Voroného konstrukce na mapě světa

Rozměr: px
Začít zobrazení ze stránky:

Download "Voroného konstrukce na mapě světa"

Transkript

1 na mapě světa Jan Ústav matematiky, FSI VUT,

2 na mapě světa Jan Ústav matematiky, FSI VUT,

3 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru). Voroného buňka pro daný prvek m M - množina všech x X takových, pro něž je nejbližším prvkem z množiny M prvek m Voroného diagram - rozdělení roviny X na Voroného buňky pro všechny prvky m M

4 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru). Voroného buňka pro daný prvek m M - množina všech x X takových, pro něž je nejbližším prvkem z množiny M prvek m Voroného diagram - rozdělení roviny X na Voroného buňky pro všechny prvky m M

5 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru). Voroného buňka pro daný prvek m M - množina všech x X takových, pro něž je nejbližším prvkem z množiny M prvek m Voroného diagram - rozdělení roviny X na Voroného buňky pro všechny prvky m M

6 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru). Voroného buňka pro daný prvek m M - množina všech x X takových, pro něž je nejbližším prvkem z množiny M prvek m Voroného diagram - rozdělení roviny X na Voroného buňky pro všechny prvky m M

7 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru). Voroného buňka pro daný prvek m M - množina všech x X takových, pro něž je nejbližším prvkem z množiny M prvek m Voroného diagram - rozdělení roviny X na Voroného buňky pro všechny prvky m M

8 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru). Voroného buňka pro daný prvek m M - množina všech x X takových, pro něž je nejbližším prvkem z množiny M prvek m Voroného diagram - rozdělení roviny X na Voroného buňky pro všechny prvky m M

9 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru). Voroného buňka pro daný prvek m M - množina všech x X takových, pro něž je nejbližším prvkem z množiny M prvek m Voroného diagram - rozdělení roviny X na Voroného buňky pro všechny prvky m M

10 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru). Voroného buňka pro daný prvek m M - množina všech x X takových, pro něž je nejbližším prvkem z množiny M prvek m Voroného diagram - rozdělení roviny X na Voroného buňky pro všechny prvky m M

11 Metody výpočtu K danému prvku m 0 M hledáme jeho Voroného buňku. Voroného buňka - základní postup Voroného buňku B(m 0 ) dostaneme průnikem polorovin P m0,m (přes všechna m M, m m 0 ) určených přímkami oddělujících dvojici (m 0, m) a obsahující prvek m 0 B(m 0 ) = Námět k zamyšlení m M,m m 0 P m0,m Vymyslete lepší algoritmus pro nalezení Voroného buňky.

12 Metody výpočtu K danému prvku m 0 M hledáme jeho Voroného buňku. Voroného buňka - základní postup Voroného buňku B(m 0 ) dostaneme průnikem polorovin P m0,m (přes všechna m M, m m 0 ) určených přímkami oddělujících dvojici (m 0, m) a obsahující prvek m 0 B(m 0 ) = Námět k zamyšlení m M,m m 0 P m0,m Vymyslete lepší algoritmus pro nalezení Voroného buňky.

13 Metody výpočtu K danému prvku m 0 M hledáme jeho Voroného buňku. Voroného buňka - základní postup Voroného buňku B(m 0 ) dostaneme průnikem polorovin P m0,m (přes všechna m M, m m 0 ) určených přímkami oddělujících dvojici (m 0, m) a obsahující prvek m 0 B(m 0 ) = Námět k zamyšlení m M,m m 0 P m0,m Vymyslete lepší algoritmus pro nalezení Voroného buňky.

14 Metody výpočtu K danému prvku m 0 M hledáme jeho Voroného buňku. Voroného buňka - základní postup Voroného buňku B(m 0 ) dostaneme průnikem polorovin P m0,m (přes všechna m M, m m 0 ) určených přímkami oddělujících dvojici (m 0, m) a obsahující prvek m 0 B(m 0 ) = Námět k zamyšlení m M,m m 0 P m0,m Vymyslete lepší algoritmus pro nalezení Voroného buňky.

