4 Opěrné zdi. 4.1 Druhy opěrných zdí. 4.2 Navrhování gravitačních opěrných zdí. Opěrné zd i

Rozměr: px
Začít zobrazení ze stránky:

Download "4 Opěrné zdi. 4.1 Druhy opěrných zdí. 4.2 Navrhování gravitačních opěrných zdí. Opěrné zd i"

Transkript

1 Opěrné zd i 4 Opěrné zdi 4.1 Druhy opěrných zdí Podle kapitoly 9 Opěrné konstrukce evropské normy ČSN EN se z hlediska návrhu opěrných konstrukcí rozlišují následující 3 typy: a) gravitační zdi, které bývají kamenné, z prostého nebo vyztuženého betonu, přičemž sama tíha zdi, eventuálně včetně stabilizující tíhy spolupůsobící zeminy hrají významnou roli v podpírání zadržovaného materiálu; příkladem jsou gravitační zdi konstantní nebo proměnné tloušťky plošně založené, úhlové železobetonové zdi atd.; b) vetknuté stěny, které jsou relativně tenké stěny ocelové, železobetonové, složené z oceli a dřeva (např. záporové stěny), podporované kotvami nebo rozpěrami, nebo pasivním zemním tlakem, přičemž jejich ohybová únosnost hraje významnou roli při podpoře zadržovaného materiálu na rozdíl od tíhy těchto zdí, jež není významná; příkladem jsou štětové stěny, podzemní a pilotové stěny, záporové pažení atd., tedy konstrukce, o nichž je pojednáno v kap. 2 a 4; c) složené opěrné konstrukce, které se skládají z kombinace obou výše jmenovaných s využitím dalších prvků a konstrukcí speciálního zakládání staveb. Těchto konstrukcí je mnoho druhů; za příklad slouží dvojité štětové stěny jímek, zemní konstrukce vyztužené táhly nebo geomřížemi, hřebíkování svahů či jakkoli jinak složené konstrukce. Uvedené dělení opěrných konstrukcí není jistě vyčerpávající, je však dostatečné pro účely jejich návrhu. S ohledem na frekvenci výskytu budeme se v této kapitole zabývat pouze zdmi gravitačními, plošně založenými, neboť např. zdi železobetonové založené hlubinně náležejí podle tohoto dělení již do složených opěrných konstrukcí. 4.2 Navrhování gravitačních opěrných zdí Pro návrh a posouzení gravitačních opěrných zdí platí zásady mezních stavů, přičemž se musí uvažovat s následujícími: ztrátou celkové stability (1. mezní stav); porušením konstrukčního prvku stěna, styk mezi jednotlivými prvky, (1. mezní stav); kombinací porušení v základové půdě a v konstrukčním prvku (1. mezní stav); porušení únosnosti základové půdy (1. mezní stav); porušení smykem v základové spáře (1. mezní stav); porušení nakloněním zdi (2. mezní stav); porušení vztlakem (1. mezní stav) a vnitřní erozí; pohybem opěrné konstrukce, který může být příčinou kolapsu, nebo může ovlivnit efektivní užívání konstrukce, popř. sousedních konstrukcí nebo inženýrských sítí (2. mezní stav); nepřijatelným průsakem stěnou nebo pod stěnou; nepřijatelným transportem částic zeminy skrz stěnu nebo pod stěnou; nepřijatelnou změnou režimu podzemní vody. 77

2 Opěrné zdi Zatížení gravitačních opěrných zdí je tvořeno: vlastní tíhou konstrukce zdi a zásypových materiálů; zemními tlaky stanovenými s ohledem na možný pohyb opěrné zdi; přírůstky zemního tlaku od ostatního stálého a užitného zatížení; účinky vody a podzemní vody (změnou mechanických parametrů základové půdy, tlakem hydrostatickým apřípadně i hydrodynamickým); silami vln a ledu (pokud to přichází v úvahu); kolizními silami (např. od dopravy, silami působícími na zábradlí atd., pokud to přichází v úvahu); vlivem teploty. Ve všech těchto případech je třeba důkladně zvážit, je-li konkrétní účinek zatížením stálým, nebo pohyblivým, a to zejména s ohledem na statické posouzení podle mezního stavu porušení tak, aby mohl být pro příslušný návrhový přístup vybrán správný dílčí koeficient zatížení typu A. Při volbě velikosti zatížení zemním tlakem se musí zvážit možný relativní pohyb stěny a základové půdy. Pokud tento pohyb nenastane, je třeba počítat se zemním tlakem v klidu, jehož výslednice v případě vodorovného povrchu terénu působí kolmo na svislou stěnu. Pokud terén za rubem stěny stoupá pod úhlem β, má výslednice směr rovnoběžný s povrchem terénu a součinitel zemního tlaku v klidu (viz rovnice 10) se změní na: K r,β = K r (1 + sin β) (48) V základové půdě za opěrnou konstrukcí se uvažuje se zemním tlakem v klidu, pokud je relativní pohyb konstrukce menší než H, kde H je výška opěrné konstrukce. Pokud je relativní pohyb omezen a nesplňuje podmínky pro dosažení aktivního zemního tlaku, musí se počítat s mezilehlými hodnotami např. podle kap Zvláštní pozornost je třeba věnovat velikosti pasivního zemního tlaku, s jehož plnou hodnotou nelze prakticky počítat nikdy. Při určení velikosti zemních tlaků je třeba vzít v úvahu účinky eventuálního zhutňování zásypu za rubem konstrukce, respektive naopak při návrhu zhutňování je třeba vyhnout se nadměrným dodatečným zemním tlakům, vyvolaným právě tímto zhutňováním. Při určení velikosti působícího hydrostatického tlaku je třeba vždy zvážit možnou úroveň hladiny podzemní vody za rubem stěny s ohledem na drenážní účinek, a to i v případě zemin se střední nebo i nízkou propustností (silty i jíly). Návrh gravitačních opěrných zdí se musí posoudit proti dosažení mezního stavu porušení (1. mezní stav), a to pro návrhové situace, které tomuto stavu odpovídají za použití návrhových zatížení nebo účinků zatížení a návrhové únosnosti, přičemž rozhodující bývá porušení typu GEO, popř. i STR (obr. 38). Pro zeminy jemnozrnné se musí počítat jak s krátkodobou, tak i dlouhodobou únosností. Opěrné zdi, na které působí rozdílné tlaky vody (s ohledem na různé úrovně jejich hladin před a za zdí), se musí ověřit na bezpečnost proti porušení v důsledku hydraulického vztlaku (UPL),případně i sufoze (HYD). Návrh gravitačních opěrných zdí se musí rovněž ověřit v mezním stavu použitelnosti, přičemž se pro příslušné výpočty (sedání, deformací) použije charakteristických hodnot zatížení. 78

3 Opěrné zd i Obr. 38 Příklady mezních stavů porušení základů gravitatačních opěrných zdí Příklad 5 Posouzení železobetonové úhlové opěrné zdi podle obr. 39. Zemina tvořící zásyp za rubem má charakteristiku velikosti stabilitních parametrů: γ 1, k = 17,5 knm -3, φ 1,k,ef = 28, c 1,k,ef = 0, zemina tvořící základovou půdu je písek S3 s parametry: γ 2, k = 19,0 knm -3, φ 2,k,ef = 30, c 2,k,ef = 0, s hladinou podzemní vody není počítáno. Terén za rubem stěny je ve sklonu β = 20, za rubem je zatížení kolovým vozidlem o celkové tíze F k = 800 kn, jež se rozkládá na plochu 3,8 x 6,0 m podle obr. 39. Obr.39 Zadání úhlové zdi k příkladu 6 Řešení: Bude posouzen mezní stav porušení podle NP1 (tj. NP1a, 1b) a podle NP2 pro porušení typu GEO. Při výpočtu působících sil bude postupováno podle ČSN Zemní tlak na stavební konstrukce, a to pro případ úhlové zdi, kdy je umožněna příslušná deformace navržené opěrné zdi pro vznik aktivního zemního tlaku. 79

