1 Seznámení s MATLABem - elementární funkce MATLABu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1 Seznámení s MATLABem - elementární funkce MATLABu"

Transkript

1 Cíl 1 Seznámení s MATLABem - elementární funkce MATLABu Osnova 1.1 MATLAB Hlavní kategorie MATLABských funkcí Aritmetické operátory a některé speciální znaky Základní elementární funkce MATLABu Výpočty funkčních hodnot Zápisy funkcí a operátorů Exponenciální funkce Trigonometrické funkce Převod radiánů na stupně, minuty a vteřiny...19 V této kapitole se dozvíte základní informace o matematickém programu MATLAB. Naučíte se používat některé operace a předdefinované funkce MATLABu k výpočtu funkčních hodnot. Napíšete si svůj první program, který při zadání hodnoty kosinu nějakého úhlu vypočítá a vypíše na monitor hodnotu tohoto úhlu ve stupních, minutách a vteřinách. Předpokládám, že víte, co je to určitý integrál, umíte ho vypočítat a znáte jeho geometrický význam. Dále předpokládám, že víte, co je polynom, a jak se počítá jeho funkční hodnota, že znáte mocniny s racionálním exponentem, že znáte a umíte počítat hodnoty funkcí logaritmických, exponenciálních a goniometrických. Také předpokládám, že umíte převádět radiány na stupně a naopak. Za samozřejmost považuji, že umíte psát libovolné znaky na klávesnici popř. přepnout mezi anglickou a českou klávesnicí. Kontaktní cvičení trvá přesně 100 minut. Vám by prostudování této kapitoly mělo trvat přibližně 10 minut. Pokud ale nemáte zažité výše uvedené potřebné znalosti, tak raději počítejte s tím, že budete potřebovat času více. Doporučuji se posilnit, tj. najíst se a napít, vyprázdnit, vypnout mobil, nachystat si tužku, papír, tato skripta, spustit MATLAB, (ve kterém máte otevřené pouze okno Command Window), vyhradit si asi 180 minut, popř. dát na dveře cedulku "NERUŠIT" a pustit se do práce. Nejprve budu stručně charakterizovat matematický program MATLAB a uvedu hlavní kategorie MATLABských funkcí. Protože tato část nepatří mezi základní učivo, tak stačí, když si přečtete pouze první odstavec, a pak můžete přeskočit na dalšího Průvodce studiem. 1.1 MATLAB MATLAB poskytuje svým uživatelům nejen mocné grafické a výpočetní nástroje, ale i rozsáhlé knihovny funkcí spolu s výkonným programovacím jazykem čtvrté generace. Knihovny jsou svým rozsahem využitelné prakticky ve všech oblastech lidské činnosti. Za nejsilnější stránku MATLABu je považováno mimořádně rychlé výpočetní jádro s optimálními algoritmy, které jsou prověřeny léty provozu na špičkových pracovištích po celém světě. MATLAB byl implementován na všech významnějších platformách. MATLAB dále nabízí podporu vícerozměrných polí a uživatelsky definovaných datových struktur, otevřený a rozšiřitelný systém, působivou D a D grafiku, množství aplikačních knihoven, objektové programování, interaktivní nástroje pro tvorbu grafického uživatelského rozhraní (GUI builder), rozšířenou podporu řídkých matic, pohodlnou práci se soubory různých formátů, integrované prostředí pro ladění programů (debugger), zvukový vstup a 1

2 výstup, animaci, výpočetní jádro pro programy psané ve Fortranu a jazyce C a rozsáhlou tištěnou i hypertextovou on-line dokumentaci. Struktury Jádrem programu jsou algoritmy pro operace s maticemi komplexních čísel. MATLAB umožňuje provádět všechny běžné operace jako násobení, inverze, determinant atd. a v nejjednodušší podobě je možno jej použít jako maticový kalkulátor, protože všechny tyto operace se zapisují téměř tak, jak byste je psali na papíře. Kromě datových typů jednodušších než tradiční matice podporuje MATLAB také typy složitější, jako jsou např. vícerozměrná pole reálných nebo komplexních čísel. Dalším datovým typem jsou tzv. pole buněk, tedy struktury podobné maticím, ve kterých ovšem každý prvek může být jiného typu. Podobně lze tvořit datové struktury, kde jsou prvky rozlišeny ne souřadnicemi, ale jménem, takže připomínají struktury známé z běžných programovacích jazyků. Skládáním těchto datových typů je pak možné vytvořit libovolně složité datové struktury. MATLAB ukládá všechna čísla v tzv. dvojité přesnosti, ovšem na přání uživatele je možné zvolit úspornější formu. Vektor reálných čísel může v MATLABu reprezentovat i polynom a operace s polynomy jsou v programu rovněž obsaženy. Vektory mohou také reprezentovat časové řady nebo signály a MATLAB obsahuje funkce pro jejich analýzu, jako hledání extrémů, výpočet střední hodnoty, směrodatné odchylky a korelačních koeficientů nebo rychlou Fourierovu transformaci. MATLAB také podporuje speciální formát uložení tzv. řídkých matic, které jsou rozměrem velké, ale obsahují většinu nulových prvků. MATLAB přidává možnost definovat k datovým strukturám funkce, které s nimi pracují. Tyto objekty obohacují výpočetní prostředí MATLABu o prostředky obecných programovacích jazyků a posouvají tak jeho možnosti na úroveň například C++. Spojení objektově orientovaného jazyka s ověřenou matematickou a grafickou silou vytváří z MATLABu bezkonkurenčně ucelený výpočetní systém. Grafika Grafika v MATLABu umožňuje snadné zobrazení a prezentaci získaných výsledků. Je možné vykreslit různé druhy grafů: dvourozměrné, třírozměrné, histogramy, apod. MATLAB také umožňuje otevřít více oken pro zobrazení grafů najednou nebo zobrazit více grafů v jednom okně. Pro pokročilé uživatele je určeno stínování třírozměrných grafů s určením zdroje dopadajícího světla, animace třírozměrných grafů, zobrazení kontur a mnoho dalších grafických funkcí. Většinu těchto efektů je možné docílit jedním nebo několika málo příkazy a jejich vykreslení je rychlé díky použitému algoritmu Z-buffer. Obrázky v grafických oknech MATLABu navíc nejsou statické každý již nakreslený objekt má přiřazen identifikátor, jehož prostřednictvím je možné měnit vlastnosti objektu a tím i jeho vzhled. Tento grafický systém, nazvaný Handle Graphics, umožňuje vytvořit v okně také ovládací prvky (tlačítka apod.) a vytvořit tak graficky ovládané uživatelské rozhraní. Samozřejmě je k dispozici nástroj pro vytvoření uživatelského rozhraní interaktivně, bez nutnosti programování. MATLAB dále podstatně rozšiřuje možnosti práce s trojrozměrnými objekty včetně nových technik násvitu, stínování a perspektivních zobrazení objektů. Vysoká kvalita zobrazení je zajištěna použitím 4-bitových barev. Otevřenost Vlastností, která patrně nejvíce přispěla k rozšíření MATLABu, je jeho otevřená architektura. MATLAB je úplný programovací jazyk, to znamená, že uživatelé v něm mohou vytvářet funkce šité na míru pro jejich aplikace. Tyto funkce se způsobem volání nijak neliší od vestavěných funkcí a jsou uloženy v souborech v čitelné formě. Dokonce většina funkcí s MATLABem dodávaných je takto vytvořena a opravdu vestavěné jsou jen funkce základní. To má dvě velké výhody: jazyk MATLABu je téměř neomezeně rozšiřitelný a kromě toho se uživatel může při psaní vlastních funkcí poučit z algoritmů s programem dodávaných. Navíc jsou takto koncipované funkce snadno přenosné mezi různými platformami, na kterých je MATLAB implementován. Kategorie MATLAB 6.1 (R1.1) z června 001 poskytuje 4 hlavních kategorií funkcí. Některé MATLABské funkce jsou obsaženy uvnitř interpreteru, zatímco jiné jsou ve formě m-souborů. M-soubory obsahují pouze pomocný text, jsou organizovány do 4 adresářů, z nichž každý obsahuje soubory sdružené s kategorií.

