Určování dopravní dostupnosti pro dojížďku do zaměstnání při individuální neveřejné dopravě

Rozměr: px
Začít zobrazení ze stránky:

Download "Určování dopravní dostupnosti pro dojížďku do zaměstnání při individuální neveřejné dopravě"

Transkript

1 Určování dopravní dostupnosti pro dojížďku do zaměstnání při individuální neveřejné dopravě Abstract Ing. Tomáš Peňáz, Ph.D. - Doc.Dr.Ing. Jiří Horák Institut geoinformatiky VŠB - Technická univerzita Ostrava tř. 17. listopadu Ostrava - Poruba E - mail: tomas.penaz@vsb.cz, jiri.horak@vsb.cz Transport accessibility of employers from the living areas of their employees is one of many ways how to characterize the situation in the labour-market in a specific region or land area. Transport accessibility can be evaluated by many methods. One of them is based on the spatial analysis of time accessibility specifying within the laboratory conditions. This paper deals with the target of the shortest path finding. The beginning hypothesis thought about the employee s travelling to work by his own car. This analysis was applied to the finding of the time accessibility of all evaluated areas, which are in fact the parts of municipalities. The shortest route values found by this method were summarized for each locality in the chosen area and thanks to this operation the complex indicator of the traffic accessibility quality was done. Finding values of the shortest route that was assessed as to the time consuming level, and then they were summarized for each locality of the selected area. By this the time accessibility was reached and it can be considered as the complex indicator which shows the level of the traffic accessibility of an appropriate locality. Following analysis should compare found data to values describing an unemployment level or to the other labour-market indicators. Abstrakt Dopravní dostupnost zaměstnavatelů z míst výskytu disponibilní pracovní síly je jedním z mnoha způsobů charakterizování stavu trhu práce v určitém územním celku. Dopravní dostupnost lze hodnotit řadou metod. Jedna z nich předpokládá zhodnocení časové dostupnosti v laboratorních podmínkách metodami prostorové analýzy. Z možných způsobů zjišťování časové dostupnosti rozpracovává příspěvek úlohu hledání nejkratší cesty. Ta byla aplikována pro předpoklad, že zaměstnanec dojíždí do zaměstnání formou individuální neveřejné dopravy, tedy osobním automobilem. Analýza byla aplikována pro stanovení nejkratší cesty mezi všemi hodnocenými lokalitami, jimiž jsou části obcí. Takto nalezené hodnoty nejkratší cesty, posuzované z hlediska času, pak byly pro každou lokalitu ve vybraném území sumarizovány a tím byla získána časová dostupnost - souhrnný ukazatel, vypovídající o úrovni dopravní dostupnosti jednotlivých zpracovávaných lokalit. Následná analýza by měla zjištěná data porovnat s hodnotami vypovídajícími o míře nezaměstnanosti a případně s dalšími ukazateli popisujícími trh práce. Dopravní dostupnost ve vztahu k situaci trhu práce Velmi důležitými atributy trhu práce jsou umístění zaměstnavatelů a výskyt disponibilní pracovní síly. Jak zaměstnavatelé tak také pracovní síla jsou vázány k určitým geografickým objektům, nacházejícím se v odpovídající lokalitě. Těmito objekty jsou nejčastěji sídla, případně i jiné lokality uvnitř někdy i vně sídel. Dosažitelnost zkoumaných lokalit s nabídkou práce, posuzovaná s ohledem na možný přesun pracovní síly z lokalit s poptávkou po práci, spoluvytváří obraz o situaci na pracovním trhu. Určitá část přesunu