15 Oddělující přímka Základním stavebním prvkem pro konstrukci Voroného buňky je oddělující přímka neboli bisektor a jí (a bodem) určená polorovina. Základní problém Jsou dány body X a Y v základním prostoru P. Hledáme jejich oddělující přímku p a jí a bodem X určenou polorovinu π X. Konstrukce Body X a Y vedeme přímku q,vznikne úsečka XY,najdeme její střed S.Přímka p je kolmice na q vedená bodem S. Tato přímka rozděluje prostor P na dvě části, poloroviny π X, resp. π Y, v nichž leží body X, resp. Y.

16 Oddělující přímka Základním stavebním prvkem pro konstrukci Voroného buňky je oddělující přímka neboli bisektor a jí (a bodem) určená polorovina. Základní problém Jsou dány body X a Y v základním prostoru P. Hledáme jejich oddělující přímku p a jí a bodem X určenou polorovinu π X. Konstrukce Body X a Y vedeme přímku q,vznikne úsečka XY,najdeme její střed S.Přímka p je kolmice na q vedená bodem S. Tato přímka rozděluje prostor P na dvě části, poloroviny π X, resp. π Y, v nichž leží body X, resp. Y.

17 Oddělující přímka Základním stavebním prvkem pro konstrukci Voroného buňky je oddělující přímka neboli bisektor a jí (a bodem) určená polorovina. Základní problém Jsou dány body X a Y v základním prostoru P. Hledáme jejich oddělující přímku p a jí a bodem X určenou polorovinu π X. Konstrukce Body X a Y vedeme přímku q,vznikne úsečka XY,najdeme její střed S.Přímka p je kolmice na q vedená bodem S. Tato přímka rozděluje prostor P na dvě části, poloroviny π X, resp. π Y, v nichž leží body X, resp. Y.

18 Oddělující přímka Základním stavebním prvkem pro konstrukci Voroného buňky je oddělující přímka neboli bisektor a jí (a bodem) určená polorovina. Základní problém Jsou dány body X a Y v základním prostoru P. Hledáme jejich oddělující přímku p a jí a bodem X určenou polorovinu π X. Konstrukce Body X a Y vedeme přímku q,vznikne úsečka XY,najdeme její střed S.Přímka p je kolmice na q vedená bodem S. Tato přímka rozděluje prostor P na dvě části, poloroviny π X, resp. π Y, v nichž leží body X, resp. Y.

19 Oddělující přímka Základním stavebním prvkem pro konstrukci Voroného buňky je oddělující přímka neboli bisektor a jí (a bodem) určená polorovina. Základní problém Jsou dány body X a Y v základním prostoru P. Hledáme jejich oddělující přímku p a jí a bodem X určenou polorovinu π X. Konstrukce Body X a Y vedeme přímku q,vznikne úsečka XY,najdeme její střed S.Přímka p je kolmice na q vedená bodem S. Tato přímka rozděluje prostor P na dvě části, poloroviny π X, resp. π Y, v nichž leží body X, resp. Y.

20 Oddělující přímka Základním stavebním prvkem pro konstrukci Voroného buňky je oddělující přímka neboli bisektor a jí (a bodem) určená polorovina. Základní problém Jsou dány body X a Y v základním prostoru P. Hledáme jejich oddělující přímku p a jí a bodem X určenou polorovinu π X. Konstrukce Body X a Y vedeme přímku q,vznikne úsečka XY,najdeme její střed S.Přímka p je kolmice na q vedená bodem S. Tato přímka rozděluje prostor P na dvě části, poloroviny π X, resp. π Y, v nichž leží body X, resp. Y.

21 Oddělující přímka Základním stavebním prvkem pro konstrukci Voroného buňky je oddělující přímka neboli bisektor a jí (a bodem) určená polorovina. Základní problém Jsou dány body X a Y v základním prostoru P. Hledáme jejich oddělující přímku p a jí a bodem X určenou polorovinu π X. Konstrukce Body X a Y vedeme přímku q,vznikne úsečka XY,najdeme její střed S.Přímka p je kolmice na q vedená bodem S. Tato přímka rozděluje prostor P na dvě části, poloroviny π X, resp. π Y, v nichž leží body X, resp. Y.

22 Sférická geometrie prostor P kulová plocha se středem C o poloměru r přímka hlavní kružnice sféry P (kružnice středem C o poloměru r) úsečka ublouk hlavní kružnice střed úsečky bod na úsečce určený polovičním středovým úhlem úhel přímek úhel příslušných rovin Takto chápané pojmy nám umožní konstrukci oddělující přímky, poloroviny a tedy i Voroného buňky ve sférické geometrii. To můžeme použít pro určení oblasti významu.

