Extragalaktická astrofyzika

Rozměr: px
Začít zobrazení ze stránky:

Download "Extragalaktická astrofyzika"

Transkript

1 Extragalaktická astrofyzika Jan Schee Ústav fyziky, Filozoficko-přírodovědecká fakulta, Slezská univerzita v Opavě 1

2 2

3 RZ = 6378 km MZ= 5, kg 3

4 4

5 RS = km MS= kg 5

6 6

7 RG = 15 kpc MG= MS 7

8 M31(NGC 224) Galaxie v Andromedě (778 kpc) Magellanovy oblaky [velký (48.5 kpc) a malý (61.3 kpc, NGC292)] 8

9 9

10 Lokální skupina (Local Group) 10

11 11

12 Skupina galaxií v Paně (Virgo Cluster, d=17 Mpc) 12

13 13

14 Vesmír je veliký. Opravdu veliký. Nevěřili byste, jak hrozně obrovitánsky veliký je. 14

15 Galaxie Pozorování galaxií ½ 18 století Kant a Wright navrhli představu, že Mléčná dráha je prostorově omezený do tvaru disku seskupený systém hvězd. Charles Meisser ( ) zaznamenal při hledání komet 103 nepravidelných útvarů. Mnoho členů jeho katalogu skutečně představuje opravdové plyné mlhoviny v Mléčné dráze (mlhovina v Orionu, M42), další jsou hvězdokupy (Plejády, M45). Povaha dalších mlhovin byla neznámá (mlhovina v Andromedě, M31) 15

16 Galaxie Pozorování galaxií William Herschel, Sir John Herschel vytvořili další katalog mlhovin. J. L. E. Dreyer publikoval New General Catalog obsahující téměř 8000 objektů. V roce 1845 postavili W. Paronsa ( ) postavil tehdy největší dalekohled (1.8m), schopný rozlišit spirální strukturu některých mlhovin. V. M. Slipher v 1912 potvrdil podezření, že by tyto spirální struktury mohly rotovat (změřil Doplerovský posuv spektrálních čar řady objektů) 16

17 Galaxie Pozorování galaxií Otázka povahy mlhovin se soustředila na diskuzi jejich vzdálenosti od nás vzhledem k velikosti Galaxie. Mnoho pozorovatelů věřilo, že se spirální mlhoviny nacházejí uvnitř Mléčné dráhy 26 duben 1920 H. Shapley (intragalaktický) vs H. D. Curtis (extragalaktický) Velkou debatu nakonec rozřešil E. Hubble v roce 1923 detekcí proměnných hvězd Cefeid v M31 a tedy galaxie jsou extragalaktické objekty. 17

18 Hubblův zákon Tak jako v případě M31 určil Hubble vzdálenosti k 18ti galaxiím. Zkombinoval své výsledky se Slipherovskými rychlostmi a zjistil, že velikost rychlosti v vzdalování galaxií je přímo úměrná jejich vzdálenosti d, v= H 0 d 18

19 Hubblův zákon (Obrázek z E. Hubble, Proc. of the Nat. Ac. of Sci. of the USA, 15, 3, pp , 1929) 19

20 Vybrané fyz. vlastnosti elmg. záření Luminozita Zdánlivá luminozita Magnituda L= energie / čas 2 l= L/ 4 d 2 m/5 5 l= erg cm s 2 M /5 L= erg s Modul vzdálenosti d =10 1 m M /5 pc 20

21 Robertson-Walker metrika Homogení a izotropní vesmír je popsán R-W metrikou, jejíž délkový element má tvar d s = d T R T [d r / 1 kr r d ] kde R(T) je škálový parametr a T je kosmický čas měřený souputujícími pozorovateli. Vlastní vzdálenost v čase T ro d prop= R T r e dr 1 k r 2 21

22 Měření vzdáleností r1 Paralaktická vzdálenost d p= R t 0 Luminozitní vzdálenost R t 0 2 d L= r1 R t 1 Úhlová vzdálenost Vzdálenost z vlastního pohybu 1 1/2 1 k r d A = R t 1 r 1 d M = R t 0 r 1 22

23 Měření vzdáleností Pro kosmologický rudý posuv lze snadno odvodit následující relaci R t 0 = 1 z R t 1 Odtud lze ihned určit vztah mezi dl, da a dm da dm 2 1 = 1 z, = 1 z dl dl Dále je vidět, že platí z 1 d A d L d M d p d prop R t 0 r 1 23

24 Extragalaktický žebřík vzdáleností Známe-li absolutní luminostitu L zdroje záření, pak změřením zdánlivé luminozity l určíme dl Určení absolutní luminozity je stále náročné. Astronomové vybudovali tzv. kosmologický žebřík vzdáleností s příčkami, které je nutné zdolat abychom se dostali ke kosmologicky zajímavým vzdálenostem. 24

25 Hublův zákon Jasné galaxie, Supernovy Ia ~ 1010 pc relace Tully-Fisher, Faber-Jackson <3 x 107 pc Proměnné hvězdy < 4 x 106 pc Fotometrie hlavní posloupnosti < 105 pc Kinematické (přímé) metody < 103 pc Extragalaktický žebřík vzdáleností 25

26 Kinematické metody Metody měření kosmických vzdáleností bez nutnosti znalosti absolutní luminozity zdroje záření. Trigonometrická paralaxa - měření zdánlivého posunu zdánlivé polohy hvědy během pohybu Země kolem Slunce ( ~1arcsec ) distance= 1 [ pc ] Například pro 61 Cygni je ~0.3 arcsec což vede ke vzdálenosti d ~3 pc 26