3 1.1.1 Hlavní kategorie MATLABských funkcí audio podpora zvuku datafun analýza dat a Fourierova transformace datatypes datové typy a struktury demos příklady a demonstrace elfun elementární matematické funkce elmat elementární matice a manipulace s maticemi funfun funkce pro práci s funkcemi a ODE řešení general funkce k obecnému použití graphd dvoudimenzionální (D) grafika graphd třídimenzionální (D) grafika graphics ovládání grafiky iofun soubory vstupu/výstupu lang konstrukce programovacího jazyka matfun maticové funkce numerická lineární algebra ops operátory a speciální znaky polyfun interpolace a polynomy sparfun řídké matice specfun speciální matematické funkce specgraph speciální grafy strfun znakové řetězce timefun čas a datum uitools nástroje grafického uživatelského rozhraní verctrl řízení verze winfun soubory rozhraní operačního systému Windows (DDE/ActiveX) V adresáři Matlab6p1\Toolbox\Matlab je uloženo 4 hlavních adresářů, ve kterých jsou jednotlivé příkazy a funkce programu MATLAB. Po spuštění například příkazu help audio, získáte všechny příkazy a funkce sdružené v adresáři audio. Abyste získali podrobný popis jednotlivého příkazu (například colormap), nebo funkce, pak spustíte příkaz help colormap. Jestliže chcete průvodce MATLABem, pak spustíte příkaz intro, a jestliže si chcete prohlédnout demonstrační příklady, pak zadáte příkaz demo. V nové verzi MATLABu Vám funguje příkaz help colormap a demo úplně stejně jako ve staré verzi MATLABu. Příkaz intro Vám však poskytne přehled o aktuálně nastavených proměnných a příkaz help audio je nefunkční. Co je stará a nová verze MATLABu je vysvětleno v úvodu k tomuto učebnímu textu Aritmetické operátory a některé speciální znaky + plus, unární plus minus, unární minus * násobení matic.* násobení polí; tj. prvků matic ^ umocnění matic.^ umocnění polí \ zpětné lomítko nebo dělení matic zleva / lomítko nebo dělení matic zprava.\ dělení polí zleva./ dělení polí zprava : dvojtečka ( ) kulaté závorky a indexování [ ] hranaté závorky

4 { } složené závorky a indexování. desetinná tečka, čárka, separátor ; středník % poznámka = přiřazení ' uvozovky atd. Nebudeme probírat všechny MATLABské příkazy a funkce, ale zaměříme se jen na ty nejzákladnější a ty, které souvisí s výukou předmětu Matematika I a II. Přitom text, který je psán v programu MATLAB a výstupy z tohoto programu, budou psány písmem Courier New, názvy m-souborů budou psány tučně a kurzívou. V následujících čtyřech tabulkách jsou základní předdefinované funkce trigonometrické, exponenciální, pro komplexní čísla a numerické. Pro Vás jsou povinné pouze ty funkce, které znáte z předmětů Matematika I a II Základní elementární funkce MATLABu Tab. 1.1: Trigonometrické funkce Funkce Název funkce Příkaz MATLABU Výstup MATLABU sin sinus sin() sinh hyperbolický sinus sinh() asin arkussinus asin(0.9) asinh argument hyperbolického sinu asinh(0.4) cos kosinus cos() cosh hyperbolický kosinus cosh() acos arkuskosinus acos(0.4) acosh argument hyperbolického kosinu acosh() tan tangens tan() tanh hyperbolický tangens tanh() atan arkustangens atan(4) 1.58 atan čtyř-kvadrantový arkustangens atan(1.1,1) 0.80 atanh argument hyperbolické tangenty atanh(0.7) sec sekans sec() sech hyperbolický sekans sech() asec arkussekans asec(5) asech argument hyperbolické sekanty asech(0.5) csc kosekans csc() csch hyperbolický kosekans csch() acsc arkuskosekans acsc(5) acsch argument hyperbolické kosekanty acsch(4) cot kotangens cot() coth hyperbolický kotangens coth() acot arkuskotangens acot() 0.18 acoth argument hyperbolické kotangenty acoth(7)

5 Tab. 1.: Exponenciální funkce Funkce Název funkce Příkaz MATLABU Výstup MATLABU exp exponenciální funkce exp(.7) log přirozený logaritmus log(9.8).84 log10 dekadický logaritmus log10(10) 1 log logaritmus o základu dvě log(16) 4 pow mocnina o základu dvě pow() 8 sqrt druhá odmocnina sqrt(16) 4 atd. Tab. 1.: Funkce pro komplexní čísla Funkce Název funkce Příkaz Výstup MATLABU MATLABU abs absolutní hodnota abs(-+i).6056 angle argument komplexního čísla (fázový úhel) angle(-+i).1588 complex sestrojí komplexní číslo z reálné a imaginární části complex(-,) i conj komplexně sdružené číslo conj(-+i) i imag imaginární část komplexního čísla imag(-+i) real reálná část komplexního čísla real(-+i) - atd. Tab. 1.4: Numerické funkce Funkce Název funkce Příkaz MATLABU Výstup MATLABU fix převede na celé číslo tak, že odřízne desetinnou část fix(-5.16) -5 floor zaokrouhlí dolů na nejbližší nižší celé číslo floor(-5.16) -6 ceil zaokrouhlí nahoru na nejbližší vyšší celé číslo ceil(-5.16) -5 round zaokrouhlí na celé číslo běžným způsobem round(-5.16) -5 mod modul (znaménko zbytku po celočíselném dělení) mod(7,-) -1 rem zbytek po celočíselném dělení rem(7,) 1 sign funkce signum (znaménko funkce) sign(-5.16) -1 A nyní Vám konečně ukáži jeden příklad a jeho řešení pomocí MATLABu, abyste si udělali alespoň maličkou představu o tom, co od MATLABu můžete očekávat a co se v něm budete učit. Motivační příklad Nalezněte obsah plochy, která je ohraničená grafem funkce f : y = x 5x + 6, osou y a úsečkou s krajními body AB, kde A = (0; 0) a B = (, 0). Výsledek znázorněte graficky. Řešení Nejprve je vhodné si načrtnout, jak vypadá plocha, jejíž obsah máte vypočítat. 5

6 Obr.1.1: Náčrtek k řešení motivačního příkladu Sice špatně, ale vidíte, že musíte vypočítat dva určité integrály, protože jinak byste získali rozdíl plochy ležící nad osou x a ležící pod osou x a ne skutečný obsah. Pro grafické znázornění by bylo dobré barevně vyznačit příslušnou plochu, přímo zapsat výsledek, popř. ještě popsat osy a úsečku AB. Výsledek v MATLABu by pak mohl vypadat například tak, jak vidíte na následujícím obrázku. Protože celý učební text, který právě čtete, je psán proporcionálním patkovým písmem Times New Roman a velikost je 1, tak i v MATLABu bylo použito totéž patkové písmo Times New Roman. Pokud Vás již nyní zajímá, jak lze takovýto obrázek v MATLABu vytvořit, tak si přečtěte text Pro zájemce, který je uveden pod obrázkem. V páté kapitole se začneme věnovat funkcím systematicky. Podobné grafy a výpočty pak začnete vytvářet sami. Nejprve bez popisů a později i s popisy. Ačkoliv MATLAB není program, který by byl speciálně určen k popisům grafů, tak v něm můžete cokoliv popsat tak, jak potřebujete a není pravda, že nelze v MATLABu psát českou diakritiku, řecká písmena, kursivní znaky, měnit velikost a font písma atd. Vše lze, ale samozřejmě jen tehdy, když se ví jak. Výsledek Obr.1.: Řešení motivačního příkladu 6