23 Sférická geometrie prostor P kulová plocha se středem C o poloměru r přímka hlavní kružnice sféry P (kružnice středem C o poloměru r) úsečka ublouk hlavní kružnice střed úsečky bod na úsečce určený polovičním středovým úhlem úhel přímek úhel příslušných rovin Takto chápané pojmy nám umožní konstrukci oddělující přímky, poloroviny a tedy i Voroného buňky ve sférické geometrii. To můžeme použít pro určení oblasti významu.

24 Sférická geometrie prostor P kulová plocha se středem C o poloměru r přímka hlavní kružnice sféry P (kružnice středem C o poloměru r) úsečka ublouk hlavní kružnice střed úsečky bod na úsečce určený polovičním středovým úhlem úhel přímek úhel příslušných rovin Takto chápané pojmy nám umožní konstrukci oddělující přímky, poloroviny a tedy i Voroného buňky ve sférické geometrii. To můžeme použít pro určení oblasti významu.

25 Sférická geometrie prostor P kulová plocha se středem C o poloměru r přímka hlavní kružnice sféry P (kružnice středem C o poloměru r) úsečka ublouk hlavní kružnice střed úsečky bod na úsečce určený polovičním středovým úhlem úhel přímek úhel příslušných rovin Takto chápané pojmy nám umožní konstrukci oddělující přímky, poloroviny a tedy i Voroného buňky ve sférické geometrii. To můžeme použít pro určení oblasti významu.

26 Sférická geometrie prostor P kulová plocha se středem C o poloměru r přímka hlavní kružnice sféry P (kružnice středem C o poloměru r) úsečka ublouk hlavní kružnice střed úsečky bod na úsečce určený polovičním středovým úhlem úhel přímek úhel příslušných rovin Takto chápané pojmy nám umožní konstrukci oddělující přímky, poloroviny a tedy i Voroného buňky ve sférické geometrii. To můžeme použít pro určení oblasti významu.

27 Sférická geometrie prostor P kulová plocha se středem C o poloměru r přímka hlavní kružnice sféry P (kružnice středem C o poloměru r) úsečka ublouk hlavní kružnice střed úsečky bod na úsečce určený polovičním středovým úhlem úhel přímek úhel příslušných rovin Takto chápané pojmy nám umožní konstrukci oddělující přímky, poloroviny a tedy i Voroného buňky ve sférické geometrii. To můžeme použít pro určení oblasti významu.

28 Sférická geometrie prostor P kulová plocha se středem C o poloměru r přímka hlavní kružnice sféry P (kružnice středem C o poloměru r) úsečka ublouk hlavní kružnice střed úsečky bod na úsečce určený polovičním středovým úhlem úhel přímek úhel příslušných rovin Takto chápané pojmy nám umožní konstrukci oddělující přímky, poloroviny a tedy i Voroného buňky ve sférické geometrii. To můžeme použít pro určení oblasti významu.

29 Voroného diagram Výpočet Voroného diagramu postupnou konstrukcí jednotlivých buňek by určitě nebyl nejvhodnější. Existují proto jiné algoritmy, které využívají vlastností diagramu jako celku (pomocí tzv. příbojové vlny nebo Delauneyovy triangulace). Složitost algoritmu Výpočet Voroného diagramu je nejrychlejší Fortunovým algoritmem pomocí tzv. příbojové vlny s_algorithm Algoritmus počítá v čase O(n log n) při n prvcích množiny M. Literatura Berg, Cheong, Kreveld, Overmars: Computational Geometry, Springer Verlag 1997

30 Voroného diagram Výpočet Voroného diagramu postupnou konstrukcí jednotlivých buňek by určitě nebyl nejvhodnější. Existují proto jiné algoritmy, které využívají vlastností diagramu jako celku (pomocí tzv. příbojové vlny nebo Delauneyovy triangulace). Složitost algoritmu Výpočet Voroného diagramu je nejrychlejší Fortunovým algoritmem pomocí tzv. příbojové vlny s_algorithm Algoritmus počítá v čase O(n log n) při n prvcích množiny M. Literatura Berg, Cheong, Kreveld, Overmars: Computational Geometry, Springer Verlag 1997