4 Opěrné zdi NP1a: A1 + M1 + R1 a) tvar zatěžovacího obrazce: sin 2 α = (sin (φ 1 β) cos (α + φ 1 )) / (2tg φ 1 cos (α β). α = 17,6 ; θ as = 90 α = 72,4 θ a = α + φ 1 = 45,6 b) charakteristické tíhy zdi a zemního klínu (na šířku b = 1,0 m): G 1k = 3,0 0,4 25 = 30,0 kn/m G 2k = 3,6 0,4 25 = 36,0 kn/m G 3 = 17,5 (0,88 3,6 + 0,88 0,32 / 2 + 1,21 3,92 / 2) = 99,41 kn/m c) aktivní zemní tlak (charakteristické velikosti na šířku b = 1,0 m): součinitel K a = cos 2 φ 1 / cos δ 1 / [1 + (((sin (φ 1 +δ 1 ) sin (φ 1 β)) / (cos δ 1 cos β)) 1/2 ] 2 = 0,461 (pro horní vrstvu) S a1,k = 17,5 4,1 2 / 2 0,461 = 67,80 kn/m; S a1h,k = S a1,k cos θ a = 47,44 kn/m; S a1v,k = S a1,k sin θ a = 48,44 kn/m součinitel K a = tg 2 (45 φ 2 / 2) = 0,333 pro spodní vrstvu S a2,k = 19,0 0,4 2 / 2 0,333 = 0,51 kn/m; S a2h,k = S a2,k cos δ 2 = 0,49 kn/m; S a2v,k = S a2,k sin δ 2 = 0,13 kn/m d) vnější zatížení F (charakteristická velikost): pomocný úhel: cotg ε = tg φ 1 + (1 / cos φ 1 ) ((sin (φ 1 + δ 1 ) cos β) / (sin (φ 1 β) cos δ 1 )) 1/2 ε = 22,3, θ = φ + ε = ,3 = 50,3 pomocné pořadnice od vrcholu zdi: tg 28 = v 1 / 0,5, v 1 = 0,27, a 1 = 0,27 0,18 = 0,09 m tg 50,3 = v 2 / 4,3, v 2 = 5,18, a 2 = 5,18 1,57 = 3,60 m, h f = 3,60 0,09 = 3,51 m součinitel zemního tlaku K af = sin (θ φ 2 ) / cos (θ φ 2 δ 2 ) = 0,38 náhradní zatížení f a = 800 / (3,8 6,0) = 35,08 kn/m 2 silový přírůstek: ΔS a = f a B K af = 35,08 3,8 0,38 = 50,66 kn/m, horní pořadnice: Δσ fs = ΔS a / h f (1 + a / (a + b)) = 16,11 kn/m spodní pořadnice: Δσ fi = ΔS a / h f (1 a / (a + b)) = 12,75 kn/m e) návrhové velikosti zatěžovacích sil (A1: γ G = 1,35 stálé zatížení, γ Q = 1,5 proměnné zatížení) svislé síly: N d = 1,35 (30,0 + 36,0 + 99, ,44 + 0,13) = 288,87 kn/m vodorovné síly: H d = 1,35 (47,44 + 0,49) + 1,5 50,66 = 140,70 kn/m moment ke středu základové spáry: M d = 1,35 (36,0 0,9 + 0,88 3,6 17,5 0,26 + 0,88 0,32 / 2 17,5 0,11 3,92 1,21 / / 2 17,5 0, ,44 1,71 48,44 1,08 + 0,49 0,13 0,13 1,5) + 1,5 (12,75 3,51 2,15 + 3,36 3,51 / 2 2,74) = 232,18 knm/m

5 Opěrné zd i f) excentricita síly v základové spáře, napětí v základové spáře: excentricita e = 232,18 / 288,87 = 0,80 m < 3,0 / 3 = 1,0 m napětí v základové spáře σ d = 288,87 / (1,0 (3,0 2 0,8)) = 206,33 kpa návrhová únosnost základové spáry (hrubozrnné zeminy odvodněné podmínky): hloubka založení D = 1,0 m, efektivní tlak nadloží q = 19,0 1,0 = 19,0 kpa; φ = 30, c = 0 součinitel únosnosti: N q = e π.tg.φ tg 2 (45 + φ / 2) = 18,38; N γ = 2 (N q 1) tg φ = 20,07 součinitelé tvaru základu: s q = 1 + 1,4 / 1,0sin 30 = 1,7; s γ = 0,7 součinitelé šikmosti: m B = (2 + 1,4 / 1,0) / (1 + 1,4 / 1,0) = 1,42 i q = (1 140,7 / 288,87) 1,42 = 0,38; i γ = (1 140,7 / 288,87) 2,42 = 0,20 R d = 19,0 20,07 1,7 0,38 + 0,5 19,0 1,4 20,07 0,7 0,20 = 283,71 kpa > 206,33 g) vodorovná návrhová únosnost v základové spáře: R h,d = 288,87tg 30 = 166,67 kn/m < 140,70 2. NP1b: A2 + M2 + R1 a) součinitele pro M2 γ φ = 1,1: φ 1,d = 25,8 ; φ 2,d = 27,7 b) tvar zatěžovacího obrazce: sin 2 α = (sin (φ 1 β) cos (α + φ 1 )) / (2tg φ 1 cos (α β). α = 16,2 ; θ as = 90 α = 73,8 θ a = α + φ 1 = 42,0 c) charakteristické tíhy zdi a zemního klínu (na šířku b = 1,0 m): G 1k = 3,0 0,4 25 = 30,0 kn/m G 2k = 3,6 0,4 25 = 36,0 kn/m G 3 = 17,5 (1,05 3,6 + 1,05 0,38 / 2 + 1,15 3,98 / 2) = 109,69 kn/m d) aktivní zemní tlak (charakteristické velikosti na šířku b = 1,0 m): součinitel K a = cos 2 φ 1 / cos δ 1 / [1 + (((sin (φ 1 + δ 1 ) sin (φ 1 β)) / (cos δ 1 cos β)) 1/2 ] 2 = 0,521 (pro horní vrstvu) S a1,k = 17,5 4,14 2 / 2 0,521 = 78,14 kn/m; S a1h,k = S a1,k cos θ a = 58,06 kn/m; S a1v,k = S a1,k sin θ a = 52,30 kn/m součinitel K a = tg 2 (45 φ 2 / 2) = 0,365 pro spodní vrstvu S a2,k = 19,0 0,4 2 / 2 0,365 = 0,55 kn/m; S a2h,k = S a2,k cos δ 2 = 0,53 kn/m; S a2v,k = S a2,k sin δ 2 = 0,15 kn/m 81