7 Nejprve byla naprogramována nová funkce mot.m. mot.m function[y]=mot(x); y=x.*x-5.*x+6; Pak byla vypočítána číselná hodnota hledaného plošného obsahu pomocí dvou určitých integrálů P=quad('mot',0,)-quad('mot',,) P = 4.8 Nakonec byl napsán příslušný m-soubor motivace.m, ve kterém byla bledě modrou barvou znázorněna příslušná plocha. motivace.m x1=0:0.01:; y1=x1.*x1-5.*x1+6; patch([x1 0],[y1 0],'c'); hold on; plot([-1,7],[0,0],'k'); plot([0,0],[-1,7],'b'); x=-1:0.01:7; y=x.*x-5.*x+6; plot(x,y,'b'); plot([0,],[0,0],'b'); axis square;box off; axis([ ]); title('\fontname{times new roman ce}obsah plochy'); text(0.75,6,'\fontname{times new roman ce}plocha měří přibližně'); text(1,05.5,'\fontname{times new roman ce}4,8 příslušných'); text(1,5,'\fontname{times new roman ce}plošných jednotek.'); text(6.75,0.5,'\fontname{times new roman ce}\itx'); text(0.5,6.75,'\fontname{times new roman ce}\ity'); text(0.5,-0.5,'\fontname{times new roman ce}a'); text(.5,-0.5,'\fontname{times new roman ce}b'); Jak již bylo řečeno výše, takovéto obrázky a výpočty budete za chvíli vytvářet sami a zanedlouho všem výše uvedeným příkazům porozumíte. Nejprve ale začneme tím, že si ukážeme, jak se v MATLABu počítají funkční hodnoty elementárních funkcí, tj. ukážeme si, jak používat MATLAB jako výpočetní prostředek, jako takovou kalkulačku Výpočty funkčních hodnot Příklad 1.1: Výpočet funkční hodnoty polynomu 7 4 Vypočítejte funkční hodnotu polynomu x + x + x 7 pro x =. Řešení a) Na str. -4 jsou uvedeny aritmetické operátory, které lze v MATLABu použít. Můžete tedy postupovat tak, jako na obyčejné kalkulačce a napsat do příkazového řádku MATLABu tj. do Command Window za symbol >> toto: ******+****+**-7 obdržíte výsledek: ans = 177 což budu dále zapisovat do jednoho řádku jako ans = 177 b) Můžete také použít symbol pro umocňování, který znáte z Excelu, tj. symbol ^ a napsat: 7

8 ^7+*^4+^-7 obdržíte stejný výsledek: ans = 177 c) Oba výše uvedené příkazy můžete také zadat takto:.*.*.*.*.*.*+.*.*.*.*+.*.*-7.^7+.*.^4+.^-7 protože nenásobíte matice, ale pole. d) Pokud byste potřebovali vypočítat funkční hodnotu nejen pro x =, ale pro mnohem více různých hodnot x, pak by byl tento postup velice nepraktický a pomalý. V tomto případě zadáte do MATLABu polynom obecně příkazem: p=[1,0,0,,0,,0,-7]; To znamená, že do hranaté závorky napíšete koeficienty daného polynomu od nejvyšší mocniny po nejnižší. Samozřejmě, že pokud některá mocnina chybí, tak je koeficient 0 a nesmíte ho zapomenout napsat. Výpočet pak provedete příkazem: polyval(p,) opět obdržíte výsledek: ans = 177 Funkční hodnotu například pro x = 5 byste pak získali příkazem: polyval(p,5) výsledek je ans = 8004 Výsledek 7 4 Funkční hodnota polynomu x + x + x 7 pro x = je 177. Tip 1.1: Klávesové zkratky Pokud píšete odbornou práci česky, tak je velice nepraktické přepínat neustále klávesnici českou na anglickou a obráceně pouze proto, abyste napsali hranaté závorky, nebo zpětné lomítko atd. V následující Tab. 1.5 jsou uvedeny klávesové zkratky, které se velice dobře pamatují a velice Vám usnadní práci. Navíc, ve specializované učebně výpočetní techniky P8 je implicitně nastavena klávesnice česká. Tab. 1.5: Klávesové zkratky Znak Název znaku Klávesová zkratka Kód \ zpětné lomítko pravé Alt + q levé Alt + 09 levé Alt + zavináč pravé Alt + v levé Alt levé Alt + 64 ~ velká tilda pravé Alt + + (pod 1) levé Alt levé Alt +16 ^ stříška pravé Alt + š (pod ) levé Alt levé Alt + 94 [ levá hranatá závorka pravé Alt + f levé Alt levé Alt + 91 ] pravá hranatá závorka pravé Alt + g levé Alt + 09 levé Alt + 9 { levá složená závorka pravé Alt + b levé Alt + 01 levé Alt +1 } pravá složená závorka pravé Alt + n levé Alt levé Alt +15 < menší než pravé Alt + < levé Alt levé Alt + 60 > větší než pravé Alt + > levé Alt + 06 levé Alt + 6 8

9 Jistě Vás nyní napadlo, zda by nešla podobným způsobem provést tabelace funkce například pro hodnoty x = 1,,, 0. Samozřejmě, že odpověď je ano, lze, například pomocí tzv. FOR cyklu, což si ukážeme ve druhé kapitole. Nyní, pro zvídavé studující, uvedu pouze příslušný m-soubor tabelace.m. tabelace.m p=[1,0,0,,0,,0,-7]; for i=1:0, x(i)=polyval(p,i); end; V indexované proměnné x jsou, po spuštění tohoto m-souboru, uloženy všechny vypočtené hodnoty. Chcete-li si na monitoru zobrazit například funkční hodnotu pro x =, tak do příkazové řádky MATLABu napište: tabelace; x() a obdržíte výsledek: ans = 441 Poznámka 1.1: Použití ovladače doskey V MATLABu funguje ovladač doskey, který si pamatuje Vámi napsaný příkaz a lze jej vyvolat kurzorovou šipkou (směr nahoru). Toho s výhodou používejte v případě, že jste udělali nějakou chybu a potřebujete ji opravit, nebo k obměně příkazu, nebo k opětovnému spuštění příkazu atd. Tip 1.: Ukončení příkazu čárkou a středníkem Pokud za příkazem v MATLABu není žádný znak (dosud jste tak psali téměř všechny příkazy), tak se výsledek příkazu vypíše na monitor. Pokud byste za příkazem napsali středník, tj. napsali: ******+****+**-7; tak se Vám výpočet provede, ale výsledek se na monitoru nezobrazí (pouze se uloží do proměnné ans). Pokud za příkazem napíšete čárku, tj. napíšete: ******+****+**-7, tak se výsledek na monitoru opět objeví. Tip 1.: Uložení výsledku do proměnné Pokud v MATLABu napíšte příkaz: y=******+****+**-7 tak se výsledek nejen zobrazí na monitoru, ale zároveň se uloží do proměnné y. Na monitoru uvidíte: y = 177 a po zadání příkazu: y se vám opět zobrazí: y = 177 Varování 1.1: Název proměnné Název proměnné může obsahovat až 1 znaků. Jsou povoleny POUZE tyto znaky: písmena anglické abecedy (a-z, A-Z), číslice (0-9) a podtržítko (_). Číslicí název začínat nesmí. MATLAB rozlišuje velká a malá písmena. 9