31 Voroného diagram Výpočet Voroného diagramu postupnou konstrukcí jednotlivých buňek by určitě nebyl nejvhodnější. Existují proto jiné algoritmy, které využívají vlastností diagramu jako celku (pomocí tzv. příbojové vlny nebo Delauneyovy triangulace). Složitost algoritmu Výpočet Voroného diagramu je nejrychlejší Fortunovým algoritmem pomocí tzv. příbojové vlny s_algorithm Algoritmus počítá v čase O(n log n) při n prvcích množiny M. Literatura Berg, Cheong, Kreveld, Overmars: Computational Geometry, Springer Verlag 1997

Minkowského operace a jejich aplikace

Minkowského operace a jejich aplikace KMA FAV ZČU Plzeň 1. února 2012 Obsah Aplikace Minkowského suma Minkowského rozdíl Minkowského součin v E 2 Minkowského součin kvaternionů Akce 22. 6. 1864-12. 1. 1909 Úvod Použití Rozmist ování (packing,

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Minkowského operace. Použití. Světlana Tomiczková. Rozmisťování Robot Motion Planning Offset Optics. Pojmy:

Minkowského operace. Použití. Světlana Tomiczková. Rozmisťování Robot Motion Planning Offset Optics. Pojmy: Minkowského operace Hermann Minkowski Narodil se 22. 6. 1864. Studoval na univerzitách v Berlíně a Königsbergu. Učil na univerzitách v Bonnu, Königsbergu and Zurichu. V Zurichu byl jeho studentem A. Einstein.

Více

Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Rovnice RNDr. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Grafické řešení soustav rovnic a nerovnic VY INOVACE_0 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Soustav lineárních rovnic Soustavou

Více

ZÁKLADNÍ PLANIMETRICKÉ POJMY

ZÁKLADNÍ PLANIMETRICKÉ POJMY ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE 3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE V této kapitole se dozvíte: jak popsat kružnici a kruh v rovině; jak určit vzájemnou polohu bodu nebo a kružnice, resp. bodu a kruhu; jakými metodami určit vzájemnou

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Kružnice, úhly příslušné k oblouku kružnice

Kružnice, úhly příslušné k oblouku kružnice KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k

Více

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Výpočetní geometrie Computational Geometry

Výpočetní geometrie Computational Geometry Datové struktury a algoritmy Část 11 Výpočetní geometrie Computational Geometry Petr Felkel 20.12.2005 Úvod Výpočetní geometrie (CG) Příklady úloh Algoritmické techniky paradigmata řazení - jako předzpracování

Více

Semestrální práce z předmětu KMA/MM. Voroneho diagramy

Semestrální práce z předmětu KMA/MM. Voroneho diagramy Semestrální práce z předmětu KMA/MM Voroneho diagramy Jméno a příjmení: Lenka Skalová Osobní číslo: A08N0185P Studijní obor: Finanční informatika a statistika Datum: 22. 1. 2010 Obsah Obsah... 2 1 Historie...

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

MATEMATIKA jak naučit žáky požadovaným znalostem

MATEMATIKA jak naučit žáky požadovaným znalostem 17 30. DUBNA 2008 MATEMATIKA jak naučit žáky požadovaným znalostem Na pomoc učitelům základních škol V rámci systémového projektu Kvalita I, jednoho z projektů Evropského sociálního fondu, vydal Ústav

Více

Počítačová geometrie I

Počítačová geometrie I 0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

Geometrické vyhledávání

Geometrické vyhledávání mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či

Více

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 5. prosince 2005 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením (náznak řešení) Mapa světa - příklad Obsah Mapa

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 4.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 4. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 4. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150.

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150. Opakování na 2. trimestrální test z MATEMATIKY PRIMA Dělitelnost 1. Z čísel 1800; 356; 168; 855; 380; 768; 2880; 435; 2000 vyberte čísla: a) dělitelná dvěma: b) dělitelná třemi: c) dělitelná čtyřmi: d)

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při

Více

STEREOMETRIE. Bod, přímka, rovina, prostor. Mgr. Jakub Němec. VY_32_INOVACE_M3r0101

STEREOMETRIE. Bod, přímka, rovina, prostor. Mgr. Jakub Němec. VY_32_INOVACE_M3r0101 STEREOMETRIE Bod, přímka, rovina, prostor Mgr. Jakub Němec VY_32_INOVACE_M3r0101 STEREOMETRIE jinak také prostorová geometrie (Na rozdíl od planimetrie, kde leží body a přímky v jedné rovině. Ve stereometrii

Více

Osmileté gymnázium GEOMETRIE. Charakteristika vyučovacího předmětu

Osmileté gymnázium GEOMETRIE. Charakteristika vyučovacího předmětu 1 z 8 Osmileté gymnázium GEOMETRIE Charakteristika vyučovacího předmětu Obsahové vymezení: Vyučovací předmět geometrie pokrývá spolu s předmětem algebra (má samostatné osnovy) a s předmětem matematika

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r.