6 Opěrné zdi e) vnější zatížení F (charakteristická velikost): pomocný úhel: cotg ε = tg φ 1 + (1 / cos φ 1 ) ((sin (φ 1 + δ 1 ) cos β) / (sin (φ 1 β) cos δ 1 )) 1/2 ε = 17,4, θ = φ + ε = 25,8 + 17,4 = 43,2 pomocné pořadnice od vrcholu zdi: tg 25,7 = v 1 / 0,5, v 1 = 0,24, a 1 = 0,24 0,1 = 0,06 m tg 43,2 = v 2 / 4,3, v 2 = 4,04, a 2 = 4,04 1,57 = 2,47 m, h f = 2,47 0,06 = 2,41 m součinitel zemního tlaku K af = sin (θ φ 2 ) / cos (θ φ 2 δ 2 ) = 0,27 náhradní zatížení f a = 800 / (3,8 6,0) = 35,08 kn/m 2 silový přírůstek: ΔS a = f a B K af = 35,08 3,8 0,27 = 35,99 kn/m horní pořadnice: Δσ fs = ΔS a / h f (1 + a / (a + b)) = 16,67 kn/m spodní pořadnice: Δσ fi = ΔS a / h f (1 a / (a + b)) = 13,20 kn/m f) návrhové velikosti zatěžovacích sil (A2: γ G = 1,0 stálé zatížení, γ Q = 1,3 proměnné zatížení) svislé síly: N d = 1,0 (30,0 + 36, , ,30 + 0,15) = 228,14 kn/m vodorovné síly: H d = 1,0 (58,06 + 0,53) + 1,3 35,99 = 105,38 kn/m moment ke středu základové spáry: M d = 1,0 (36,0 0,9 + 1,05 3,6 17,5 0,18 + 1,05 0,38 / 2 17,5 0,0 3,98 1,15 / 2 17,5 0, ,06 1,73 52,30 1,11 + 0,53 0,13 0,15 1,5) + 1,3 (13,20 2,41 2,74 + 3,47 2,41 / 2 3,14) = 187,68 knm/m g) excentricita síly v základové spáře, napětí v základové spáře: excentricita e = 187,68 / 228,14 = 0,82 m < 3,0 / 3 = 1,0 m napětí v základové spáře σ d = 228,14 / (1,0 (3,0 2 0,82)) = 167,75 kpa h) návrhová únosnost základové spáry (hrubozrnné zeminy odvodněné podmínky): hloubka založení D = 1,0 m, efektivní tlak nadloží q = 19,0 1,0 = 19,0 kpa; φ = 27,7, c = 0 součinitel únosnosti: N q = e π tg φ tg 2 (45 + φ / 2) = 14,23; N γ = 2 (N q 1) tg φ = 13,89 součinitele tvaru základu: s q = 1 + 1,36 / 1,0sin 30 = 1,68; s γ = 0,7 součinitele šikmosti: m B = (2 + 1,36 / 1,0) / (1 + 1,36 / 1,0) = 1,42 i q = (1 105,38 / 228,14) 1,42 = 0,41; i γ = (1 105,38 / 228,14) 2,42 = 0,22 R d = 19,0 14,23 1,68 0,41 + 0,5 19,0 1,36 13,89 0,7 0,22 = 213,86 kpa > 167,75 i) vodorovná návrhová únosnost v základové spáře: R h,d = 228,14tg 27,7 = 119,77 kn/m < 105,38 82

7 Opěrné zd i 3. NP2: A1 + M1 + R2 a) tvar zatěžovacího obrazce: sin 2 α = (sin (φ 1 β) cos (α + φ 1 )) / (2tg φ 1 cos (α β). α = 17,6 ; θ as = 90 α = 72,4 θ a = α + φ 1 = 45,6 b) charakteristické tíhy zdi a zemního klínu (na šířku b = 1,0 m): G 1k = 3,0 0,4 25 = 30,0 kn/m G 2k = 3,6 0,4 25 = 36,0 kn/m G 3 = 17,5 (0,88 3,6 + 0,88 0,32 / 2 + 1,21 3,92 / 2) = 99,41 kn/m c) aktivní zemní tlak (charakteristické velikosti na šířku b = 1,0 m): součinitel K a = cos 2 φ 1 / cos δ 1 / [1 + (((sin (φ 1 + δ 1 ) sin (φ 1 β)) / (cos δ 1 cos β)) 1/2 ] 2 = 0,461 (pro horní vrstvu) S a1,k = 17,5 4,1 2 / 2 0,461 = 67,80 kn/m; S a1h,k = S a1,k cos θ a = 47,44 kn/m; S a1v,k = S a1,k sin θ a = 48,44 kn/m součinitel K a = tg 2 (45 φ 2 / 2) = 0,333 pro spodní vrstvu S a2,k = 19,0 0,4 2 / 2 0,333 = 0,51 kn/m; S a2h,k = S a2,k cos δ 2 = 0,49 kn/m; S a2v,k = S a2,k sin δ 2 = 0,13 kn/m d) vnější zatížení F (charakteristická velikost): pomocný úhel: cotg ε = tg φ 1 + (1 / cos φ 1 ) ((sin (φ 1 + δ 1 ) cos β) / (sin (φ 1 β) cos δ 1 )) 1/2 ε = 22,3, θ = φ + ε = ,3 = 50,3 pomocné pořadnice od vrcholu zdi: tg 28 = 1 / 0,5, 1 = 0,27, a 1 = 0,27 0,18 = 0,09 m tg 50,3 = 2 / 4,3, 2 = 5,18, a 2 = 5,18 1,57 = 3,60 m, h f = 3,60 0,09 = 3,51 m součinitel zemního tlaku K af = sin (θ φ 2 ) / cos (θ φ 2 δ 2 ) = 0,38 náhradní zatížení f a = 800 / (3,8 6,0) = 35,08 kn/m 2 silový přírůstek: ΔS a = f a B K af = 35,08 3,8 0,38 = 50,66 kn/m horní pořadnice: Δσ fs = ΔS a / h f (1 + a / (a + b)) = 16,11 kn/m spodní pořadnice: Δσ fi = ΔS a / h f (1 a / (a + b)) = 12,75 kn/m e) návrhové velikosti zatěžovacích sil (A1: γ G = 1,35 stálé zatížení, γ Q = 1,5 proměnné zatížení) svislé síly: N d = 1,35 (30,0 + 36,0 + 99, ,44 + 0,13) = 288,87 kn/m vodorovné síly: H d = 1,35 (47,44 + 0,49) + 1,5 50,66 = 140,70 kn/m moment ke středu základové spáry: M d = 1,35 (36,0 0,9 + 0,88 3,6 17,5 0,26 + 0,88 0,32 / 2 17,5 0,11 3,92 1,21 / 2 17,5 0, ,44 1,71 48,44 1,08 + 0,49 0,13 0,13 1,5) + 1,5 (12,75 3,51 2,15 + 3,36 3,51 / 2 2,74) = 232,18 knm/m 83

