebezpečné látky x 5. Stabilizace CELIO a.s. Název odpadu 010304 N Hlušina ze zpracování sulfidické rudy obsahující kyseliny nebo kyselinotvorné látky x 010305 N Jiná hlušina obsahující nebezpečné látky x 010307 N Jiné odpady

Více

Katalogy a seznamy nebezpečných odpadů. Kategorizace odpadů podle nebezpečnosti.

Katalogy a seznamy nebezpečných odpadů. Kategorizace odpadů podle nebezpečnosti. Katalogy a seznamy nebezpečných odpadů. Kategorizace odpadů podle nebezpečnosti. Zákon 185/2001 Sb. jednoznačně ve svých přílohách či v prováděcích předpisech stanovuje co je nebezpečný odpad základním

Více

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, 612 00 Brno Popis Prototyp automatického kotle o výkonu 100 kw

Více

TECHNOLOGIE OCHRANY OVZDUŠÍ

TECHNOLOGIE OCHRANY OVZDUŠÍ TECHNOLOGIE OCHRANY OVZDUŠÍ Přednáška č. 5 Přednášející: Ing. Marek Staf, Ph.D. tel. 0 444 458; e-mail marek.staf@vscht.cz budova A, ústav 16, č. dveří 16 Snímek 1. Osnova přednášky Suchá vápencová metoda

Více

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Úvod IX. -ukázka chem.skla přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce-práce s dostupnými a běžně používanými látkami, hodnocení jejich rizikovosti, posoudí bezpečnost vybraných

Více

Ch - Hydroxidy VARIACE

Ch - Hydroxidy VARIACE Ch - Hydroxidy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

Bezpečnostní inženýrství - Chemické procesy -

Bezpečnostní inženýrství - Chemické procesy - Bezpečnostní inženýrství - Chemické procesy - M. Jahoda Nebezpečí a prevence chemických procesů 2 Chemické reakce Tepelné efekty exotermní procesy (teplo se uvolňuje => nutnost chlazení) endotermní procesy

Více

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu Subjekt Speciální ZŠ a MŠ Adresa U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu OP Vzdělávání pro konkurenceschopnost Číslo výzvy 21 Název výzvy Žádost o fin. podporu

Více

Zpráva o ochraně životního prostředí

Zpráva o ochraně životního prostředí Zpráva o ochraně životního prostředí Zpráva o ochraně životního prostředí shrnuje důležité aspekty výrobních i nevýrobních činností Lučebních závodů a.s. Kolín a jejich dopady na životní prostředí. Poskytuje

Více

Zpráva o udržitelném rozvoji a vlivu firmy na životní prostředí

Zpráva o udržitelném rozvoji a vlivu firmy na životní prostředí VÝROBA A PRODEJ ČISTÝCH, SPECIÁLNÍCH A FARMAC H E Zpráva o udržitelném rozvoji a vlivu firmy na životní prostředí Profil firmy Firma Ing. Petr Švec PENTA byla založena v roce 1990 a od počátku je ryze

Více

Krajský úřad Pardubického kraje OŽPZ - oddělení integrované prevence

Krajský úřad Pardubického kraje OŽPZ - oddělení integrované prevence Krajský úřad Pardubického kraje OŽPZ - oddělení integrované prevence *KUPAX00NHEHH* KUPAX00NHEHH Číslo jednací: KrÚ 7409/2018/OŽPZ/VO Spisová značka: SpKrÚ 79213/2017/OŽPZ/OIP Vyřizuje: Ing. Evžen Vokál,

Více

Název opory DEKONTAMINACE

Název opory DEKONTAMINACE Ochrana obyvatelstva Název opory DEKONTAMINACE doc. Ing. Josef Kellner, CSc. josef.kellner@unob.cz, telefon: 973 44 36 65 O P E R A Č N Í P R O G R A M V Z D Ě L Á V Á N Í P R O K O N K U R E N C E S C

Více

Ing. Jiří Charvát, Ing. Pavel Kolář Z 13 NOVÉ SMĚRY A PERSPEKTIVY SANACE HORNINOVÉHO PROSTŘEDÍ PO CHEMICKÉ TĚŽBĚ URANU NA LOŽISKU STRÁŽ

Ing. Jiří Charvát, Ing. Pavel Kolář Z 13 NOVÉ SMĚRY A PERSPEKTIVY SANACE HORNINOVÉHO PROSTŘEDÍ PO CHEMICKÉ TĚŽBĚ URANU NA LOŽISKU STRÁŽ Ing. Jiří Charvát, Ing. Pavel Kolář Z 13 NOVÉ SMĚRY A PERSPEKTIVY SANACE HORNINOVÉHO PROSTŘEDÍ PO CHEMICKÉ TĚŽBĚ URANU NA LOŽISKU STRÁŽ Chemická těžba uranu byla v o. z. TÚU Stráž pod Ralskem provozována

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH ROVNIC VY_32_INOVACE_03_3_18_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují

Více

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) 6. část DIOXINY A FURANY Zpracoval: Tým autorů EVECO Brno, s.r.o. DIOXINY A FURANY DIOXINY PCDD: je obecný název pro skupinu toxických

Více

DODAVATELSKÝ PROGRAM

DODAVATELSKÝ PROGRAM DODAVATELSKÝ PROGRAM HLAVNÍ ČINNOSTI DODÁVKY KOTELEN NA KLÍČ Projekty, dodávka, montáž, zkoušky a uvádění do provozu Teplárny Energetická centra pro rafinerie, cukrovary, papírny, potravinářský průmysl,chemický