10 K zamyšlení Co se stane, když napíšete y=******+****+**-7; Řešení Výsledek se na monitoru nezobrazí, ale zůstane uložený v proměnné y a pokud napíšete příkaz: y tak se Vám na monitoru zobrazí: y = 177 Vyzkoušejte si to! Upozornění 1.1: Psaní mezer Pokud to nebude výslovně uvedeno, tak nevpisujte do příkazového řádku MATLABu mezery. Mezera ve většině příkazů slouží jako oddělovač a nejčastěji se píše místo čárky. Pokud napíšete například příkaz: *.1 tak ve staré verzi MATLABu obdržíte červené chybové hlášení:??? *.1 Error: Missing operator, comma, or semicolon. v nové verzi MATLABu pak červené chybové hlášení:?? *.1 Error: Unexpected MATLAB expression. pokud ale napíšete příkazy: p=[ ]; polyval(p,) tak obdržíte správný výsledek: 177 Vy budete mezeru používat většinou pouze u příkazu axis, ale to si povíme později. Upozornění 1.: Násobení matic a polí MATLAB rozlišuje násobení matic, pro které má znak * a násobení polí (také se říká násobení po prvcích resp. po složkách), pro které má znak.*. Obdobně rozlišuje / a./, ^ a.^ atd. Vy jste doposud pracovali s reálnými čísly, které můžete chápat jako matici typu 1 1 i jako pole délky 1. Nezáleželo tedy na tom, zda napíšete *, nebo.*, protože násobení matic typu 1 1 se provádí stejně jako násobení polí délky 1. Varování 1.: Nezaměňujte násobení matic a polí Při symbolických výpočtech, které budete později provádět NIKDY nesmíte psát.* (tečka hvězdička). Napíšete-li například příkaz: f=sym('x.*x+7') uvidíte na monitoru, ve staré verzi MATLABu, místo výsledku, červené chybové hlášení:??? Error using ==> sym/sym (charsym) x.*x+7 is not a valid symbolic expression. Error in ==> On line 9 ==> S = charsym(x); 10

11 V nové verzi MATLABu pak uvidíte:??? Error using ==> sym.sym>expressionref at 408 Error: 'expression' expected [line 1, col ] Error in ==> sym.sym>charref at 78 s = expressionref(x); Error in ==> sym.sym>tomupad at 147 S = charref(x); Error in ==> sym.sym>sym.sym at 10 S.s = tomupad(x,''); Co je stará a nová verze MATLABu bylo vysvětleno v úvodu k tomuto učebnímu textu. Napíšete-li příkaz: f=sym('x*x+7') uvidíte na monitoru výsledek: f = x*x+7 Při kreslení grafů naopak VŽDY musíte psát.* (tečka hvězdička). Napíšete-li například posloupnost příkazů: x=0:0.01:;y=x*x+7;plot(x,y,'b'); zobrazí se Vám, v obou verzích MATLABu, na monitoru, červené chybové hlášení??? Error using ==> * Inner matrix dimensions must agree. Napíšete-li posloupnost příkazů: x=0:0.01:;y=x.*x+7;plot(x,y,'b'); otevře se Vám nové okno s obrázkem, kde uvidíte toto: Obr. 1.: Demonstrace správného použití operátoru.* Vyzkoušejte si to! Zápisy funkcí a operátorů Příklad 1.: Jednoduché odmocniny a mocniny Vypočítejte a = 1 7, 8 4 a =, a =. 7 Řešení Když se podíváte do Tab. 1. na str. 5, tak uvidíte předdefinované funkce MATLABu, které Vám úlohu pomohou vyřešit. Můžete postupovat například takto: 11

12 a) Do příkazové řádky MATLABu napište příkaz: a1=sqrt(7) na monitoru se zobrazí výsledek: a1 =.6458 b) Do příkazové řádky MATLABu napište příkaz: a=^8 na monitoru se zobrazí výsledek: a = 56 c) Protože čtvrtou odmocninu můžete napsat také jako mocninu s exponentem 1/4, tak do MATLABu napište příkaz: a=7^(1/4) na monitoru se zobrazí výsledek: a = Výsledek Hledané hodnoty jsou: a = 7,645 8, a = 8 56, a 4 = 7 1, = Upozornění 1.: Desetinná tečka MATLAB používá desetinnou tečku a ne desetinnou čárku. K zamyšlení Jakým jiným příkazem lze vypočítat a? Řešení Stačí zadat příkaz: a=pow(8) Příklad 1.: Algebraické výrazy s mocninami a odmocninami Vypočítejte funkční hodnotu následujících výrazů: z = +. Řešení Stačí do MATLABu zadat příkaz: z1=(^+5^4)^(1/) na monitoru se zobrazí výsledek: z1 = pak zadejte příkaz: z=(7^5+^)^(1/5) výsledek je: z = a nakonec zadejte příkaz: z=(^5+^4)^(1/7) výsledek je: z = = + 5 z ; z ; 5 5 = 7 + 1

13 Výsledek Funkční hodnoty jsou: z = ,586 ; 5 5 z = 7 + 7,000 7 ; 7 5 z 4 = + 1, K zamyšlení Jakým jiným příkazem lze vypočítat z 1? Řešení Můžete napsat příkaz: z1=(.^+5.^4).^(1/) a obdržíte shodný výsledek: z1 = Tip 1.4: Tabulka hodnot Pokud byste měli obdobných příkladů vypočítat mnohem více, nebo dokonce vygenerovat celou tabulku, tak můžete postupovat mnohem elegantněji a efektivněji. Struktura všech výrazů je vlastně takováto: a b x + a pak stále stejný příkaz z=(x.^b+y.^c).^(1/a). Například: a=;b=;c=4;x=;y=5;z1=(x.^b+y.^c).^(1/a) výsledek je: z1 = y c. Stačí tedy zadat hodnoty proměnných a, b, c, x a y Zadání všech hodnot a, b, c, x a y lze provést pomocí matice, která bude mít tolik řádků, kolik hodnot z budete chtít vypočítat a sloupců bude mít 5, protože vždy zadáváte 5 hodnot. Výsledky můžete zobrazit na monitor a zároveň uložit pomocí cyklu do indexovaných proměnných. Použití jednoduchého cyklu si ukážeme v příštím cvičení. Jednoduchý program, tzv. m-soubor, který by vyřešil předchozí úlohu a vypočítal 10 hodnot z by mohl vypadat například takto: tabulka.m m=[,,4,,5;5,5,,7,;7,5,4,,;,,5,4,5;5,5,5,5,5;4,4,4,4,4;,,,,;,,4,4,5;4,4,5,6,6;5,5,6,,]; for i=1:10, z(i)=(m(i,4)^m(i,)+m(i,5)^m(i,))^(1/m(i,1)); end; V příkazovém řádku MATLABu pak stačí napsat: tabulka; z a obdržíte výsledek: z = Upozornění 1.4: Lichá odmocnina ze záporného čísla V matematice je definována lichá odmocnina ze záporného čísla pomocí inverzní funkce k funkci lichá mocnina, která je definována pro libovolné reálné číslo a 8 =, 5 4 = atd. V MATLABu pokud zadáte: (-8)^(1/) tak obdržíte výsledek ans = i pokud ale zadáte příkaz:

14 -8^(1/) tak obdržíte správný výsledek: ans = - protože tento příkaz je identický (při výpočtu) s příkazem: -(8^(1/)) vypočítá tedy třetí odmocninu z 8 a pak změní znaménko na mínus, chceme-li vypočítat 5 4 =, tak stačí zadat příkaz: -(4^(1/5)) a obdržíte správný výsledek: - Příklad 1.4: Výrazy obsahující logaritmy Vypočítejte funkční hodnoty následujících výrazů: b 1 = lg 4, 589; b = ln 4, 875 ; b = log 5,457 ; b log, = 1 Řešení Dekadický logaritmus se počítá pomocí předdefinované funkce log10, a proto stačí napsat příkaz: b1=log10(4.589) a obdržíte výsledek: b1 = Přirozený logaritmus se počítá pomocí předdefinované funkce log, a proto stačí napsat příkaz: b=log(4.875) a obdržíte výsledek: b = Protože platí matematický vztah například takto: b=log(.457)/log(5) a dostanete výsledek: b = napíšete-li příkaz: b4=log(.564)/log(1/) dostanete výsledek: b4 = ln a log b a =, tak lze zbývající dvě hodnoty vypočítat ln b Výsledek Funkční hodnoty jsou tyto: b 1 = log 4,589 1,90 7 ; b = ln 4,875 1,584 1; b = log 5,457 0,770 7 ; b 4 = log 1,564 1, Upozornění 1.5: Dekadický a přirozený logaritmus Nepleťte si v MATLABu symboly pro jednotlivé logaritmy. V matematice je přirozený logaritmus ln v MATLABu log. Dekadický logaritmus je v matematice lg (na některých 14

15 školách se ještě používá log), v MATLABu je log10. V matematice je binární (logaritmus o základu ) lb, v MATLABu je log. Symbol ln MATLAB nezná. Pokud se Vám nelíbí, jak je nutné zadávat příkaz pro výpočet například b = log 5, 457, tak si v MATLABu můžete vytvořit vlastní funkci, do které zadáte například nejprve hodnotu proměnné x a pak základ z a výsledkem bude logaritmus o základu z. Jak se to udělá? Napíšete například níže uvedený m-soubor logz.m a pak stačí zadat příkaz: b=logz(.457,5) a obdržíte výsledek: b = logz.m function[y]=logz(x,z); y=log(x)./log(z); Exponenciální funkce Příklad 1.5: Výrazy obsahující exponenciální funkci o základu e 8 4 Vypočítejte funkční hodnoty následujících výrazů: c 1 = ; c = e + e ; c e Řešení Stačí zadat příkaz: c1=/exp() a obdržíte výsledek: c1 = po zadání příkazu: c=exp(8)+exp(1/4) obdržíte výsledek: c =.98e+00 což je semilogaritmický tvar,98 10 desetinného čísla 98, a nakonec po zadání příkazu: c=exp(+1/7) obdržíte výsledek: c =.1700 Výsledek = e Funkční hodnoty jsou: c 1 = 0,149 4 ; c e e 98, = +, c = e, e Poznámka 1.: Zobrazení dalších desetinných míst Pokud byste potřebovali číslo c na více desetinných míst, tak stačí zadat například příkaz: c=numstr(c,10) a dostanete výsledek: c = Můžete pak psát, že c 98,

16 Výše uvedený příkaz numstr není jediná možnost, jak můžete vypočítané číslo zobrazit v jiném formátu. Jestliže si zadáte příkaz: help format tak získáte přehled o všech možnostech ve Vaší verzi MATLABu. Zadáte-li například příkaz: format long, c tak se Vám číslo c zobrazí ve stejném semilogaritmickém tvaru, jako bez zadání příkazu format, ale vypíše se Vám, v obou verzích MATLABu, 15 desetinných míst: c = e+00 což je, = 98, Trigonometrické funkce Příklad 1.6: Hodnoty goniometrických a cyklometrických funkcí Vypočítejte u 1 = cos, u = arcsin 0, 584, u = sin 7. Řešení První dvě hodnoty vypočítáte snadno. Zadejte nejprve příkaz: u1=cos() a obdržíte výsledek: u1 = po zadání příkazu: u=asin(0.584) obdržíte výsledek: u = 0.66 Ve třetím případě musíte nejprve 7 stupňů převést na radiány, protože MATLAB implicitně počítá pouze s radiány. Protože 180..π radiánů, 7 x radiánů, 7 tak x = π v radiánech a stačí tedy napsat příkaz: 180 u=sin(7*pi/180) a obdržíte výsledek: u = Výsledek Funkční hodnoty jsou tyto: u 1 = cos 0,990 0 ; u = arcsin 0,584 0,6 6 ; u = sin 7 0, Varování 1.: Funkční hodnoty arkuskotangens 1 Z matematiky znáte funkci f : y = arccot x jako inverzní funkci k funkci 1 1 D ( f ) = H ( f ) = ( 0; π) a H ( f ) = D( f ) = R acot(0) tak se ve staré verzi MATLABu objeví hlášení: 16 f : y = cot x, kde. Jestliže ale v MATLABu zadáte příkaz: Warning: Divide by zero. In C:\MATLAB6p1\toolbox\matlab\elfun\acot.m at line 8 ans =

17 zatímco v nové verzi MATLABu získáte správný výsledek: ans = π π víme totiž, že arccot 0 = 1,570 8, protože cot = 0. Pokud zadáte příkaz: h=acot(-5) tak v obou verzích MATLABu získáte výsledek: h = což ale víme, že je chybně, protože D ( f ) = H ( f ) = ( 0; π) kontrolu, tj. zadáte příkaz: cot(h) tak opět v obou verzích MATLABu získáte výsledek: ans = -5. Jestliže si uděláte jakoby Jak je to možné? Pokud se pokusíte v MATLABu vykreslit funkci y = arccot x pomocí příkazu acot(x), tak v obou verzích MATLABu dostanete nesmysl, který je na Obr. 1.4, protože to není vůbec graf funkce (pro x = 0 máte více funkčních hodnot). V novém MATLABu se neobjeví žádné hlášení, takže studující, kteří tuto funkci neznají si myslí, že mají správný graf. Ve starém obdržíte hlášení: Obr. 1.4: První pokus o graf funkce arkuskotangens Warning: Divide by zero. In C:\MATLAB6p1\toolbox\matlab\elfun\acot.m at line 8 In C:\MATLAB6p1\work\pokus1.m at line 5 ale protože toto hlášení je černé a MATLAB něco kreslí, tak studující, kteří tuto funkci neznají, mají tendenci chybu ignorovat a opět si chybně myslí, že mají správný graf. Chyba upozorňuje pouze na dělení nulou a bohužel, ani po jejím odstranění, nedostanete správný graf. Takový graf by vypadal tak, jak je zobrazen na Obr

18 Obr. 1.5: Druhý pokus o graf funkce arkuskotangens Správný graf je až na následujícím obrázku: Vidíte tedy, že hodnota ( 5) graf vypadá takto: Obr. 1.6: Graf funkce arkuskotangens arccot musí být téměř. A jak je to s funkcí kotangens? Její 18