8 Opěrné zdi f) excentricita síly v základové spáře, napětí v základové spáře: excentricita e = 232,18 / 288,87 = 0,80 m < 3,0 / 3 = 1,0 m napětí v základové spáře σ d = 288,87 / (1,0 (3,0 2 0,8)) = 206,33 kpa g) návrhová únosnost základové spáry (hrubozrnné zeminy odvodněné podmínky), pro R2 je dílčí koeficient pro únosnost γ R,v = 1,4 a pro usmyknutí γ R,h = 1,1: hloubka založení D = 1,0 m, efektivní tlak nadloží q = 19,0 1,0 = 19,0 kpa; φ = 30, c = 0 součinitel únosnosti: N q = e π.tg φ tg 2 (45 + φ / 2) = 18,38; N γ = 2 (N q 1) tg φ = 20,07 součinitele tvaru základu: s q = 1 + 1,4 / 1,0sin 30 = 1,7; s γ = 0,7 součinitele šikmosti: m B = (2 + 1,4 / 1,0) / (1 + 1,4 / 1,0) = 1,42; i q = (1 140,7 / 288,87) 1,42 = 0,38; i γ = (1 140,7 / 288,87) 2,42 = 0,20 R d = (19,0 20,07 1,7 0,38 + 0,5 19,0 1,4 20,07 0,7 0,20) / 1,4 = 202,65 kpa 202,65 kpa < 206,33 nevyhovuje, bylo by nutné zvětšit šířku základové spáry h) vodorovná návrhová únosnost v základové spáře: R h,d = (288,87 tg 30) / 1,1 = 151,52 kn/m 151,52 kn/m < 140,70 kn/m 3. Deformace opěrné zdi (2. mezní stav použitelnosti) (není počítáno se zatížením pohyblivým) a) charakteristické tíhy zdi a zemního klínu (na šířku b = 1,0 m): G 1k = 3,0 0,4 25 = 30,0 kn/m G 2k = 3,6 0,4 25 = 36,0 kn/m G 3 = 17,5 (0,88 3,6 + 0,88 0,32 / 2 + 1,21 3,92 / 2) = 99,41 kn/m b) aktivní zemní tlak (charakteristické velikosti na šířku b = 1,0 m): S a1,k = 17,5 4,1 2 / 2 0,461 = 67,80 kn/m; S a1h,k = S a1,k cos θ a = 47,44 kn/m; S a1v,k = S a1,k sin θ a = 48,44 kn/m součinitel K a = tg 2 (45 φ 2 / 2) = 0,333 pro spodní vrstvu S a2,k = 19,0 0,4 2 / 2 0,333 = 0,51 kn/m; S a2h,k = S a2,k cos δ 2 = 0,49 kn/m; S a2v,k = S a2,k sin δ 2 = 0,13 kn/m c) charakteristické velikosti zatěžovacích sil: svislé síly: N k = 30,0 + 36,0 + 99, ,44 + 0,13 = 213,98 kn/m vodorovné síly: H k = 47,44 + 0,49 = 47,93 kn/m moment ke středu základové spáry: M k = 36,0 0,9 + 0,88 3,6 17,5 0,26 + 0,88 0,32 / / 2 17,5 0,11 3,92 1,21 / 2 17,5 0, ,44 1,71 48,44 1,08 + 0,49 0,13 0,13 1,5 = 47,12 knm/m 84

9 Opěrné zd i d) svislé napětí v základové spáře: σ 1 = 213,98 / 3,0 + 47,12 6 / 3,0 2 = 102,74 kpa; σ 1 = 213,98 / 3,0 47,12 6 / 3,0 2 = = 39,89 kpa původní geostatické napětí v základové spáře: σ or,0 = 19,0 1,0 = 19,0 kpa napětí konstantní σ a = 39,89 19,0 = 20,89 kpa, napětí trojúhelníkové σ b = 102,74 39,89 19,0 = 43,85 kpa e) deformační vlastnosti základové půdy a tuhost základu: E def = 14,0 MPa, ν = 0,30, β = 0,74, E oed = 15,73 MPa k = (26500 / 14,0) (0,4 / 3,0) 3 = 4,48 > 1 základ je tuhý f) výpočet konečného sedání bude součtem sedání tuhého základu pod charakteristickým bodem pro zatížení konstantní σ a = 20,89 kpa a zatížení trojúhelníkové s pořadnicí σ b = 43,85 kpa (podrobněji viz např. Navrhování základových konstrukcí), vlastní výpočet bude sestaven do tab. 16. Komentář k výsledkům: navržený tvar základového pasu (B = 3,0 m) vyhoví pro NP1a, b mezního stavu porušení, mírně nevyhovuje (98,2 %) pro NP2, kdy by bylo nutné zvětšit šířku základové spáry na B = 3,1 m, sedání základové patky na hraně A: s A = 0,67 mm sedání základové patky na hraně B: s B = 0,67 + 1,61 = 2,28 mm průměrné sedání základové patky: s = (2,28 + 0,67) / 2 = 1,48 mm naklonění základové patky: Δs / B = (2,28 0,67) / 3000 = 0,00054 posun hlavy opěrné zdi: u = 0, = 1,94 mm > 1,80 mm jistě vyhoví vyhoví naklonění pro vznik aktivního zemního tlaku: u = = 1,80 mm, zavedení zatížení aktivním zemním tlakem bylo oprávněné. 85

10 Tab. 16 Výpočet sedání základu úhlové opěrné zdi z příkladu 6 Číslo vrstvy Mocnost h i [m] z i [m] D / z i κ 1 z c / z i κ 2 Z ri = κ 1. κ 2. z i σ or,i [kpa] 0,2. σ or,i [kpa] 1 0,5 0,25 4,00 1,82 32,0 1,0 0,45 27,55 5,51 2 0,5 0,75 1,33 1,55 10,66 1,0 1,16 41,04 8,20 3 0,5 1,25 0,80 1,40 6,40 1,0 1,75 52,25 10,45 4 1,0 2,00 0,50 1,30 4,00 1,0 2,60 68,40 13,68 5 1,0 3,00 0,33 1,19 2,66 0,97 3,46 84,74 16,95 6 1,0 4,00 0,25 1,12 2,00 0,95 4,26 99,94 19,98 Pokračování tab. 16 Číslo vrstvy Sedání pro konstantní napětí σ a = 20,89 kpa Sedání pod nezatíženou hranou Sedání pod zatíženou hranou z i / B I 2 σ zi [kpa] σ zi 0,2. σ or,i E oed,i [MPa] s i [mm] I A,1 σ zi 0,2. σ or,i s A,i [mm] z i / B I B,1 σ zi 0,2. σ or,i 1 0,150 0,90 18,80 13,29 15,73 0,42 0,020-3,75 0,150 0,248 16,24 15,73 0,52 2 0,387 0,68 14,21 6,00 15,73 0,19 0,057-3,20 0,387 0,238 12,67 15,73 0,40 3 0,583 0,59 12,33 1,88 15,73 0,06 0,070-4,31 0,583 0,228 9,55 15,73 0,30 4 0,867 0,50 10,45-3,23 15,73 0,079-6,75 0,867 0,212 6,18 15,73 0,39 5 1,153 0,43 8,98 15,73 0,080 1,153 0,192-0,11 15,73 6 1,420 0,36 7,52 15,73 0,073 1,420 0,165 15,73 E oed,i [MPa] Sedání pod charakteristickýcm bodem 0,67 Sedání pod bodem A 0 Sedání pod bodem B 1,61 s B,i [mm] 86

3 Plošné základy. 3.1 Druhy plošných základů. Plošné základy

3 Plošné základy. 3.1 Druhy plošných základů. Plošné základy Plošné základy 3 Plošné základy Plošné základy, jež jsou nejspodnější částí konstrukce stavby, přenášejí veškeré zatížení ze stavby do základové půdy pomocí plochy základové spáry. Ta se volí obvykle vodorovná

Více

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací

Více

Kancelář stavebního inženýrství s.r.o. Statický výpočet

Kancelář stavebního inženýrství s.r.o. Statický výpočet 179/2013 Strana: 1 Kancelář stavebního inženýrství s.r.o. Certifikována podle ČSN EN ISO 9001: 2009 Botanická 256, 360 02 Dalovice - Karlovy Vary IČO: 25 22 45 81, tel., fax: 35 32 300 17, mobil: +420

Více

OBSAH: A4 1/ TECHNICKÁ ZPRÁVA 4 2/ STATICKÝ VÝPOČET 7 3/ VÝKRESOVÁ ČÁST S1-TVAR A VÝZTUŽ OPĚRNÉ STĚNY 2

OBSAH: A4 1/ TECHNICKÁ ZPRÁVA 4 2/ STATICKÝ VÝPOČET 7 3/ VÝKRESOVÁ ČÁST S1-TVAR A VÝZTUŽ OPĚRNÉ STĚNY 2 OBSAH: A4 1/ TECHNICKÁ ZPRÁVA 4 2/ STATICKÝ VÝPOČET 7 3/ VÝKRESOVÁ ČÁST S1-TVAR A VÝZTUŽ OPĚRNÉ STĚNY 2 DESIGN BY ing.arch. Stojan D. PROJEKT - SERVIS Ing.Stojan STAVEBNÍ PROJEKCE INVESTOR MÍSTO STAVBY

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady:

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady: Předložený statický výpočet řeší založení objektu SO 206 most na přeložce silnice I/57 v km 13,806 přes trať ČD v km 236,880. Obsahem tohoto výpočtu jsou pilotové základy krajních opěr O1 a O6 a středních

Více

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet Stupeň dokumentace: DPS S-KON s.r.o. statika stavebních konstrukcí Ing.Vladimír ČERNOHORSKÝ Podnádražní 12/910 190 00 Praha 9 - Vysočany tel. 236 160 959 akázkové číslo: 12084-01 Datum revize: prosinec

Více

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování

Více

předběžný statický výpočet

předběžný statický výpočet předběžný statický výpočet (část: betonové konstrukce) KOMUNITNÍ CENTRUM MATKY TEREZY V PRAZE . Základní informace.. Materiály.. Schéma konstrukce. Zatížení.. Vodorovné konstrukc.. Svislé konstrukce 4.