27 Kinematické metody Pohybující se hvězdokupy Tyto pohybující se kupy se skládají z hvězd putujících galaxií se stejnými a paralelními rychlostmi. Radiální rychlost hvězd, vr, je určena z Dopplerova Posuvu ve jejich spektrech, trasverzální rychlosti jsou dány součinem zdánlivého pohybu a vzdálenosti ke kupě. d M =V t /, V t = V V 2 dm V = 2 V 2r 1, 1 dm 2 r V = d M 2 V = 2 V 2r V 2r 2,... d M 2 27

28 Kinematické metody Pohybující se hvězdokupy Jako příklad uveďme velmi dobře studovanou kupu Hyády, která obsahuje kolem 100 hvězd v oblasti o poloměru okolo 5 pc. Její vzdálenost je odhadnuta na 40.8 pc. 28

29 Kinematické metody Statistická analýza vl. pohybu a radiál. rychlosti Předpokládejme, že známe relativní vzdálenosti vzorku hvězd, tj. známe poměry d/d0, kde d0 je neznámá délková škála (Jedná se o případ, kdy víme, že všechny hvězdy ve vzorku mají stejnou ale neznámou absolutní luminozitu L, pro zdánlivou luminozitu l dostaneme relativní vzdálenost ze vztahu d = L/ 4 l d /d 0= l 0 /l ). Transverzní rychlost je ve vztahu k radiální daná výrazem V t =V r tan 29

30 Kinematické metody Statistická analýza vl. pohybu a radiál. rychlosti Kde φ je úhel, který svírá rychlost hvězdy a vektor směru pohledu. Z výrazu pro dm dostáváme vztah Vt V r tan tan d =d =d = d0 d0 V r Změřením veličin na pravé straně rovnice a z rozumného odhadu distribuce rychlosti vůči φ je možné dedukovat velikost konstanty d0. 30

31 Fotometrie hlavní posloupnosti Známe-li vzdálenost hvězdy určenou některou z kinematických metod, tak určením její zdánlivé luminozity l spočítáme její absolutní luminozitu L. E. Hertzsprunger a H.N. Russel v průběhu let objevili existenci relace mezi absolutní luminozitou a spektrálním typem hvězd hlavní posloupnosti (Podle astrofyzikální teorie je hlavní posloupnost dlouhá iniciální fáze termojaderné evoluce hvězd.). 31

32 H-R Diagram Fotometrie hlavní posloupnosti 32

33 Fotometrie hlavní posloupnosti Tato metoda má své omezení z důvodu, že hvězdy hlavní posloupnosti nejsou moc jasné. Typickým představitelem hvězdy hlavní posloupnosti je Slunce, M=4.7. Je-li dalekohled schopen rozlišit oběkty se zdánlivou magnitudou m=24.7 pak dohlédne do vzdálenosti d=100 kpc. 33

34 Proměnné hvězdy RR Lyra perioda je typicky dnů Mv ~ 0.77 Cefeidy Perioda je typicky 2-45 dní Empirická závislost M-P M V = 2.81 log 10 P

35 Cepheidy 35

36 Novy NOVA je jev kterým se označuje náhlé zvýšení luminozity hvězdy o 4 až 6 řádů. V typické galaxii se objevují s četností 40/rok. Používají se jako indikátory vzdálenosti od roku 1917, kdy byla první Nova objevena ve spirální mlhovině NGC 6946 Nejjasnější Novy dosahují absolutní magnitudy Mv=7.5, takže je lze v principu použít k měření vzdáleností až do 107 pc. 36

37 Další metody Nejjasnější hvězdy v galaxii prohlídkou Lokální Skupiny bylo zjištěno, že v každé galaxii mají hvězdy, obecně, dobře definovanou maximální luminozitu Mv=-9.3 a tedy mohou být v principu použity k měření vzdáleností až do 3 x 107 pc. Oblasti HII jako indikátory vzdáleností mohou sloužit rozlehlé ionizované mraky mezihvězdného vodíku, které září v přítomnosti hvězd sp. typu O a B, mají průměr stovek pc, takže jejich úhlový průměr může posloužit k odhadu jejich vzdálenosti až do 10 8 pc. 37

38 Další metody Kulové hvězdokupy v naší galaxii jsou stovky kulových hvězdokup s absolutní magnitudou Mv=-8. Studiem 2000 kulových hvězdokup v E galaxii M87 v kupě galaxií v Panně bylo zjištěno, že distribuci jejich luminozit existuje ostré maximum, mb(max)=21.3 Sandge navrhl aby absolut. mag. nejjasněší KH v M87 byla rovna s absolut. mag. nejjasnější KH(B282) v M31 jejíž absolut. mag. Je MB(B282)=-9.83, modul vzdálenosti M87 potom je 21.3-(-9.83)=31.1 což nám dává vzdálenost M87 rovnu 1.7 x 107 pc. 38

39 Sekundární indikátory vzdáleností Aby bylo možné studovat vzdálenosti objektů mimo Lokální Skupinu, je potřeba najít vhodné indikátory vzdálenosti, které jsou jasnější než Cefeidy a jsou zastoupeny v dostatečné míře taky v Lokální skupině (aby bylo možné provést kalibraci nových indikátorů vzdálenosti) 39