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Kružnice k je množina všech bodů v rovině, které mají od

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Dvěma různými body prochází právě jedna přímka.

Dvěma různými body prochází právě jedna přímka. Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

Konstruktivní geometrie

Konstruktivní geometrie Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět: Období ročník: Učební texty: Matematika 2. období 5. ročník R. Blažková: Matematika pro 4. ročník ZŠ (2. díl) (Alter) R. Blažková: Matematika pro 4. ročník ZŠ (3. díl) (Alter) J. Jurtová:

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

3.2.4 Huygensův princip, odraz vlnění

3.2.4 Huygensův princip, odraz vlnění ..4 Huygensův princip, odraz vlnění Předpoklady: 0 Izotropní prostředí: prostředí, které je ve všech bodech a směrech stejné vlnění se všech směrech šíří stejnou rychlostí ve všech směrech urazí za čas

Více

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] 1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,

Více

Několik úloh z geometrie jednoduchých těles

Několik úloh z geometrie jednoduchých těles Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Astronavigace. Zdeněk Halas KDM MFF UK, Aplikace matem. pro učitele

Astronavigace. Zdeněk Halas KDM MFF UK, Aplikace matem. pro učitele Základní princip Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Aplikace matem. pro učitele 1 / 13 Tradiční metody Tradiční navigační metody byly v nedávné době

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená. MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Základní škola Náchod Plhov: ŠVP Klíče k životu

Základní škola Náchod Plhov: ŠVP Klíče k životu VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 5. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování a aktivizace

Více

KRUŽNICE, KRUH, KULOVÁ PLOCHA, KOULE

KRUŽNICE, KRUH, KULOVÁ PLOCHA, KOULE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KRUŽNICE,

Více

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání

Více

Metodické pokyny k pracovnímu listu č Poznej kruh a kružnici

Metodické pokyny k pracovnímu listu č Poznej kruh a kružnici Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 8.04 Poznej kruh a kružnici Pracovní list slouží k procvičení látky o kruhu a kružnici.

Více

3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru

3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY 3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Řešení 5. série kategorie Student

Řešení 5. série kategorie Student Řešení 5 série kategorie Student Řešení S-I-5-1 Aby byl daný trojúhelník (ozn trojúhelník A) pravoúhlý, musí podle rozšířené Pythagorovy věty (pravidelné 9-úhelníky jsou podobné obrazce) platit, že obsah

Více

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

3.1.2 Polorovina, úhel

3.1.2 Polorovina, úhel 3.1.2 Polorovina, úhel Předpoklady: 3101 Přímka dělí rovinu na dvě navzájem opačné poloroviny a je jejich společnou hranicí (hraniční přímkou). p Hraniční přímka patří do obou polorovin. ody, které neleží

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky. AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

MATEMATIKA II. období (4. 5. ročník)

MATEMATIKA II. období (4. 5. ročník) MATEMATIKA II. období (4. 5. ročník) Charakteristika předmětu Při vyučování matematice v druhém období základního vzdělávání při probírání určitého učiva: - využíváme matematické poznatky a dovednosti

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

8. Geometrie vrací úder (sepsal Pavel Klavík)

8. Geometrie vrací úder (sepsal Pavel Klavík) 8. Geometrie vrací úder (sepsal Pavel Klavík) Když s geometrickými problémy pořádně nezametete, ony vám to vrátí! Ale když užzametat,takurčitěnepodkoberecamístosmetákupoužijtepřímku.vtéto přednášce nás

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník III. konstrukce trojúhelníku. Astaloš Dušan. frontální, fixační

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník III. konstrukce trojúhelníku. Astaloš Dušan. frontální, fixační METODICKÝ LIST DA35 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník III. konstrukce trojúhelníku Astaloš Dušan Matematika šestý

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více