Více

Zakázka: D111029 Stavba: Sanace svahu Olešnice poškozeného přívalovými dešti v srpnu 2010 I. etapa Objekt: SO 201 Sanace svahu

Zakázka: D111029 Stavba: Sanace svahu Olešnice poškozeného přívalovými dešti v srpnu 2010 I. etapa Objekt: SO 201 Sanace svahu 1 Technická zpráva ke statickému výpočtu... 2 1.1 Identifikační údaje... 2 1.1.1 Stavba... 2 1.1.2 Investor... 2 1.1.3 Projektant... 2 1.1.4 Ostatní... 2 1.2 Základní údaje o zdi... 3 1.3 Technický popis

Více

Mechanika zemin II 5 Zemní tlaky, opěrné konstrukce

Mechanika zemin II 5 Zemní tlaky, opěrné konstrukce Mechanika zemin II 5 Zemní tlaky, opěrné konstrukce 1. Vliv vody na stabilitu 2. Zemní tlaky horizontální napětí v mezním stavu 3. Síly na opěrné konstrukce v mezním stavu 4. Parametry MZ2 1 (Horizontální)

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

STATICKÝ VÝPOČET. PSDS s.r.o. IČ: 280 980 64 www.psds.cz TRABANTSKÁ 673/18, 190 15 PRAHA 9. Kabelová komora Zekan XXL. pro stavební povolení

STATICKÝ VÝPOČET. PSDS s.r.o. IČ: 280 980 64 www.psds.cz TRABANTSKÁ 673/18, 190 15 PRAHA 9. Kabelová komora Zekan XXL. pro stavební povolení 2012 STAVBA STUPEŇ Kabelová komora Zekan XXL pro stavební povolení STATICKÝ VÝPOČET březen 2012 ZODP. OSOBA Ing. Jiří Surovec POČET STRAN 15 PSDS s.r.o. IČ: 280 980 64 www.psds.cz TRABANTSKÁ 673/18, 190

Více

ZAKLÁDÁNÍ STAVEB VE ZVLÁŠTNÍCH PODMÍNKÁCH

ZAKLÁDÁNÍ STAVEB VE ZVLÁŠTNÍCH PODMÍNKÁCH ZAKLÁDÁNÍ STAVEB VE ZVLÁŠTNÍCH PODMÍNKÁCH ZAKLÁDÁNÍ NA NÁSYPECH Skladba násypů jako: zeminy, odpad z těžby nerostů nebo průmyslový odpad. Důležité: ukládání jako hutněný nebo nehutněný materiál. Nejnebezpečnější

Více

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního

Více

STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH:

STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: 1 ZADÁNÍ A ŘEŠENÁ PROBLEMATIKA, GEOMETRIE... 2 2 POLOHA NA MAPĚ A STANOVENÍ KLIMATICKÝCH ZATÍŽENÍ... 2 2.1 SKLADBY STŘECH... 3 2.1.1 R1 Skladba střechy na objektu

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

STATICA Plzeň, s.r.o. III/1992 Svojšín Oprava opěrné zdi Datum: 12/2013. Technická zpráva OBSAH 1. Identifikace stavby... 3

STATICA Plzeň, s.r.o. III/1992 Svojšín Oprava opěrné zdi Datum: 12/2013. Technická zpráva OBSAH 1. Identifikace stavby... 3 OBSAH 1. Identifikace stavby... 3 2. Konstrukční systém stavby... 3 2.1. Gabionová část... 3 2.2. Část z bednících dílců... 3 3. Navržené výrobky, materiály a konstrukční prvky... 4 4. Hodnoty zatížení

Více

OBSAH. 8 Návrh a posouzení detailů a styků ovlivňující bezpečnost konstrukce 9 Postup výstavby

OBSAH. 8 Návrh a posouzení detailů a styků ovlivňující bezpečnost konstrukce 9 Postup výstavby OBSAH 1 Koncepční řešení nosné konstrukce 2 Použité podklady 3 Statický model konstrukce 4 Materiály a technologie 5 Jakost navržených materiálů 6 Rekapitulace zatížení 7 Návrh a posouzení nosných prvků

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

Šroubovaný přípoj konzoly na sloup

Šroubovaný přípoj konzoly na sloup Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup

Více

Schöck Isokorb typ KS

Schöck Isokorb typ KS Schöck Isokorb typ 20 Schöck Isokorb typ 1 Obsah Strana Varianty připojení 16-165 Rozměry 166-167 Dimenzační tabulky 168 Vysvětlení k dimenzačním tabulkám 169 Příklad dimenzování/upozornění 170 Údaje pro

Více

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010 1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

CZ Plast s.r.o, Kostěnice 173, 530 02 Pardubice

CZ Plast s.r.o, Kostěnice 173, 530 02 Pardubice 10/stat.03/1 CZ PLAST s.r.o Kostěnice 173 530 02 Pardubice Statické posouzení jímky, na vliv podzemní vody 1,0 m až 0,3 m, a založením 1,86 m pod upraveným terénem. Číslo zakázky... 10/stat.03 Vypracoval

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Rev. Datum Důvod vydání dokumentu, druh změny Vypracoval Tech. kontrola. IČO 241580 tel. 241 940 454 podatelna@psary.cz

Rev. Datum Důvod vydání dokumentu, druh změny Vypracoval Tech. kontrola. IČO 241580 tel. 241 940 454 podatelna@psary.cz Rev. Datum Důvod vydání dokumentu, druh změny Vypracoval Tech. kontrola Objednatel: Zhotovitel: Projekt Obec Psáry Pražská 137 252 44 Psáry HW PROJEKT s r.o. Pod Lázní 2 140 00 Praha 4 IČO 241580 tel.

Více

Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí.

Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí. ZATÍŽENÍ KONSTRUKCÍ 4. cvičení Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí. Definice a základní pojmy Zatížení je jakýkoliv jev, který vyvolává změnu stavu napjatosti

Více

STATIKON Solutions s.r.o. Hostinského 1076/8 155 00 Praha 5 Stodůlky STATICKÝ POSUDEK

STATIKON Solutions s.r.o. Hostinského 1076/8 155 00 Praha 5 Stodůlky STATICKÝ POSUDEK STATIKON Solutions s.r.o. Hostinského 1076/8 155 00 Praha 5 Stodůlky STATICKÝ POSUDEK OPĚRNÁ STĚNA A PLOT NA HRANICI POZEMKU Na Hradním vodovodu 44/3, 162 00 Praha 6 - Veleslavín DSP + DPS Počet stran:

Více

SPOJE OCELOVÝCH KONSTRUKCÍ

SPOJE OCELOVÝCH KONSTRUKCÍ 2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího

Více

STAVEBNÍ ÚPRAVY ZÁMEČNICKÉ DÍLNY V AREÁLU FIRMY ZLKL S.R.O. V LOŠTICÍCH P.Č. 586/1 V K.Ú. LOŠTICE

STAVEBNÍ ÚPRAVY ZÁMEČNICKÉ DÍLNY V AREÁLU FIRMY ZLKL S.R.O. V LOŠTICÍCH P.Č. 586/1 V K.Ú. LOŠTICE Stavba : Objekt : STAVEBNÍ ÚPRAVY ZÁMEČNICKÉ DÍLNY V AREÁLU FIRMY ZLKL S.R.O. V LOŠTICÍCH P.Č. 586/1 V K.Ú. LOŠTICE - Dokumentace : Prováděcí projekt Část : Konstrukční část Oddíl : Ocelové konstrukce

Více

PROJEKTOVÁ DOKUMENTACE

PROJEKTOVÁ DOKUMENTACE PROJEKTOVÁ DOKUMENTACE STUPEŇ PROJEKTU DOKUMENTACE PRO VYDÁNÍ STAVEBNÍHO POVOLENÍ (ve smyslu přílohy č. 5 vyhlášky č. 499/2006 Sb. v platném znění, 110 odst. 2 písm. b) stavebního zákona) STAVBA INVESTOR

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ

ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ Charakteristiky zatížení a jejich stanovení Charakteristikami zatížení jsou: a) normová zatížení (obecně F n ), b) součinitele zatížení (obecně y ), c) výpočtová zatížení

Více

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN Obsah: 1) statické posouzení krovu 2) statické posouzení stropní konstrukce 3) statické posouzení překladů a nadpraží 4) schodiště 5) statické posouzení založení

Více

STATICKÉ POSOUZENÍ K AKCI: RD TOSCA. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

STATICKÉ POSOUZENÍ K AKCI: RD TOSCA. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB STATICKÉ POSOUZENÍ K AKCI: RD TOSCA Obsah: 1) statické posouzení krovu 2) statické posouzení stropní konstrukce 3) statické posouzení překladů a nadpraží 4) schodiště 5) statické posouzení založení stavby

Více

Mechanika zemin II 6 Plošné základy

Mechanika zemin II 6 Plošné základy Mechanika zemin II 6 Plošné základy 1. Definice 2. Vliv vody na stabilitu a sedání 3. Únosnost 4. Sedání Výpočet okamžitého, konsolidačního a konečného sedání Výpočet podle teorie pružnosti Výpočet podle

Více

Obsah: 1 VŠEOBECNÁ ČÁST... 2 2 VÝPOČTOVÁ ČÁST... 6 3 PŘÍLOHY... 26

Obsah: 1 VŠEOBECNÁ ČÁST... 2 2 VÝPOČTOVÁ ČÁST... 6 3 PŘÍLOHY... 26 Obsah: 1 VŠEOBECNÁ ČÁST... 2 1.1 Evidenční údaje...2 1.2 Podklady pro výpočet...2 1.3 Použitá literatura...2 1.4 Mechanická odolnost a stabilita, bezpečnost práce...2 1.5 Předmět statického výpočtu...3

Více

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015 2015 STAVBA STUPEŇ Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem DSP STATICKÝ POSUDEK srpen 2015 ZODP. OSOBA Ing. Jiří Surovec POČET STRAN 8 Ing. Jiří Surovec istruct Trabantská 673/18, 190

Více

A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č. 1270 Severní přístavba

A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č. 1270 Severní přístavba A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č. 1270 Severní přístavba 2.1. Technická zpráva a) Podrobný popis navrženého nosného

Více

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY: 3 2.2.1. Použité

Více

NÁVRH A STATICKÉ POSOUZENÍ NOVÉ OPĚRNÉ STĚNY

NÁVRH A STATICKÉ POSOUZENÍ NOVÉ OPĚRNÉ STĚNY AKCE: Sanace opěrné stěny pod komunikací na pozemku p.č.st. 1/2, k.ú. Dolní Jirčany, ul. K Junčáku NÁVRH A STATICKÉ POSOUZENÍ NOVÉ OPĚRNÉ STĚNY Místo stavby : K Junčáku, č.p.103 Psáry - Dolní Jirčany,

Více

Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB 1 Obsah: 1. statické posouzení dřevěného krovu osazeného na ocelové vaznice 1.01 schema konstrukce 1.02 určení zatížení na krokve 1.03 zatížení kleštin (zatížení od 7.NP) 1.04 vnitřní síly - krokev, kleština,

Více

NAVRHOVANÉ OTVORY VE STROPNÍ DESCE A PODEPŘENÍ STROPNÍ KONSTRUKCE...

NAVRHOVANÉ OTVORY VE STROPNÍ DESCE A PODEPŘENÍ STROPNÍ KONSTRUKCE... STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: 1 NAVRHOVANÉ OTVORY VE STROPNÍ DESCE A PODEPŘENÍ STROPNÍ KONSTRUKCE... 4 2 ZADÁNÍ A ŘEŠENÁ PROBLEMATIKA, GEOMETRIE... 4 3 VÝPOČET ZATÍŽENÍ NA KONSTRUKCI PLOCHÉ

Více

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁU Navrhněte ohybovou výztuž do železobetonového nosníku uvedeného na obrázku. Kromě vlastní tíhy je nosník zatížen bodovou silou od obvodového pláště ostatním stálým rovnoměrným

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Monitoring stavebních jam doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice POZEMNÍ STAVITELSTVÍ II Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Obsah: 1. Úvod 4 2. Statické tabulky 6 2.1. Vlnitý profil 6 2.1.1. Frequence 18/76 6 2.2. Trapézové profily 8 2.2.1. Hacierba 20/137,5

Více

Příloha A1 Použití pro pozemní stavby

Příloha A1 Použití pro pozemní stavby Příloha A1 Použití pro pozemní stavby A1.1 Rozsah použití V příloze A1 jsou uvedena pravidla pro kombinace zatížení a doporučeny návrhové hodnoty zatížení pro navrhování pozemních staveb. V článku A1.1(1)

Více

Stavebně konstrukční část

Stavebně konstrukční část Stavebně konstrukční část 1.2.1 Technická zpráva 1.2.2 Statický výpočet OBSAH: Technická zpráva 1-5 Stanovení zatížení,návrh základů 6-7 Charakteristiky zdiva a překladů 8 Název akce dle SOD NOVOSTAVBA

Více

Inženýrskémanuály. Díl2

Inženýrskémanuály. Díl2 Inženýrskémanuály Díl2 Inženýrské manuály pro programy GEO5 Díl 2 Kapitoly 1-12 naleznete v Inženýrském manuálu - Díl 1 Kapitola 13. Pilotové základy úvod... 2 Kapitola 14. Výpočet svislé únosnosti osamělé

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

Eurokód 1: Zatížení konstrukcí, objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb

Eurokód 1: Zatížení konstrukcí, objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb Obsah: 1. Předmět dokumentace... 2 2. Podklady statické části projektu... 2 3. Předpisy, literatura... 2 4. Inženýrsko geologické poměry stavby... 3 5. Statické řešení nosné konstrukce... 3 5.1 Příprava

Více

Zakládání ve Scia Engineer

Zakládání ve Scia Engineer Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

STATICKÝ VÝPOČET STUPEŇ DOKUMENTACE: DOKUMENTACE PRO STAVEBNÍ POVOLENÍ ČÁST DOKUMENTACE: D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REVIZE: R.