40 Jasné galaxie Na kosmologicky zajímavých vzdálenostech je potřeba použít jako indikátory vzdálenosti celé galaxie. Kupy obsahují stovky až tisíce galaxií (KG v Panně jich obsahuje asi 2500) takže pokud existuje přirozená horní mez absolutní luminozity individuální galaxie pak absolutní luminozita nejjasnější galaxie v kupě musí být blízko této maximální horní mezi Hubble proto navrhl (1936) použít nejjasnější galaxie v kupách jako indikátory vzdálenosti. Podle Sandage je nejjasnější E galaxií v KG v Panně galaxie NGC4472 s absolut. mag. MB=

41 Jasné galaxie Pokud všechny nejjasnější E galaxie mají abs. mag. rovnu MB=-21.7 pak mohou být použity jako indikátory vzdálenosti až do 1010pc. 41

42 Relace Tully-Fisher Existuje relace mezi luminozitou galaxie a její maximální rotační rychlosti Relace Tully-Fisher R. B. Tully a J. R. Fisher v roce 1977 při studiu dopplerovského rozšíření 21cm radiové emisní čáry vzorku spirálních galaxií, že platí [R.B. Tully a J.R. Fisher, A&A, 54, 661 (1977) ] L G V 4 max 42

43 Relace Tully-Fisher Variace v průměrnýh rotačních křivkách galaxií typu Sa, Sb, Sc pro různé hodnoty absolutní magnitudy ve frekvenční oblasti B. (Obrázek z Rubin et al., ApJ, 289, 81, 1985 ) 43

44 Relace Tully-Fisher ( Obrázek z Rubin et al., ApJ, 289, 81, 1985 ) 44

45 Relace Faber-Jackson Podobně jako v případě spirálních galaxií byla i v případě nalezena relace mezi absolutní svítivostí eliptické galaxie a disperzí radiální rychlosti jejích hvězd [S. M. Faber a R. E. Jackson, ApJ, 204, 668(1976)] L EG 4 r 45

46 Relace Faber-Jackson Tuto relaci lze odvodit z viriálového teorému 2 1 GM V 2T=0 M =0 2 R 2 2 R M= G předpoklad č. 1: M / L~konst M ~ L 2 předpoklad č. 2: B~konst a L=4 R B 4 výsledek: L~ 2 46

47 Relace D-σ Vylepšená verze relace Faber-Jackson. Dává do souvislosti disperzi rychlosti σ a průměr D eliptické galaxie. Pro galaxie v kupě platí empirický výraz log10 D=1.333 log10 C 47

48 Relace D-σ Bohužel není dost jasných eliptických galaxií vhodných pro přesnou kalibraci této metody. Naštěstí jsou směrnice čar v následujícím obr. téměř stejné, tj. Vertikální vzdálenost mezi čarami pro dvě různé kupy je log10 D1 log10 D 2 =C 1 C 2 Relativní vzdálenost mezi dvěmi kupami potom je d 2 D1 C C = =10 d 1 D

49 Supernova Ia 49

50 Supernova Ia Astrofyzikové věří, že Supernova Ia se objevuje když bílý trpaslík, v binárním systému, akreuje dostatek hmoty od svého souputníka a dosáhne téměř Chandasekharovy meze (maximální možná hmotnost podporovaná tlakem degenerovaného elektronového plynu). Bílý trpaslík se stane nestabilním a následná termojaderná exploze (až 2 x 1044 J) je vidět až do vzdálenosti několika tisíců megaparseků! Explodující hvězda má vždy hmotnost blízkou Chandrasekharově mezi a tedy absolutní luminozita těchto explozí je vždy téměř stejná! Absolutní magnituda je v průměru M =

51 Měření vzdálenosti ze známé H0 Z Hubblova zákona dostaneme výraz v H 0= d Rychlost v obdržíme z frekvenčního posuvu spektrálních čar a d=dl. Za předpokladu k=0 a prachem dominovaný vesmír p=0 dostaneme 2 1 / 2 d L= [1 1 z ] H0 51

52 Hodnota Hubbleovy konstanty H 0=72.6±3 km/s/mpc (HST + GR Lenses, 2010) H 0=71±2.5 km/s/mpc (WMAP, 2010) H 0=72±8 km/s/mpc (HST+Cepheides, 2009) 52

53 Hodnota Hubbleovy konstanty H 0=72.6±3 km/s/mpc (HST + GR Lenses, 2010) H 0=71±2.5 km/s/mpc (WMAP, 2010) H 0=72±8 km/s/mpc (HST+Cepheides, 2009) A to je vše, přátelé! 53

54 Doporučená literatura S. Weinberg, Cosmology, 2010 S. Weinberg, Gravitation and Cosmology: Principles And Applications Of The General Theory Of Relativity, 1972 P. Coles a F. Lucchin, Cosmology, of Cosmic Structure, 2002 The Origin and Evolution H. Mo, F. Van den Bosh a S. White, Galaxy Formation and Evolution, 2010 J. Binney a S. Tremaine, Galactic Dynamics, 1987 R. W. Hockney a J. W. Eastwood, Computer Simulation Using Particles, 1988 B.W. Carrol a D. A. Ostlie, An Introduction to Modern Astrophysics,

55 Doporučené externí odkazy GADGET2 NASA WMAP 55

Vzdálenosti ve vesmíru

Vzdálenosti ve vesmíru Vzdálenosti ve vesmíru Proč je dobré, abychom je znali? Protože nám udávají : Výchozí bod pro astrofyziku: Vzdálenosti jakéhokoli objektu ve vesmíru je rozhodující parametr k pochopení mechanizmu tvorby