19 Obr. 1.7: Graf funkce kotangens Vidíte tedy, že funkční hodnota cot(h ), kde h 0,197 4 je přibližně 5, ale správnou funkční hodnotu arccot ( 5) musíte vypočítat pomocí příkazu: acot(-5)+pi a konečně obdržíte správný výsledek: ans =.944 Pokud by vás zajímalo, jak se výše uvedené grafy nakreslí, tak si prostudujte m-soubory ark1.m, ark.m, ark.m a ark4.m. Pokud byste si chtěli vytvořit vlastní funkci, která bude počítat i kreslit správně funkci arccot x, tak si stačí napsat níže uvedený m-soubor arccot.m, a pak stačí zadat příkaz: h=arccot(-5) a obdržíte výsledek: h =.944 arccot.m function[y]=arccot(x) if x >= 0, if x == 0, y=pi/; else y=acot(x); end; else y=acot(x)+pi; end; Převod radiánů na stupně, minuty a vteřiny Příklad 1.7: Převod radiánů na stupně, minuty a vteřiny Víme, že ϕ = x ϕ 0; π v radiánech a ve stupních, minutách a vteřinách, cos, jaký je úhel ( ) jestliže x je postupně ; 0,45 8; 0,687 4? 19

20 Řešení Nejprve zadejte do MATLABu první hodnotu x, tj. napište příkaz: x=-sqrt()/ zobrazí se Vám: x = pak vypočítejte úhel z v radiánech, tj. napište příkaz: z=acos(x) získáte výsledek: z =.6180 který je samozřejmě v radiánech. Protože 180..π radiánů, x., radiánů,,618 0 tak x 180 ve stupních. Když zadáte příkaz: π y=180*z/pi nebo: y=180*acos(x)/pi tak dostanete výsledek: y = který je již ve stupních. Podobně zadejte příkaz: x=0.458 zobrazí se Vám: x = po zadání příkazu: z=acos(x) dostanete: z = 1.5 což je v radiánech. Po zadání příkazu: z=180*z/pi dostanete: z = ve stupních, ale výsledek je nutné ještě převést na minuty a vteřiny. Protože minut, 0,770 9 x minut, tak 0,770 9 x 60 minut. Když zadáte příkaz: *60 dostanete : ans = minut, ale tím jste se dopustili dosti velké nepřesnosti, protože jste použili pouze čtyři 0

Programování v jazyku LOGO - úvod

Programování v jazyku LOGO - úvod Programování v jazyku LOGO - úvod Programovací jazyk LOGO je určen pro výuku algoritmizace především pro děti školou povinné. Programovací jazyk pracuje v grafickém prostředí, přičemž jednou z jeho podstatných

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Návod k programu Graph, verze 4.3

Návod k programu Graph, verze 4.3 Návod k programu Graph, verze 4.3 Obsah 1 Úvod 2 2 Popis pracovní lišty a nápovědy 2 2.1 Nastavení os...................................... 2 2.2 Nápověda....................................... 3 3 Jak

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_33_05 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávací oblast Vzdělávání v informačních a komunikačních

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Microsoft Office. Excel vlastní formát buněk

Microsoft Office. Excel vlastní formát buněk Microsoft Office Excel vlastní formát buněk Karel Dvořák 2011 Formát buněk Běžné formáty buněk vybíráme v seznamu formátů ve skupině Číslo. V některých případech potřebujeme formát v trochu jiné podobě,

Více

Čtvrtek 3. listopadu. Makra v Excelu. Obecná definice makra: Spouštění makra: Druhy maker, způsoby tvorby a jejich ukládání

Čtvrtek 3. listopadu. Makra v Excelu. Obecná definice makra: Spouštění makra: Druhy maker, způsoby tvorby a jejich ukládání Čtvrtek 3. listopadu Makra v Excelu Obecná definice makra: Podle definice je makro strukturovanou definicí jedné nebo několika akcí, které chceme, aby MS Excel vykonal jako odezvu na nějakou námi definovanou

Více

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech 7 Formátovaný výstup, třídy, objekty, pole, chyby v programech Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost formátovanému výstupu,

Více

MS EXCEL_vybrané matematické funkce

MS EXCEL_vybrané matematické funkce MS EXCEL_vybrané matematické funkce Vybrané základní matematické funkce ABS absolutní hodnota čísla CELÁ.ČÁST - zaokrouhlení čísla na nejbližší menší celé číslo EXP - vrátí e umocněné na hodnotu argumentu

Více

FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika FUNKCE 2 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

KAPITOLA 3 - ZPRACOVÁNÍ TEXTU

KAPITOLA 3 - ZPRACOVÁNÍ TEXTU KAPITOLA 3 - ZPRACOVÁNÍ TEXTU KLÍČOVÉ POJMY textové editory formát textu tabulka grafické objekty odrážky a číslování odstavec CÍLE KAPITOLY Pracovat s textovými dokumenty a ukládat je v souborech různého

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Excel Matematické operátory. Excel předdefinované funkce

Excel Matematické operátory. Excel předdefinované funkce Excel Matematické operátory a) Sčítání + příklad =A1+A2 sečte obsah buněk A1 a A2 b) Odčítání - příklad =A1-A2 odečte hodnotu buňky A2 od hodnoty buňky A1 c) Násobení * příklad =A1*A2 vynásobí obsah buněk

Více

GeoGebra Prostředí programu

GeoGebra Prostředí programu GeoGebra Prostředí programu Po instalaci a spuštění programu uvidí uživatel jediné škálovatelné okno hlavní okno programu. Podle toho, zda otevíráte okno ve standardní konfiguraci (obr. 1) nebo v konfiguraci

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Základy zpracování kalkulačních tabulek

Základy zpracování kalkulačních tabulek Radek Maca Makovského 436 Nové Město na Moravě 592 31 tel. 0776 / 274 152 e-mail: rama@inforama.cz http://www.inforama.cz Základy zpracování kalkulačních tabulek Mgr. Radek Maca Excel I 1 slide ZÁKLADNÍ

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz Seminář z MATLABU Jiří Krejsa A2/710 krejsa@fme.vutbr.cz Obsah kurzu Posluchači se seznámí se základy systému Matlab, vědeckotechnickými výpočty, programováním v Matlabu včetně pokročilých technik, vizualizací

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Znak Slovy Popis Zdroj Výsledek Formátova cí řetězec v CZ verzi Excelu

Znak Slovy Popis Zdroj Výsledek Formátova cí řetězec v CZ verzi Excelu řetězec v Všeobecný Odpovídá obecnému formátu - čísla i text bude zarovnán dle kontextu (při nastavení češtiny tedy Excel zarovná text doleva, čísla a časové údaje doprava). Tento formát nemusíme zadávat

Více

Příloha 1. 1. Jazyk Coach

Příloha 1. 1. Jazyk Coach Příloha 1 1. Jazyk Coach 1.1 Úvod Součástí integrovaného prostředí Coach jsou programy Modelování a Řídicí prostředí, ve kterých je možno navrhovat, zapisovat, ladit a provádět modelové výpočty a řídicí

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

MS OFFICE MS WORD. Editor rovnic - instalace

MS OFFICE MS WORD. Editor rovnic - instalace MS OFFICE Může se zdát, že užití kancelářského balíku MS Office při výuce fyziky nepřesahuje běžné aplikace a standardní funkce, jak jsou popsány v mnoha příručkách ke všem jednotlivým částem tohoto balíku.