Více

Problematika koncentrací Hg ve spalinách vzniklých po spalování pevných fosilních paliv

Problematika koncentrací Hg ve spalinách vzniklých po spalování pevných fosilních paliv ÚJV Řež, a. s. Divize ENERGOPROJEKT PRAHA Problematika koncentrací Hg ve spalinách vzniklých po spalování pevných fosilních paliv Lukáš Pilař Konference Technologie pro elektrárny a teplárny na tuhá paliva

Více

7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda

7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda Chemické reakce a děje Chemické reakce 1) Jak se chemické reakce odlišují od fyzikálních dějů? (2) změna vlastností látek, změna vazeb mezi atomy 2) Co označujeme v chemických reakcích jako reaktanty a

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_číslo šablony_inovace_číslo přílohy Autor Datum vytvoření vzdělávacího

Více

PARAMO Pardubice. Studijní materiál k předmětu Chemická exkurze C6950 Brno 2011

PARAMO Pardubice. Studijní materiál k předmětu Chemická exkurze C6950 Brno 2011 Studijní materiál k předmětu Chemická exkurze C6950 Brno 2011 PARAMO Pardubice Vypracoval: Mgr. Radek Matuška Úpravy: Mgr. Zuzana Garguláková, doc. Ing. Vladimír Šindelář, Ph.D. Obecné informace PARAMO,

Více

Platné znění části zákona s vyznačením změn

Platné znění části zákona s vyznačením změn Platné znění části zákona s vyznačením změn 11 (5) Pokud by provozem stacionárního zdroje označeného ve sloupci B v příloze č. 2 k tomuto zákonu nebo vlivem umístění pozemní komunikace podle odstavce 1

Více

Právnické osobě Macco Organiques, s.r.o. (provozovatel zařízení), se sídlem Zahradní 1938/46c, 792 01 Bruntál, IČ 26819210, se vydává

Právnické osobě Macco Organiques, s.r.o. (provozovatel zařízení), se sídlem Zahradní 1938/46c, 792 01 Bruntál, IČ 26819210, se vydává V rámci aktuálního znění výrokové části integrovaného povolení jsou zapracovány dosud vydané změny příslušného integrovaného povolení. Uvedený dokument má pouze informativní charakter a není závazný. Aktuální

Více

Cena za set Kč SESTAVA OBSAHUJE: Nádrž 250 L se dvěma trubkovými výměníky 1 ks. Čerpadlová skupina dvoucestná 1 ks.

Cena za set Kč SESTAVA OBSAHUJE: Nádrž 250 L se dvěma trubkovými výměníky 1 ks. Čerpadlová skupina dvoucestná 1 ks. Solární system SESTAVA OBSAHUJE: Nádrž 250 L se dvěma trubkovými výměníky 1 ks. Čerpadlová skupina dvoucestná 1 ks. Plochý solární kolektor 2 m 2 ks Solární regulátor 1 ks Solární nádoba 18 L 1 ks Připojovací

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Oxidace a redukce jsou chemické reakce spojené s výměnou elektronů. Při oxidaci látka elektrony uvolňuje a její oxidační číslo se zvyšuje.

Více

SPALOVNA ZEVO CHOTÍKOV

SPALOVNA ZEVO CHOTÍKOV SPALOVNA ZEVO CHOTÍKOV ZEVO Chotíkov Nástroj pro plnění plánu odpadového hospodářství Další součást palivové základny pro výrobu energií pro Plzeň www. plzenskateplarenska.cz Projekt plně zapadá do hierarchie

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

Kód a ceník odpadů ukládaných na skládce Klenovice Technické služby Tábor s.r.o.

Kód a ceník odpadů ukládaných na skládce Klenovice Technické služby Tábor s.r.o. Kód a ceník odpadů ukládaných na skládce Klenovice Technické služby Tábor s.r.o. Celková cena s DPH = ( ( cena Kč/t + finanční rezerva ) x %DPH ) + základní poplatek obci Identifikační kód: CZC00517 ZÚJ

Více

Nakládání s upotřebenými odpadními oleji

Nakládání s upotřebenými odpadními oleji Nakládání s upotřebenými odpadními oleji 1.11.2012 Ing. Martin Holek, Bc. Lada Rozlílková množství v t 210 000 180 000 150 000 120 000 90 000 60 000 30 000 0 2000 2001 2002 2003 2004 2005 2006 2007 2008

Více

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců Výpočty z chemických vzorců 1. Hmotnost kyslíku je 80 g. Vypočítejte : a) počet atomů kyslíku ( 3,011 10 atomů) b) počet molů kyslíku (2,5 mol) c) počet molekul kyslíku (1,505 10 24 molekul) d) objem (dm

Více

VÝROBA KYSELINY SÍROVÉ TEXT PRO UČITELE

VÝROBA KYSELINY SÍROVÉ TEXT PRO UČITELE VÝROBA KYSELINY SÍROVÉ TEXT PRO UČITELE Mgr. Jana Prášilová prof. RNDr. Jiří Kameníček, CSc. Olomouc, 2013 Obsah 1. Téma v učebnicích používaných na gymnáziích 2. Teoretické poznatky k problematice Kontaktní

Více

Složení soustav (roztoky, koncentrace látkového množství)

Složení soustav (roztoky, koncentrace látkového množství) VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice

Více