Více

Ò = 87 poměr vzdáleností Ò/ = 1/20. Úhlová velikost 30

Ò = 87 poměr vzdáleností Ò/ = 1/20. Úhlová velikost 30 6. kapitola o měření vzdáleností definice metru v SI, nepraktické přikládání měřítka; zatmění a zákryty nebeských těles: 5. st. př. n. l. Pýthagorás ze Samu ( 582 507 př. n. l.) z tvaru stínu při částečném

Více

DUM č. 20 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 20 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 20 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 21.06.2014 Ročník: 4B Anotace DUMu: Prezentace je zaměřena na základní popis a charakteristiky

Více

Jak se měří vesmír? RNDr. Jan May, Ph.D

Jak se měří vesmír? RNDr. Jan May, Ph.D Jak se měří vesmír? RNDr. Jan May, Ph.D 1. Měření vzdáleností hvězd pomocí paralaxy První vědecký pokus zmapovat a změřit vesmír proběhl již před 2150 lety. Řecký astronom Hipparchus narozený v Nicei v

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

- mezihvězdná látka - složení: plyny a prach - dělení: 1) Jasné září vlastním nebo rozptýleným světlem emisní reflexní planetární 2) Temné pohlcují

- mezihvězdná látka - složení: plyny a prach - dělení: 1) Jasné září vlastním nebo rozptýleným světlem emisní reflexní planetární 2) Temné pohlcují Mgr. Veronika Kuncová, 2013 - mezihvězdná látka - složení: plyny a prach - dělení: 1) Jasné září vlastním nebo rozptýleným světlem emisní reflexní planetární 2) Temné pohlcují světlo z blízkých zdrojů

Více

VY_12_INOVACE_115 HVĚZDY

VY_12_INOVACE_115 HVĚZDY VY_12_INOVACE_115 HVĚZDY Pro žáky 6. ročníku Člověk a příroda Zeměpis - Vesmír Září 2012 Mgr. Regina Kokešová Slouží k probírání nového učiva formou - prezentace - práce s textem - doplnění úkolů. Rozvíjí

Více

Eta Carinae. Eta Carinae. Mlhovina koňské hlavy. Vypracoval student Petr Hofmann 8.3.2004 z GChD jako seminární práci z astron. semináře.

Eta Carinae. Eta Carinae. Mlhovina koňské hlavy. Vypracoval student Petr Hofmann 8.3.2004 z GChD jako seminární práci z astron. semináře. Eta Carinae Vzdálenost od Země: 9000 ly V centru je stejnojmenná hvězda 150-krát větší a 4-milionkrát jasnější než Slunce. Do poloviny 19. století byla druhou nejjasnější hvězdou na obloze. Roku 1841 uvolnila

Více

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky

Více

Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009

Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009 2009 Vesmír Studijní text k výukové pomůcce Helena Šimoníková D07462 9.6.2009 Obsah Vznik a stáří vesmíru... 3 Rozměry vesmíru... 3 Počet galaxií, hvězd a planet v pozorovatelném vesmíru... 3 Objekty ve

Více

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny 1. Sluneční soustava Astrofyzika aneb fyzika hvězd a vesmíru planety planetky komety, meteoroidy prach, plyny je dominantním tělesem ve Sluneční soustavě koule o poloměru 1392000 km, s průměrnou hustotou

Více

Seriál: Vzdálenosti a základní fyzikální vlastnosti

Seriál: Vzdálenosti a základní fyzikální vlastnosti Seriál: Vzdálenosti a základní fyzikální vlastnosti Vzdálenosti Od minulého dílu už tušíme, jak popsat polohu objektů na nebeské sféře. Ale upřímně, chtělo by to našemu plochému obrazu dodat nějakou hloubku.

Více

Země. galaxie BANG! y/2 y/2. Regresní modely okolo velkého třesku. Jiří Mihola

Země. galaxie BANG! y/2 y/2. Regresní modely okolo velkého třesku. Jiří Mihola Regresní modely okolo velkého třesku Jiří Mihola Teorie velkého třesku je dnes považovaná za samozřejmost jak mezi astronomy, tak dokonce i v širší veřejnosti. V knize (Singha, 2007, s.359) je model vesmíru

Více

Astronomie. Astronomie má nejužší vztah s fyzikou.

Astronomie. Astronomie má nejužší vztah s fyzikou. Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,

Více

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Za humny. Alexander Kupčo

Za humny. Alexander Kupčo Za humny Alexander Kupčo V dnešní procházce se vydáme za humna naší Galaxie k dominantnímu členu Místní skupiny galaxií, k Velké galaxii v Andromedě. Prozkoumáme i systémem jejích satelitů - v dosahu menších

Více

Úvod strana 2. Kosmologie a určování vzdáleností strana 3. Cvičení 1 strana 8. Cvičení 3 strana 10. Cvičení 4 strana 10. Cvičení 5 strana 10

Úvod strana 2. Kosmologie a určování vzdáleností strana 3. Cvičení 1 strana 8. Cvičení 3 strana 10. Cvičení 4 strana 10. Cvičení 5 strana 10 Obsah Úvod Úvod strana 2 Kosmologie a určování vzdáleností strana 3 Použití Cefeid pro odhad vzdáleností strana 5 M100 a velká spirála strana 7 Cvičení Měření a výpočty strana 8 Cvičení 1 strana 8 Cvičení

Více

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní. VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě

Více

Měření vzdáleností pomocí cefeid

Měření vzdáleností pomocí cefeid Měření vzdáleností pomocí cefeid Tomáš Henych Když chce fyziolog rostlin zkoumat řekněme určitý druh mechu, tak si ten mechdonesedolaboratoře(nebosihonecháposlatodsvýchkolegůzezahraničí), vezme skalpel,

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

VY_32_INOVACE_FY.20 VESMÍR II.