Více

Microsoft Office Excel 2003

Microsoft Office Excel 2003 Microsoft Office Excel 2003 Školení učitelů na základní škole Meteorologická Maturitní projekt SSPŠ 2013/2014 Vojtěch Dušek 4.B 1 Obsah 1 Obsah... 2 2 Seznam obrázků... 3 3 Základy programu Excel... 4

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

PHP tutoriál (základy PHP snadno a rychle)

PHP tutoriál (základy PHP snadno a rychle) PHP tutoriál (základy PHP snadno a rychle) Druhá, vylepšená offline verze. Připravil Štěpán Mátl, http://khamos.wz.cz Chceš se naučit základy PHP? V tom případě si prostuduj tento rychlý průvodce. Nejdříve

Více

Téma 12: Správa diskových jednotek a system souborů. Téma 12: Správa diskových jednotek a systémů souborů

Téma 12: Správa diskových jednotek a system souborů. Téma 12: Správa diskových jednotek a systémů souborů Téma 12: Správa diskových jednotek a systémů souborů 1 Teoretické znalosti V tomto cvičení se podíváte na práci s diskovými jednotkami. Naučíte se používat nástroj správy disků, který se poprvé objevil

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 Maturitní zkouška se skládá ze společné části a profilové části. 1. Společná část maturitní zkoušky Dvě povinné zkoušky a) český jazyk a literatura b) cizí jazyk

Více

Modul Periodická fakturace

Modul Periodická fakturace Modul Periodická fakturace účetnictví pro živnostníky a malé společnosti O I P... 1 On-line...1 Off-line...1 M P... 3 Přínos pro uživatele... 3 P... 3 Karta nastavení vzoru periodického dokladu... 4 Záložka

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Úvod. Program ZK EANPRINT. Základní vlastnosti programu. Co program vyžaduje. Určení programu. Jak program spustit. Uživatelská dokumentace programu

Úvod. Program ZK EANPRINT. Základní vlastnosti programu. Co program vyžaduje. Určení programu. Jak program spustit. Uživatelská dokumentace programu sq Program ZK EANPRINT verze 1.20 Uživatelská dokumentace programu Úvod Základní vlastnosti programu Jednoduchost ovládání - umožňuje obsluhu i málo zkušeným uživatelům bez nutnosti většího zaškolování.

Více

Visual Basic for Application

Visual Basic for Application Visual Basic for Application Leopold Bartoš 1 Začátek 1.1 Úvod Visual Basic for Application (VBA) je programové prostředí pro produkty, které jsou zahrnuty do balíku, který dostal jméno Microsoft Office.

Více

Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití

Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití Proč Excel? Práce s Excelem obnáší množství operací s tabulkami a jejich obsahem. Jejich jednotlivé buňky jsou uspořádány do sloupců

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Začínáme pracovat s tabulkovým procesorem MS Excel

Začínáme pracovat s tabulkovým procesorem MS Excel Začínáme pracovat s tabulkovým procesorem MS Excel Nejtypičtějším představitelem tabulkových procesorů je MS Excel. Je to pokročilý nástroj pro tvorbu jednoduchých i složitých výpočtů a grafů. Program

Více

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého

Více

Seminář IVT. MS Excel, opakování funkcí

Seminář IVT. MS Excel, opakování funkcí Seminář IVT MS Excel, opakování funkcí Výuka Opakování z minulé hodiny. Založeno na výsledcích Vašich domácích úkolů, podrobné zopakování věcí, ve kterých děláte nejčastěji chyby. Nejčastější jsou následující

Více

DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS. (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat)

DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS. (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat) DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 61 DATABÁZE - ACCESS (příprava k vykonání testu ECDL Modul 5 Databáze a systémy pro zpracování dat) DATABÁZE A SYSTÉMY PRO UCHOVÁNÍ DAT 62 Databáze a systémy pro uchování

Více

24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) HODINOVÁ DOTACE: 1

24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) HODINOVÁ DOTACE: 1 24-2-2 PROMĚNNÉ, KONSTANTY A DATOVÉ TYPY TEORIE AUTOR DOKUMENTU: MGR. MARTINA SUKOVÁ DATUM VYTVOŘENÍ: 23.7.2013 KLÍČOVÁ AKTIVITA: 02 UČIVO: STUDIJNÍ OBOR: PROGRAMOVÁNÍ 2. ROČNÍK (PRG2) INFORMAČNÍ TECHNOLOGIE

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň

Více

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA PROGRAM MAXIMA KORDEK, David, (CZ) Abstrakt. Co je to Open Source Software? Příklady některých nejpoužívanějších software tohoto typu. Výhody a nevýhody Open Source Software. Jak získat program Maxima.

Více

Kódy pro formát čísla

Kódy pro formát čísla Kódy pro formát čísla y pro formát čísel se mohou skládat až z tří částí oddělených středníkem (;). Pokud formátovací kód obsahuje dvě části, první část se použije pro kladné hodnoty a nulu, druhá část

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

CZ.1.07/1.5.00/34.0632

CZ.1.07/1.5.00/34.0632 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Excel Formát buňky Ing. Silvana Žárská

Více

DSL manuál. Ing. Jan Hranáč. 27. října 2010. V této kapitole je stručný průvodce k tvorbě v systému DrdSim a (v

DSL manuál. Ing. Jan Hranáč. 27. října 2010. V této kapitole je stručný průvodce k tvorbě v systému DrdSim a (v DSL manuál Ing. Jan Hranáč 27. října 2010 V této kapitole je stručný průvodce k tvorbě v systému DrdSim a (v současné době krátký) seznam vestavěných funkcí systému. 1 Vytvoření nového dobrodružství Nejprve

Více

Smart Counter 2 Systém počítačové algebry

Smart Counter 2 Systém počítačové algebry SOČ 2005 2006 Středoškolská odborná činnost Matematika a matematická informatika Softwarové zpracování úloh matematiky a matematické informatiky Smart Counter 2 Systém počítačové algebry Štěpán Kozák 3.

Více

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází Tiskové sestavy Tiskové sestavy se v aplikaci Access používají na finální tisk informací z databáze. Tisknout se dají všechny objekty, které jsme si vytvořili, ale tiskové sestavy slouží k tisku záznamů

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

Popis ovládání aplikace - Mapový klient KÚPK

Popis ovládání aplikace - Mapový klient KÚPK Popis ovládání aplikace - Mapový klient KÚPK Úvodní informace K využívání této aplikace musíte mít ve Vašem internetovém prohlížeči nainstalovaný plugin Adobe Flash Player verze 10 a vyšší. Mapová aplikace

Více

Snadné podvojné účetnictví

Snadné podvojné účetnictví Snadné podvojné účetnictví Ver.: 3.xx Milan Hradecký Úvodem : Program je určen pro malé a střední neziskové organizace a umožňuje snadné zpracování účetních dokladů a způsob zápisu připomíná spíše zápis

Více

Stručná instalační příručka SUSE Linux Enterprise Server 11

Stručná instalační příručka SUSE Linux Enterprise Server 11 Stručná instalační příručka SUSE Linux Enterprise Server 11 RYCHLÝ ÚVODNÍ LIST NOVELL Při instalaci nové verze systému SUSE Linux Enterprise 11 postupujte podle následujících pokynů. Tento dokument obsahuje

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE

JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE Obsah JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE...2 Co je to funkce?...2 Existuje snadnější definice funkce?...2 Dobře, pořád se mi to zdá trochu moc komplikonavané. Můžeme se na základní pojmy

Více

Tabulky. V té to ka pi to le:

Tabulky. V té to ka pi to le: 7 Tabulky V té to ka pi to le: Vytvoření tabulky Výběr oblastí v tabulce Vkládání hodnot a objektů do tabulky Formátování tabulky Řazení dat v tabulce Výpočty v tabulce Kapitola 7 Tabulky Tabulky jsou

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

MS Excel vytváření vzorců, použití jednoduchých funkcí

MS Excel vytváření vzorců, použití jednoduchých funkcí MS Excel vytváření vzorců, použití jednoduchých funkcí Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Výkladová část Jednoduché vzorce vytváření jednoduchých vzorců s použitím

Více

1/2. pro začátečníky. Ing. Zbyněk Sušil, MSc.