2 pracovní síly do zaměstnání a zpět se děje s využitím individuální neveřejné dopravy. Pod pojmem individuální neveřejná doprava rozumějme dopravu, kterou využívají občané při cestování soukromými dopravními prostředky, především osobními automobily. S ohledem na nepříznivý vývoj reformy veřejné hromadné dopravy a s tím spojené dopravní obslužnosti v celé řadě regionů, který se projevil v období ekonomické a společenské transformace v posledních 14 letech, získala individuální neveřejná doprava nebývale významné postavení. To se projevuje rovněž při dopravě zaměstnanců do zaměstnání. Pro celou řadu zaměstnanců sehrává tento způsob dopravy do zaměstnání významnou roli. Cílem tohoto příspěvku je blíže představit jeden z možných způsobů hodnocení vzájemné dosažitelnosti většího množství lokalit rozmístěných v zájmovém území. Takové hodnocení je jedním z mnoha možných způsobů, kterými lze kvantitativně vyjádřit ukazatele, mající vliv na stav trhu práce ve zkoumaném území. Dopravní dostupnost s využitím individuální neveřejné dopravy Mezi často používané geografické analýzy patří nepochybně zjišťování dopravní dostupnosti geografických objektů. S ohledem na možnosti a potřeby zpracovatele takové analýzy lze vzdálenosti měřit s využitím tradiční metriky, ale též s ohledem na další parametry, jimiž jsou čas a cena dopravy či přesunu z jedné lokality do lokality druhé. Předpokládá se, že člověk cestující pravidelně mezi dvěma místy s využitím osobního automobilu, volí ze všech možností takovou trasu, která je nejkratší jednak s ohledem na ujeté kilometry, ale především s ohledem na spotřebovaný čas. Relativně přesné experimentální zjišťování cestní i časové vzdálenosti je v reálných podmínkách možné, avšak z ekonomických důvodu se prakticky uskutečňuje pouze v omezeném rozsahu a to většinou jako komplementární činnost spojená s přesuny probíhajícími ve skutečné dopravní síti. Jako příklad zjišťování lze uvést zjišťování údajů o tzv. dojezdových časech bezpečnostních a záchranných složek (záchranné služby, hasiči, policie) na místo události. Zaznamenávání dojezdových časů se uskutečňuje na základě statistických šetření, přičemž povinnost sledování výše uvedených časových údajů zpravidla vyplývá z legislativy. Při znalosti podmínek, za nichž se dojezd na místo události uskutečnil, je možno tato data použít pro srovnání s údaji získanými vyhodnocením s pomocí analytických metod popisovaných v dalších pasážích tohoto příspěvku. Tímto konkrétním srovnáním se však příspěvek nezabývá. Tyto typy geografických analýz však lze s výhodou provést v prostředí vektorového modelu dopravní sítě s využitím teorie grafů. V uvedené souvislosti se často hovoří o síťových analýzách, opírajících se o propracovanou teorii a odpovídající matematický aparát [1]. Síťové analýzy patří do početné a rozmanité skupiny metod pro prostorovou analýzu dat. Funkčnost založenou na principech síťové analýzy nabízí případnému zájemci řada programových produktů, které se v současnosti využívají pro manipulaci s prostorovými daty. Důležitými parametry používanými při tomto typu analýz jsou zpravidla tzv. vzdálenostní operátory, které umožňuji odvodit dostupnost objektu či lokality na základě způsobu měření vzdálenosti v používaném typu prostoru. S ohledem na zadání, se tento příspěvek dále zabývá analyzováním časové dostupnosti. Časová dostupnost lokality se hodnotí mírou časové dostupnosti, která vyjadřuje celkovou dobu potřebnou pro cestování ze zkoumané lokality do všech cílů hvězdicovým způsobem. Časová dostupnost se zjišťuje zpravidla pro více zkoumaných lokalit současně a význam pak má především srovnání tohoto ukazatele pro tyto lokality. Nejnižší hodnota vyjadřuje nejlepší časovou dostupnost [1].

3 kde: D i t míra časové dostupnosti v místě i t ij j doba nejkratšího přesunu z místa i do místa j index cíle Metody analýzy dopravní dostupnosti Dopravní dostupnost a uvedené ukazatele její kvality je možno analyzovat v prostředí programových produktů, podporujících síťové analýzy nad liniovým modelem dopravní sítě. Vzhledem k tomu, že princip zjišťování obou ukazatelů je podobný, lze je analyzovat s využitím některé z následujících úloh: alokace zdrojů hledání nejkratší cesty Výsledkem úlohy alokace zdrojů je nalezení a vyznačení části síťové struktury (dopravní, energetické, produktovodní, ) v okolí tzv. centra, tedy v okolí požadované lokality. Nalezená a vyznačená část sítě musí splňovat primární požadavek, spočívající ve schopnosti absorbovat nabídku určitého množství specifické komodity, kterou centrum produkuje (elektrická energie, pitná voda, kapacita školního zařízení, apod.). To však není podstatná funkce uvedené úlohy, která by vypovídala o časové dostupnosti. V některých implementacích algoritmu pro řešení úlohy alokace zdrojů je však možno zadat doprovodný parametr, který omezuje vzdálenost od centra, při jejímž dosažení se výběr segmentů sítě v tomto směru ukončí. Tato omezující podmínka reflektuje způsob ohodnocení segmentů a uzlů grafu, tedy například určuje maximální možný čas akceptovatelný pro dopravu komodity z centra na místo spotřeby a zpět. Některé implementace algoritmu umožňují eliminovat primární parametr vyjadřující kvantitu produkované komodity. Tím se stává dominantní parametr omezující vzdálenost, čehož lze využít při analyzování dopravní dostupnosti, například z hlediska času. Výše uvedenými možnostmi disponují například programový modul Network Analyst patřící k ArcView GIS 3.x a modul Network, který je součástí rozsáhlého produktu ArcGIS 8.x Workstation a další). Tento příspěvek se využitím alokačních algoritmů pro hodnocení dopravní dostupnosti dále nezabývá. Alokace zdrojů Výsledkem úlohy alokace zdrojů je nalezení a vyznačení části síťové struktury (dopravní, energetické, produktovodní, ) v okolí tzv. centra, tedy v okolí požadované lokality. Nalezená a vyznačená část sítě musí splňovat primární požadavek, spočívající ve schopnosti absorbovat nabídku určitého množství specifické komodity, kterou centrum produkuje (elektrická energie, pitná voda, kapacita školního zařízení, apod.). To však není podstatná funkce uvedené úlohy, která by vypovídala o časové dostupnosti. V některých implementacích algoritmu pro řešení úlohy alokace zdrojů je však možno zadat doprovodný parametr, který omezuje vzdálenost od centra, při jejímž dosažení se výběr segmentů sítě v tomto směru ukončí. Tato omezující podmínka reflektuje způsob ohodnocení segmentů a uzlů grafu, tedy například určuje maximální možný čas akceptovatelný pro dopravu komodity z centra na místo spotřeby a zpět. Některé implementace algoritmu umožňují eliminovat primární parametr vyjadřující