VY_32_INOVACE_FY.20 VESMÍR II. VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází

Více

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty Známe už definitivní iti model vesmíru? Michael Prouza Klasický pohled na vývoj vesmíru Fid Fridmanovo řešení š í Einsteinových rovnic podle množství hmoty (a energie) se dá snadno určit osud vesmíru tři

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Jak najdeme a poznáme planetu, kde by mohl být život?

Jak najdeme a poznáme planetu, kde by mohl být život? Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Jak najdeme a poznáme planetu, kde by mohl být život? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně, Laboratoř metalomiky

Více

Soutěžní úlohy části A a B (12. 6. 2012)

Soutěžní úlohy části A a B (12. 6. 2012) Soutěžní úlohy části A a B (1. 6. 01) Pokyny k úlohám: Řešení úlohy musí obsahovat rozbor problému (náčrtek dané situace), základní vztahy (vzorce) použité v řešení a přesný postup (stačí heslovitě). Nestačí

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Alexander Kupčo. typů od malých protoplanetárních mlhovin, hvězdy - zbytku po výbuchu supernovy. obrovských dalekohledů.

Alexander Kupčo. typů od malých protoplanetárních mlhovin, hvězdy - zbytku po výbuchu supernovy. obrovských dalekohledů. Hvězdné hřbitovy pod křídlem Labutě Alexander Kupčo Souhvězdí Labutě je díky své rozlehlosti a své poloze v bohaté části Mléčné dráhy plné mlhovin a otevřených hvězdokup. I zde však nalezneme, hlavně ve

Více

VESMÍR Hvězdy. Životní cyklus hvězdy

VESMÍR Hvězdy. Životní cyklus hvězdy VESMÍR Hvězdy Pracovní list HEUREKA! aneb podpora badatelských aktivit žáků ZŠ v přírodovědných předmětech ASTRONOMIE Úloha 1. Ze života hvězdy. Úloha 1a. Očísluj jednotlivé fáze vývoje hvězdy. Následně

Více

Obecná teorie relativity pokračování. Petr Beneš ÚTEF

Obecná teorie relativity pokračování. Petr Beneš ÚTEF Obecná teorie relativity pokračování Petr Beneš ÚTEF Dilatace času v gravitačním poli Díky principu ekvivalence je gravitační působení zaměnitelné mechanickým zrychlením. Dochází ke stejným jevům jako

Více

Emisní mlhovina Roseta. Výuka astronomie na základních a středních školách, její současný stav a perspektiva

Emisní mlhovina Roseta. Výuka astronomie na základních a středních školách, její současný stav a perspektiva Emisní mlhovina Roseta Výuka astronomie na základních a středních školách, její současný stav a perspektiva Základní školy 1. - 3. ročník - Prvouka - kalendář, roční období 4. - 5. ročník - Přírodověda

Více

Vojtěch Sidorin. Prof. RNDr. Jan Palouš, DrSc. Praha, 5.6.2008

Vojtěch Sidorin. Prof. RNDr. Jan Palouš, DrSc. Praha, 5.6.2008 Infračervené, optické a rentgenovské protějšky H i obálek v Mléčné dráze Vedoucí práce: Prof. RNDr. Jan Palouš, DrSc. Astronomický ústav Akademie věd ČR, v. v. i. Praha, 5.6.2008 Cíl práce Identifikovat

Více

Astrooptika Jaroslav Řeháček

Astrooptika Jaroslav Řeháček Astrooptika Jaroslav Řeháček katedra optiky, PřF Univerzity Palackého v Olomouci Obsah Historický vývoj Trochu teorie Refraktory Reflektory Katadioptrické systémy Moderní astrooptika Velké pozemské teleskopy

Více

Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony

Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Astronomové při sledování oblohy zaznamenávají především úhly a pozorují něco, co se nazývá nebeská sféra. Nicméně, hvězdy nejsou od Země vždy

Více

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Pozorování Slunce s vysokým rozlišením Michal Sobotka Astronomický ústav AV ČR, Ondřejov Úvod Na Slunci se důležité děje odehrávají na malých prostorových škálách (desítky až stovky km). Granule mají typickou

Více

Vzorové řešení příkladů korespondenčního kola Astronomické olympiády 2010/11, kategorie GH

Vzorové řešení příkladů korespondenčního kola Astronomické olympiády 2010/11, kategorie GH Vzorové řešení příkladů korespondenčního kola Astronomické olympiády 2010/11, kategorie GH A) Sluneční soustava II. Sluneční erupce Slunce je aktivní hvězdou, na jejímž povrchu můžeme čas od času pozorovat

Více

Mezihvězdná hmota I. Mezihvězdný prostor není prázdný a je vyplněn mezihvězdnou látkou v různých podobách

Mezihvězdná hmota I. Mezihvězdný prostor není prázdný a je vyplněn mezihvězdnou látkou v různých podobách MEZIHVĚZDNÁ HMOTA Mezihvězdná hmota I. Mezihvězdný prostor není prázdný a je vyplněn mezihvězdnou látkou v různých podobách Myšlenka existence mezihvězdné hmoty je velice stará již v 5. stol. př. n. l.