STATICKÝ VÝPOČET STUPEŇ DOKUMENTACE: DOKUMENTACE PRO STAVEBNÍ POVOLENÍ ČÁST DOKUMENTACE: D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REVIZE: R. PROJEKTOVÁ ČINNOST V INVESTIČNÍ VÝSTAVBĚ ING. MARTIN OUTLÝ O-PRO SERVIS IČO 11 422 131 STATICKÝ VÝPOČET STUPEŇ DOKUMENTACE: DOKUMENTACE PRO STAVEBNÍ POVOLENÍ ČÁST DOKUMENTACE: D.1.2 STAVEBNĚ KONSTRUKČNÍ

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce Přednáška č. 3 Doc. Ing. Antonín Lokaj, Ph.D. VŠB Technická univerzita Ostrava, Fakulta stavební, Katedra konstrukcí, Ludvíka Podéště 1875,

Více

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING.

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING. 2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ SŠS Jihlava ING. SVOBODOVÁ JANA OBSAH 1. ZATÍŽENÍ 3 ŽELEZOBETON PRŮHYBEM / OHYBEM / NAMÁHANÉ PRVKY

Více

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling Objednavatel: M.T.A., spol. s r.o., Pod Pekárnami 7, 190 00 Praha 9 Zpracoval: Ing. Bohumil Koželouh, CSc. znalec v oboru

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

Kapitola 24. Numerické řešení pažící konstrukce

Kapitola 24. Numerické řešení pažící konstrukce Kapitola 24. Numerické řešení pažící konstrukce Cílem tohoto manuálu je vypočítat deformace kotvené stěny z ocelových štětovnic a dále zjistit průběhy vnitřních sil pomocí metody konečných prvků. Zadání

Více

9 Příklady výpočtu prvků z vyztuženého zdiva

9 Příklady výpočtu prvků z vyztuženého zdiva 9 Příklady výpočtu prvků z vyztuženého zdiva 9.1 Příčka na poddajném stropu vyztužená v ložných spárách Zadání Řešená příčka z lícových plných betonových cihel klasického (českého) ormátu od DRUŽSTVA CEMENTÁŘŮ

Více

Jihočeská stavebně-konstrukční kancelář s.r.o.

Jihočeská stavebně-konstrukční kancelář s.r.o. Technická zpráva ke konstrukční části projektu pro provedení stavby Všeobecně Předmětem zadání je návrh konstrukčního řešení vybraných prvků rodinných domů na parcelách č. 277/11, 277/12 v katastrálním

Více

STATICKÉ TABULKY stěnových kazet

STATICKÉ TABULKY stěnových kazet STATICKÉ TABULKY stěnových kazet OBSAH ÚVOD.................................................................................................. 3 SATCASS 600/100 DX 51D................................................................................

Více

Konsolidace zemin Stlačení vrstev zeminy je způsobené změnou napětí v zemině např. vnesením vnějšího zatížení do zeminy

Konsolidace zemin Stlačení vrstev zeminy je způsobené změnou napětí v zemině např. vnesením vnějšího zatížení do zeminy Sedání Konsolidace zemin Stlačení vrstev zeminy je způsobené změnou napětí v zemině např. vnesením vnějšího zatížení do zeminy vytěsnění vody z pórů přemístění zrn zeminy deformace zrn zeminy Zakládání

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Konsolidace zemin

Více

STAVEBNĚ KONSTRUKČNÍ ČÁST F.1.2.1 TECHNICKÁ ZPRÁVA. Novostavba rodinného domku manželů Ježkových Beroun, parc.č. 1410/121 k.ú.

STAVEBNĚ KONSTRUKČNÍ ČÁST F.1.2.1 TECHNICKÁ ZPRÁVA. Novostavba rodinného domku manželů Ježkových Beroun, parc.č. 1410/121 k.ú. F.1.2 STAVEBNĚ KONSTRUKČNÍ ČÁST F.1.2.1 Novostavba rodinného domku manželů Ježkových Beroun, parc.č. 1410/121 k.ú. Beroun Identifikační údaje stavby a stavebníka Místo stavby k.ú. Beroun, parc.č. 1410/121

Více

29.05.2013. Dřevo EN1995. Dřevo EN1995. Obsah: Ing. Radim Matela, Nemetschek Scia, s.r.o. Konference STATIKA 2013, 16. a 17.

29.05.2013. Dřevo EN1995. Dřevo EN1995. Obsah: Ing. Radim Matela, Nemetschek Scia, s.r.o. Konference STATIKA 2013, 16. a 17. Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování: 5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

Novostavba rodinného domu na parc.č. 436/41 - KÚ Opatovice nad Labem. F 1.2.1 - Technická zpráva

Novostavba rodinného domu na parc.č. 436/41 - KÚ Opatovice nad Labem. F 1.2.1 - Technická zpráva Novostavba rodinného domu na parc.č. 436/41 - KÚ Opatovice nad Labem F 1/5 Technická zpráva je nedílnou součástí projektové dokumentace PD a vždy je třeba posoudit jak textovou, tak také výkresovou a rozpočtovou

Více

STATICKÝ VÝPOČET ŽELEZOBETONOVÉHO SCHODIŠTĚ

STATICKÝ VÝPOČET ŽELEZOBETONOVÉHO SCHODIŠTĚ Investor - Obec Dolní Bečva,Dolní Bečva 340,Dolní Bečva 756 55 AKCE : Půdní vestavba v ZŠ Dolní Bečva OBJEKT : SO 01 Základní škola Budova A- STATICKÝ VÝPOČET ŽELEZOBETONOVÉHO SCHODIŠTĚ Autor: Dipl.Ing.

Více

STAVBA VEŘEJNĚ PŘÍSTUPNÉHO PŘÍSTŘEŠKU PRO SPORTOVIŠTĚ - 6A4. první statická s.r.o. parcela č. 806/3 v k. ú. Vrátkov, Vrátkov

STAVBA VEŘEJNĚ PŘÍSTUPNÉHO PŘÍSTŘEŠKU PRO SPORTOVIŠTĚ - 6A4. první statická s.r.o. parcela č. 806/3 v k. ú. Vrátkov, Vrátkov první statická s.r.o. Na Zámecké 597/11, 140 00 Praha 4 email: stastny@prvnistaticka.cz ZODP.PROJEKTANT: VYPRACOVAL: KONTROLOVAL: ING. Radek ŠŤASTNÝ,PH.D. ING.Ondřej FRANTA. ING. Radek ŠŤASTNÝ,PH.D. Akce:

Více

D.1 TECHNICKÁ ZPRÁVA Dokumentace pro stavební povolení

D.1 TECHNICKÁ ZPRÁVA Dokumentace pro stavební povolení Investor stavby: Statutární město Teplice odbor dopravy a životního prostředí D.1 TECHNICKÁ ZPRÁVA Dokumentace pro stavební povolení Obsah: D.1. Základní údaje o stavbě... 2 D.2. Návrh technického řešení...