1/2. pro začátečníky. Ing. Zbyněk Sušil, MSc. 1/2 pro začátečníky Ing. Zbyněk Sušil, MSc. Průběh lekce Základní informace Seznamy Formátování buněk Operace s řádky a sloupci Příprava tisku Matematické operace Vzorce Absolutní a relativní adresování

Více

Prostředí Microstationu a jeho nastavení. Nastavení výkresu

Prostředí Microstationu a jeho nastavení. Nastavení výkresu Prostředí Microstationu a jeho nastavení Nastavení výkresu 1 Pracovní plocha, panely nástrojů Seznámení s pracovním prostředím ovlivní pohodlí, rychlost, efektivitu a možná i kvalitu práce v programu Microstation.

Více

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 4. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 4. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28. Zdokonalování gramotnosti v oblasti ICT Kurz MS Excel kurz 4 1 Obsah Rozdělení textu do sloupců... 3 Rozdělení obsahu na základě oddělovače... 3 Rozdělení obsahu na základě hranice sloupců... 5 Odebrat

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

WSH Windows Script Hosting. OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007

WSH Windows Script Hosting. OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007 WSH Windows Script Hosting OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007 Co je skript? Skriptování nástroj pro správu systému a automatizaci úloh Umožňuje psát skripty jednoduché interpretované programové

Více

SMART Notebook Math Tools

SMART Notebook Math Tools SMART Notebook Math Tools Windows operační systémy Uživatelská příručka Oznámení o ochranných známkách SMART Board, SMART Notebook, smarttech, loo SMART a všechna označení SMART jsou obchodními známkami

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

KAPITOLA 2 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ

KAPITOLA 2 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KAPITOLA 2 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KLÍČOVÉ POJMY Internet World Wide Web FTP, fulltext e-mail, IP adresa webový prohlížeč a vyhledávač CÍLE KAPITOLY Pochopit, co je Internet

Více

DATABÁZE MS ACCESS 2010

DATABÁZE MS ACCESS 2010 DATABÁZE MS ACCESS 2010 KAPITOLA 5 PRAKTICKÁ ČÁST TABULKY POPIS PROSTŘEDÍ Spuštění MS Access nadefinovat název databáze a cestu k uložení databáze POPIS PROSTŘEDÍ Nahoře záložky: Soubor (k uložení souboru,

Více

GeoGebra stručný průvodce kurzem

GeoGebra stručný průvodce kurzem Beznákladové ICT pro učitele Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Úvod GeoGebra je program v oblasti dynamické geometrie (DGS), který v sobě

Více

Google Apps. dokumenty 4. verze 2012

Google Apps. dokumenty 4. verze 2012 Google Apps dokumenty verze 0 Obsah Obsah... Úvod... Tabulky... Popis prostředí... Menu a panely nástrojů... Uložení a nastavení sešitu... Tvorba a formátování tabulky... Vložení vzorce a funkce... Pravé

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY

ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY Marie Polcerová Fakulta chemická, Vysoké učení technické v Brně Abstrakt: Zavedení nového samostatného povinného předmětu Počítačová

Více

FUNKCE 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FUNKCE 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika FUNKCE 3 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Návod pro SMS Operátor off-line klient

Návod pro SMS Operátor off-line klient Verze: 1.10 Strana: 1 / 1 Návod pro SMS Operátor off-line klient 1. Co je to off-line klient SMS Operátor Off-line klient SMS Operátor je aplikace k systému SMS Operátor pro posílání SMS, která umožňuje:

Více

Obsah. Úvod 15 Základní možnosti Excelu 17

Obsah. Úvod 15 Základní možnosti Excelu 17 Obsah Úvod 15 Základní možnosti Excelu 17 1 Jak spouštět Excel z úvodní obrazovky Windows 8 17 2 Jak spouštět Excel z hlavního panelu 17 3 Jak otevřít nový dokument podle šablony 18 4 Jak zařídit, aby

Více

MS Excel 2007 Kontingenční tabulky

MS Excel 2007 Kontingenční tabulky MS Excel 2007 Kontingenční tabulky Obsah kapitoly V této kapitole se seznámíme s nástrojem, který se používá k analýze dat rozsáhlých seznamů. Studijní cíle Studenti budou umět pro analýzu dat rozsáhlých

Více

HROMADNÉ ÚPRAVY NAJÍT A NAHRADIT

HROMADNÉ ÚPRAVY NAJÍT A NAHRADIT HROMADNÉ ÚPRAVY NAJÍT A NAHRADIT Funkce Najít a nahradit slouží k rychlému vyhledávání určitých slov a jejich nahrazování jinými slovy. Lze hledat i určité varianty slov a nahrazovat je buď hromadně (všechny

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. METODICKÝ POKYN PRÁCE S MS Word MÍRNĚ POKROČILÍ Formátování textu Text formátujeme (určujeme jeho vlastnosti) na pásu karet DOMŮ. U textu můžeme formátovat font, velikost písma, řez, barvu písma, barvu

Více

Tabulkový procesor otázka č.17

Tabulkový procesor otázka č.17 Tabulkový procesor otázka č.17 Seřazení (sort = řazení, třídění) je přeorganizování seznamu nebo jakékoli jiné tabulky podle klíčů. Klíč představuje vybrané pole seznamu, podle kterého se na základě zvoleného

Více

RELAČNÍ DATABÁZE ACCESS

RELAČNÍ DATABÁZE ACCESS RELAČNÍ DATABÁZE ACCESS 1. Úvod... 2 2. Základní pojmy... 3 3. Vytvoření databáze... 5 4. Základní objekty databáze... 6 5. Návrhové zobrazení tabulky... 7 6. Vytváření tabulek... 7 6.1. Vytvoření tabulky

Více

Tabulkový procesor Excel úvod do programu. Obsah:

Tabulkový procesor Excel úvod do programu. Obsah: Předmět: Ročník: Vytvořil: Datum: Informační 1. a 2. Ing. Andrea a komunikační (podle oboru srpen 2013 Modrovská technologie zaměření) Název zpracovaného celku: Tabulkový procesor Excel Tabulkový procesor

Více

Úvod do programu Solid Edge

Úvod do programu Solid Edge Úvod do programu Solid Edge Cíle této kapitoly V průběhu této kapitoly se naučíte: jak vypadá prostředí programu Solid Edge, najít a otevřít dokument programu Solid Edge, vytvořit a uložit dokument, používat

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Kód. Proměnné. #include <iostream> using namespace std; int main(void) { cout << "Hello world!" << endl; cin.get(); return 0; }

Kód. Proměnné. #include <iostream> using namespace std; int main(void) { cout << Hello world! << endl; cin.get(); return 0; } Jazyk C++ Jazyk C++ je nástupcem jazyka C. C++ obsahuje skoro celý jazyk C, ale navíc přidává vysokoúrovňové vlastnosti vyšších jazyků. Z toho plyne, že (skoro) každý platný program v C je také platným

Více

Bohemius, k.s. www.bohemius.cz

Bohemius, k.s. www.bohemius.cz Bohemius, k.s. www.bohemius.cz Modul je součástí administrativní i manažerské kalkulačky Formulář Malé DPH: Dále následuje : FORMULÁŘ - VLASTNÍ KALKULAČKA o produktu KDO BUDE S FORMULÁŘEM PŘEDEVŠÍM PRACOVAT

Více

METODICKÝ POKYN PRÁCE S MS PowerPoint - POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

METODICKÝ POKYN PRÁCE S MS PowerPoint - POKROČILÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. METODICKÝ POKYN PRÁCE S MS PowerPoint - POKROČILÍ Pozadí snímku Pozadí snímku můžeme nastavit všem snímkům stejné nebo můžeme volit pro jednotlivé snímky různé pozadí. Máme několik možností: Pozadí snímku

Více