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Extragalaktická astrofyzika. Aktivní galaktická jádra, Jety

Extragalaktická astrofyzika. Aktivní galaktická jádra, Jety Extragalaktická astrofyzika Aktivní galaktická jádra, Jety Aktivní Galaktická Jádra Úvod Pro AGN je charakteristické, že emitují velké množství energie z velmi malé oblasti. Obecně se má za to, že centrálním

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Projekt Společně pod tmavou oblohou

Projekt Společně pod tmavou oblohou Projekt Společně pod tmavou oblohou Kometa ISON a populace Oortova oblaku Jakub Černý Společnost pro MeziPlanetární Hmotu Dynamicky nové komety Objev komety snů? Vitali Nevski (Bělorusko) a Artyom Novichonok

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

Statistické zpracování družicových dat gama záblesků

Statistické zpracování družicových dat gama záblesků Statistické zpracování družicových dat gama záblesků Statistické zpracování družicových dat gama záblesků obsah diplomové práce Předmluva 1. Úvod 2. Družice Fermi 2.1 Popis družice Fermi 2.2 GBM detektory

Více

Astronomická pozorování

Astronomická pozorování KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové

Více

Vesmír pohledem Hubblova teleskopu

Vesmír pohledem Hubblova teleskopu Vesmír pohledem Hubblova teleskopu Hubble dalekohled Hubbleův teleskop se nachází mimo naši atmosféru a krouží okolo Země ve výšce 593 km na hladinou moře a naši planetu oběhne rychlostí 28.000 km/h za

Více

Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012

Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012 Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012 Osnova přednášek: 1.) Tělesa Sluneční soustavy. Slunce, planety, trpasličí planety, malá tělesa Sluneční soustavy, pohled ze Země. Struktura Sluneční

Více

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Téma: Světlo a stín Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Objekty na nebeské sféře září ve viditelném spektru buď vlastním světlem(hvězdy, galaxie) nebo světlem odraženým(planety, planetky, satelity).

Více

PASPORT MÍSTNÍCH KOMUNIKACÍ - Obec Deštné - ZIMNÍ ÚDRŽBA

PASPORT MÍSTNÍCH KOMUNIKACÍ - Obec Deštné - ZIMNÍ ÚDRŽBA ÚK51 ÚK50 ÚK53 ÚK45 19c ÚK46 ÚK49 ÚK52 II/309 ÚK58 ÚK48 II/309 ÚK47 ÚK41 21c ÚK40 ÚK42 20c III/3093 ÚK43 ÚK44 ÚK38 13d II/310 13d ÚK30 ÚK39 ÚK37 ÚK36 ÚK35 ÚK34 ÚK21 10d 9c ÚK15 7c ÚK19 ÚK17 26c 27c 26c-M1

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A] Pracovní úkol 1. Proměřte závislost magnetické indukce na proudu magnetu. 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické

Více

Struktura a vývoj vesmíru. Úvod: kosmologie jako věda o vesmíru jako celku

Struktura a vývoj vesmíru. Úvod: kosmologie jako věda o vesmíru jako celku Struktura a vývoj vesmíru aneb základní kosmologická fakta a modely (Jiří Podolský, MFF UK, červenec 2008) Úvod: kosmologie jako věda o vesmíru jako celku základní kosmologické otázky jaká je struktura

Více

VY_32_INOVACE_06_III./19._HVĚZDY

VY_32_INOVACE_06_III./19._HVĚZDY VY_32_INOVACE_06_III./19._HVĚZDY Hvězdy Vývoj hvězd Konec hvězd- 1. možnost Konec hvězd- 2. možnost Konec hvězd- 3. možnost Supernova závěr Hvězdy Vznik hvězd Vše začalo už strašně dávno, kdy byl vesmír

Více

FYZIKA Sluneční soustava

FYZIKA Sluneční soustava Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Sluneční

Více

Cesta do nitra Slunce

Cesta do nitra Slunce Cesta do nitra Slunce Jeden den s fyzikou MFF UK, 7. 2. 2013 Michal Švanda Astronomický ústav MFF UK Chytří lidé řekli Už na první pohled se zdá, že vnitřek Slunce a hvězd je méně dostupný vědeckému zkoumání

Více

Kosmické záření a astročásticová fyzika

Kosmické záření a astročásticová fyzika Kosmické záření a astročásticová fyzika Jan Řídký Fyzikální ústav AV ČR Obsah Kosmické záření a současná fyzika. Historie pozorování kosmického záření. Současné znalosti o kosmickém záření. Jak jej pozorujeme?

Více

Tiskové prohlášení České astronomické společnosti a Astronomického ústavu AV ČR číslo 190 ze 6. 9. 2013

Tiskové prohlášení České astronomické společnosti a Astronomického ústavu AV ČR číslo 190 ze 6. 9. 2013 ČESKÁ ASTRONOMICKÁ SPOLEČNOST sekretariát: Astronomický ústav AV ČR, v. v. i., Fričova 298, 251 65 Ondřejov tel. 775 388 400, info@astro.cz ASTRONOMICKÝ ÚSTAV AV ČR, v. v. i. Fričova 298, 251 65 Ondřejov

Více

Když vybuchne supernova

Když vybuchne supernova Když vybuchne supernova Pozůstatek po explozi supernovy SN 1987A ve Velkém Magellanově oblaku. Jde o typickou supernovu typu II, která explodovala ve vzdálenosti 167 000 ly. Signál k nám doletěl v roce

Více

Astronomie a astrofyzika

Astronomie a astrofyzika Variace 1 Astronomie a astrofyzika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www. jarjurek.cz. 1. Astronomie Sluneční soustava