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

Rekonstrukce opěrné zdi rybníka ve Lhůtě

Rekonstrukce opěrné zdi rybníka ve Lhůtě DRUPOS HB s.r.o. Chotěboř, Svojsíkova 333 tel. 569 641 473, e-mail: drupos@tiscali.cz Rekonstrukce opěrné zdi rybníka ve Lhůtě D. Dokumentace objektů Seznam příloh: Technická zpráva D.01. Situace 1:200

Více

GlobalFloor. Cofrastra 70 Statické tabulky

GlobalFloor. Cofrastra 70 Statické tabulky GlobalFloor. Cofrastra 7 Statické tabulky Cofrastra 7. Statické tabulky Cofrastra 7 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Polakovaná strana Použití Profilovaný plech Cofrastra

Více

Statický návrh a posouzení kotvení hydroizolace střechy

Statický návrh a posouzení kotvení hydroizolace střechy Statický návrh a posouzení kotvení hydroizolace střechy podle ČSN EN 1991-1-4 Stavba: Stavba Obsah: Statické schéma střechy...1 Statický výpočet...3 Střecha +10,000...3 Schéma kotvení střechy...9 Specifikace

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

ETAG 001. KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete)

ETAG 001. KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete) Evropská organizace pro technická schválení ETAG 001 Vydání 1997 ŘÍDICÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete) Příloha B: ZKOUŠKY PRO URČENÁ POUŽITÍ

Více

Manuál. Návrh dřevěných konstrukcí

Manuál. Návrh dřevěných konstrukcí Manuál Návrh dřevěných konstrukcí Návrh dřevěných konstrukcí Obsah Vlastnosti materiálu... 7 Parametry dřeva... 7 Nastavení parametrů pro návrh... 9 Provedení posudku... 11 Podrobný posudek... 11 Úvod

Více

ZÁKLADNÍ ZKOUŠKY PRO ZATŘÍDĚNÍ, POJMENOVÁNÍ A POPIS ZEMIN. Stanovení vlhkosti zemin

ZÁKLADNÍ ZKOUŠKY PRO ZATŘÍDĚNÍ, POJMENOVÁNÍ A POPIS ZEMIN. Stanovení vlhkosti zemin ZÁKLADNÍ ZKOUŠKY PRO ZATŘÍDĚNÍ, POJMENOVÁNÍ A POPIS ZEMIN Stanovení vlhkosti zemin ČSN ISO/TS 17892-1 Vlhkost zeminy Základní zkouška pro zatřídění, pojmenování a popis Příklady dalšího použití: stanovení

Více

STATIKA A DYNAMIKA GEOTECHNICKÝCH STAVEB

STATIKA A DYNAMIKA GEOTECHNICKÝCH STAVEB Inovace studijního oboru Geotechnika reg. č. CZ.1.07/2.2.00/28.0009 STATIKA A DYNAMIKA GEOTECHNICKÝCH STAVEB (prezentace k výuce předmětu pro 1. ročník navazujícího magisterského studia oboru Geotechnika

Více

ZKUŠENOSTI Z INŽENÝRSKOGEOLOGICKÝCH PRŮZKUMŮ PŘI ZAKLÁDÁNÍ STOŽÁRŮ ELEKTRICKÝCH VENKOVNÍCH VEDENÍ. Michaela Radimská Jan Beneda Pavel Špaček

ZKUŠENOSTI Z INŽENÝRSKOGEOLOGICKÝCH PRŮZKUMŮ PŘI ZAKLÁDÁNÍ STOŽÁRŮ ELEKTRICKÝCH VENKOVNÍCH VEDENÍ. Michaela Radimská Jan Beneda Pavel Špaček ZKUŠENOSTI Z INŽENÝRSKOGEOLOGICKÝCH PRŮZKUMŮ PŘI ZAKLÁDÁNÍ STOŽÁRŮ ELEKTRICKÝCH VENKOVNÍCH VEDENÍ Michaela Radimská Jan Beneda Pavel Špaček OBSAH 1. PŘENOSOVÁ SOUSTAVA 1.1 Stožáry elektrického vedení 1.2

Více

7 Prostý beton. 7.1 Úvod. 7.2 Mezní stavy únosnosti. Prostý beton

7 Prostý beton. 7.1 Úvod. 7.2 Mezní stavy únosnosti. Prostý beton 7 Prostý beton 7.1 Úvod Konstrukce ze slabě vyztuženého betonu mají výztuž, která nesplňuje podmínky minimálního vyztužení, požadované pro železobetonové konstrukce. Způsob porušení konstrukcí odpovídá

Více

Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny

Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny Srovnání konstrukce krovu rodinného domu při použití krytiny GERARD a betonové krytiny 1. Úvod Podklady použité pro srovnání: ČSN 730035 Zatížení stavebních konstrukcí, ČSN 731701 Dřevěné konstrukce -

Více

BL06 - ZDĚNÉ KONSTRUKCE

BL06 - ZDĚNÉ KONSTRUKCE BL06 - ZDĚNÉ KONSTRUKCE Vyučující společné konzultace, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, individuální konzultace a zápočty: - Ing. Pavel Šulák,

Více

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami.

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami. 4. cvičení Třecí spoje Princip třecích spojů. Návrh spojovacího prvku V třecím spoji se smyková síla F v přenáší třením F s mezi styčnými plochami spojovaných prvků, které musí být vhodně upraveny a vzájemně

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č.

A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č. A. 2. Stavebně konstrukční část Perinatologické centrum přístavba a stavební úpravy stávajícího pavilonu na parcele č. 1270 Střední část 2.1. Technická zpráva a) Podrobný popis navrženého nosného systému

Více

Aktuální trendy v oblasti modelování

Aktuální trendy v oblasti modelování Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,

Více

POŽADAVKY NA STATICKÝ VÝPOČET

POŽADAVKY NA STATICKÝ VÝPOČET POŽADAVKY NA STATICKÝ VÝPOČET Statický výpočet je podkladem pro vypracování technické specifikace konstrukční části a výkresové dokumentace Obsahuje dimenzování veškerých prvků konstrukcí, které jsou obsahem

Více

Stropy z ocelových nos

Stropy z ocelových nos Promat Stropy z ocelových nos Masivní stropy a lehké zavěšené podhledy níků Ocelobetonové a železobetonové konstrukce Vodorovné ochranné membrány a přímé obklady z požárně ochranných desek PROMATECT. Vodorovné

Více

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické

Více

MOŽNOSTI ZVÝŠENÍ ÚNOSNOSTI OSTĚNÍ KANALIZAČNÍHO SBĚRAČE

MOŽNOSTI ZVÝŠENÍ ÚNOSNOSTI OSTĚNÍ KANALIZAČNÍHO SBĚRAČE Prof. Ing. Josef Aldorf, DrSc., Ing. Lukáš Ďuriš, RNDr. Eva Hrubešová, Ph.D. VŠB-TU Ostrava, Fakulta stavební, L. Podéště 1758, 708 00 Ostrava Poruba tel.: 597 321 944, fax: 597 321 943, e mail: josef.aldorf@vsb.cz

Více

Poznámka: Při schodišťovém rameni širším než 2 750 mm se doporučuje rozdělit je mezilehlým zábradlím s madlem (požární bezpečnost).

Poznámka: Při schodišťovém rameni širším než 2 750 mm se doporučuje rozdělit je mezilehlým zábradlím s madlem (požární bezpečnost). 2.5 Schodiště 2.5.1 Všeobecné údaje o schodištích Tab. 2.5.1 Minimální šířka ramene Rodinné domy do dvou podlaží Ostatní běžné stavby (bytové, občanské) Vícepodlažní stavby Podřadná, málo používaná schodiště

Více

GEOSTATICKÉ NAPĚTÍ 1. CELKOVÉ NAPĚTÍ (TOTAL STRESS) 1.1 CELKOVÉ NAPĚTÍ V HOMOGENNÍ ZEMINĚ (TOTAL STRESS IN HOMOGENEOUS SOIL)

GEOSTATICKÉ NAPĚTÍ 1. CELKOVÉ NAPĚTÍ (TOTAL STRESS) 1.1 CELKOVÉ NAPĚTÍ V HOMOGENNÍ ZEMINĚ (TOTAL STRESS IN HOMOGENEOUS SOIL) GEOSTATICKÉ NAPĚTÍ 1. CELKOVÉ NAPĚTÍ (TOTAL STRESS) Celkové napětí je svislé napětí působící na bod pod povrchem terénu v důsledku tíhy všecho, co leží nad ním (tj. skelet, voda a zetížení povrchu). Počítá

Více