Více

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ VY_32_INOVACE_06_III./20._SOUHVĚZDÍ Severní obloha Jižní obloha Souhvězdí kolem severního pólu Jarní souhvězdí Letní souhvězdí Podzimní souhvězdí Zimní souhvězdí zápis Souhvězdí Severní hvězdná obloha

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Pracovní list Název projektového úkolu VESMÍRNÉ OTÁZKY A ODPOVĚDI Třída V. Název společného projektu MEZI NEBEM A ZEMÍ

Pracovní list Název projektového úkolu VESMÍRNÉ OTÁZKY A ODPOVĚDI Třída V. Název společného projektu MEZI NEBEM A ZEMÍ Pracovní list Název projektového úkolu VESMÍRNÉ OTÁZKY A ODPOVĚDI Třída V. Název společného projektu MEZI NEBEM A ZEMÍ Název pracovního týmu Členové pracovního týmu Zadání úkolu Jsme na začátku projektu

Více

Vlastníma očima Encyklopedie VESMÍRU Interaktivní průvodce vesmírem

Vlastníma očima Encyklopedie VESMÍRU Interaktivní průvodce vesmírem BSP Multimedia Český multimediální CD-ROM Vlastníma očima Encyklopedie VESMÍRU Interaktivní průvodce vesmírem Copyright Dorling Kindersley 2002 DSP Multimedia s.r.o. ANOTACE Multimediální CD-ROM zpracovává

Více

Hvězdy a souhvězdí. výrazné skupiny hvězd - pro snazší orientaci na nočním nebi dříve souhvězdí dnes asterismus

Hvězdy a souhvězdí. výrazné skupiny hvězd - pro snazší orientaci na nočním nebi dříve souhvězdí dnes asterismus Noční nebe Hvězdy a souhvězdí Hvězdy = samostatná převážně kulová tělesa, udržované pohromadě vlastní gravitací, hmotnosti 0,013 (resp.0,075) až stovky M Na obloze zhruba 2-3 tisíce pouhýma očima výrazné

Více

6.3. HVĚZDY A HVĚZDNÁ OBLOHA

6.3. HVĚZDY A HVĚZDNÁ OBLOHA 6.3. HVĚZDY A HVĚZDNÁ OBLOHA Vznik hvězd - vesmír byl původně vyplněn prachem a plynem ještě nenarozených hvězd - nejprve se začal prach a plyn pozvolna slučovat, houstnout, kumulovat se do větších oblastí,

Více

ASTRONOMICKÝ ÚSTAV AV ČR, v. v. i.

ASTRONOMICKÝ ÚSTAV AV ČR, v. v. i. ASTRONOMICKÝ ÚSTAV AV ČR, v. v. i. Fričova 298, 251 65 Ondřejov Tisková zpráva ze dne 25. září 2009 ČEŠTÍ VĚDCI SE PODÍLELI NA OBJEVU VESMÍRNÉHO OBJEKTU NOVÉHO TYPU V prvním říjnovém čísle prestižního

Více

Postava bájného lovce Oriona strhává na zimní obloze pozornost. Obrazec osmi jasných

Postava bájného lovce Oriona strhává na zimní obloze pozornost. Obrazec osmi jasných Orionův kyj Alexander Kupčo Postava bájného lovce Oriona strhává na zimní obloze pozornost. Obrazec osmi jasných hvězd je většinou jedním z prvních souhvězdí, které se na noční obloze naučí začínající

Více

Temná energie realita nebo fikce?

Temná energie realita nebo fikce? Temná energie realita nebo fikce? Petr Kulhánek Z několika nezávislých experimentů dnes víme, že temná energie tvoří přibližně 70 % našeho vesmíru. V současnosti jde o zcela dominantní složku ovlivňující

Více

Nitro a vývoj hvězd Miroslav Brož, Hvězdárna a planetáriu m Hradec Králové, AÚ MFF UK, 7. 2. 2009

Nitro a vývoj hvězd Miroslav Brož, Hvězdárna a planetáriu m Hradec Králové, AÚ MFF UK, 7. 2. 2009 Nitro a vývoj hvězd Miroslav Brož, Hvězdárna a planetárium Hradec Králové, AÚ MFF UK, 7. 2. 2009 Spektrum Slunce hvězda je neprůhledná, spektrum vzniká v tenké fotosféře Bývalé hypotézy o zdroji energie

Více

Část A strana A 1. (14 b) (26 b) (60 b) (100 b)

Část A strana A 1. (14 b) (26 b) (60 b) (100 b) Část A strana A 1 Bodové hodnocení vyplňuje komise! část A B C Celkem body (14 b) (26 b) (60 b) (100 b) Pokyny k testovým otázkám: U následujících otázek zakroužkuj vždy právě jednu správnou odpověď. Zmýlíš-li

Více

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami Jak se nazývá soustava, ve které se nachází planeta Země? Sluneční soustava Která kosmická tělesa tvoří sluneční soustavu? Slunce, planety, družice,

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole 161 Pole je druhá základní forma existence hmoty (vedle

Více

Zobrazovací vlastnosti několika význačných reflektorů

Zobrazovací vlastnosti několika význačných reflektorů Zobrazovací vlastnosti několika význačných reflektorů Zdeněk Rail, Daniel Jareš, Ústav fyziky plazmatu AV ČR,v.v.i.- Toptec Sobotecká 1660, 51101 Turnov Parametry všech simulovaných systémů jsou vzaty

Více

Jak se vyvíjejí hvězdy?

Jak se vyvíjejí hvězdy? Jak se vyvíjejí hvězdy? tlak a teplota normální plyny degenerované plyny osud Slunce fáze červeného obra oblast horizontálního ramena oblast asymptotického ramena obrů planetární mlhovina bílý trpaslík

Více

Tranzity exoplanet. Bc. Luboš Brát

Tranzity exoplanet. Bc. Luboš Brát Tranzity exoplanet Bc. Luboš Brát O čem bude řeč: Tranzit exoplanety a jeho parametry Co nám tranzity umožňují zjišťovat Určování geometrie soustavy hvězda planeta Hledání dalších planet v systému Sklon

Více

Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady

Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady 1. Rychlosti vesmírných těles, např. planet, komet, ale i družic, se obvykle udávají v kilometrech za sekundu. V únoru jsme mohli v novinách

Více

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II.

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II. Předmět: Technická fyzika III.- Jaderná fyzika Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY Jméno:Martin Fiala Obor:MVT Ročník:II. Datum:16.5.2003 OBECNÁ TEORIE RELATIVITY Ekvivalence

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-1 Téma: Veličiny a jednotky Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD SI soustava Obsah MECHANIKA... Chyba! Záložka není definována.

Více

Jsou hvězdy doopravdy stálice?

Jsou hvězdy doopravdy stálice? Lukáš Král Proměnné hvězdy a jejich amatérské pozorování Úvod Proměnné hvězdy vždy pro amatérské pozorovatele představovaly jedinečnou příležitost zapojit se do výzkumu vesmíru, a to i v tom případě, že

Více

Astronomický ústav. Akademie věd České republiky, v. v. i. Čeští astronomové jako první zachytili optický dosvit gama záblesku

Astronomický ústav. Akademie věd České republiky, v. v. i. Čeští astronomové jako první zachytili optický dosvit gama záblesku Astronomický ústav Akademie věd České republiky, v. v. i. Čeští astronomové jako první zachytili optický dosvit gama záblesku Tisková zpráva ze dne 18. 11. 2013 V souhvězdí Vodnáře vzplanul 30. října ve

Více

Historie sledování EOP (rotace)

Historie sledování EOP (rotace) Historie sledování EOP (rotace) 1895 IAG > ILS, 7 ZT na 39 s.š., stejné hvězdy, stejné přístroje. 1962 IPMS (Mizusawa, JPN), až 80 přístrojů. FK4, různé metody, různé přístroje, i jižní polokoule. 1921

Více

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max. 25 b) B I: (max. 20 b) B

Více

Matematika v proměnách věků. I

Matematika v proměnách věků. I Matematika v proměnách věků. I Vladimír Štefl Vznik a vývoj astrofyziky In: Jindřich Bečvář (editor); Eduard Fuchs (editor): Matematika v proměnách věků. I. Sborník. (Czech). Praha: Prometheus, 1998. pp.

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Venuše druhá planeta sluneční soustavy

Venuše druhá planeta sluneční soustavy Venuše druhá planeta sluneční soustavy Planeta Venuše je druhá v pořadí vzdáleností od Slunce (střední vzdálenost 108 milionů kilometrů neboli 0,72 AU) a zároveň je naším nejbližším planetárním sousedem.

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné.

Více

Po stopách Isaaca Newtona

Po stopách Isaaca Newtona Po stopách Isaaca Newtona Lukáš Vejmelka, GOB a SOŠ Telč, lukasv@somt.cz Jakub Šindelář, Gymnázium Třebíč, sindelar.jakub@gmail.com Zuzana Černáková, Gymnázium Česká Lípa, cernakova.zuzka@gmail.com Hana

Více

Exoplanety (extrasolar planet)

Exoplanety (extrasolar planet) Exoplanety Exoplanety (extrasolar planet) Existují planety také kolem jiných hvězd než Slunce? antika myslitelé proč ne? od 18. století - Laplace, Kant vznik Sluneční soustavy 1988 - planeta γ Cep (hypotéza)

Více

Základní přehled. Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení.

Základní přehled. Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení. Základní přehled Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení. Reflektor zrcadlový dalekohled, používající ke zobrazení dvou (primárního a

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Úvod strana 2. Určování vzdálenosti supernovy 1987A strana 3. Supernovy strana 4. Vzdálenost Velkého Magellanova oblaku strana 4.

Úvod strana 2. Určování vzdálenosti supernovy 1987A strana 3. Supernovy strana 4. Vzdálenost Velkého Magellanova oblaku strana 4. Obsah Úvod Úvod strana 2 Určování vzdálenosti supernovy 1987A strana 3 Supernovy strana 4 Vzdálenost Velkého Magellanova oblaku strana 4 Prstenec strana 5 Cvičení Cvičení 1 strana 7 Cvičení 2 strana 7

Více

Česká zrcadla pod Andami. Martin Vlček

Česká zrcadla pod Andami. Martin Vlček Česká zrcadla pod Andami Martin Vlček Osnova kosmické záření co je kosmické záření historie objevu kosmického záření jak kosmické záření pozorujeme různé projekty pozorující kosmické záření projekt Pierre

Více

HVĚZDNÁ OBLOHA, SOUHVĚZDÍ

HVĚZDNÁ OBLOHA, SOUHVĚZDÍ HVĚZDNÁ OBLOHA, SOUHVĚZDÍ Souhvězdí I. Souhvězdí je optické uskupení hvězd různých jasností na obloze, které mají přesně stanovené hranice Podle usnesení IAU je celá obloha rozdělena na 88 souhvězdí Ptolemaios

Více