4 kvantitu produkované komodity. Tím se stává dominantní parametr omezující vzdálenost, čehož lze využít při analyzování dopravní dostupnosti, například z hlediska času. Výše uvedenými možnostmi disponují například programový modul Network Analyst patřící k ArcView GIS 3.x a modul Network, který je součástí rozsáhlého produktu ArcGIS 8.x Workstation a další). Tento příspěvek se využitím alokačních algoritmů pro hodnocení dopravní dostupnosti dále nezabývá. Hledání nejkratší cesty Různé implementace algoritmů pro hledání nejkratší cesty poskytují výstupy poněkud jiné, neboť najdou v síti nejkratší spojení mezi dvěma předem specifikovanými místy (nejčastěji mezi uzly sítě), cestu označí a zjistí celkovou vzdálenost mezi uzly. Při analýze uskutečněné jak v tradičním tak také v časovém prostoru je tato zjištěná vzdálenost vyjádřena délkou nalezené cesty nebo časem, potřebným pro její překonání. Z pohledu zadání byla úloha hledání nejkratší cesty klíčovou a dopravní dostupnost pro dojížďku do zaměstnání při individuální neveřejné dopravě byla zjišťována s jejím využitím. Programové prostředky disponující výše popsanou funkčností umožňují zadávat vstupní parametry buď interaktivně prostřednictvím menu, což je vhodné především pro hledání cesty mezi relativně malým počtem lokalit, nebo dávkově pomocí vstupních dat parametrů ve formě textového nebo databázového souboru. Při počtu obcí v řádech jednotek se jedná o úlohu, kterou je možno zvládnout posloupností interaktivně prováděných dílčích analýz bez automatizovaného zpracování. V případě, že počet obcí je v řádech desítek, stává se úloha prakticky neproveditelnou bez značného podílu automatizace především při přípravě souboru se vstupními parametry. Použité programové vybavení Zpracování dat a experimenty, na základě nichž byl zpracován tento příspěvek, byly prováděny v prostředí programových produktů: ArcGIS 8.2 (Workstation) ArcView GIS 3.3 Programový balík ArcGIS 8.2 Workstation (dříve ARCINFO), konkrétně jeho moduly ARC, ARCPLOT, ARCEDIT a NETWORK, byly využity pro k vyhledání nejkratšího spojení mezi požadovanými částmi obcí, potažmo tedy ke zkoumání dopravní dostupnosti. Modul Network využívá k řešení úlohy hledání nejkratší cesty Dijkstrova algoritmu [8]. Produkt ArcView 3.2a byl využíván především k operativní kontrole výsledků analýz a pro editaci popisné složky vstupních geodat. Použitá geodata Klíčovou roli v procesu popisované prostorové analýzy sehrála geodata, představující lokality s umístěním zaměstnavatelů a pracovní síly. Tyto lokality byly reprezentovány bodovými daty, kde jednotlivé geoprvky vyjadřují části obcí okresu Bruntál. Souřadnice těchto bodů odpovídaly těžištím polygonů představujícím části obcí. Rozhodující význam pro provádění síťových analýz mají data reprezentující síť pozemních silničních komunikací. Tato data byla převzata z databáze DMÚ25 a následně upravena pro další analýzy. Příprava geodat V případě analýzy popisované v dalším textu, byla zkoumána časová dostupnost 165 částí obcí a to, metodou hledání nejkratší cesty mezi dvojicemi částí obcí. Uvedené zadání napovídá, že při vzájemném zjišťování časové dostupnosti mezi 165 částmi obcí bude třeba nalézt značné množství spojení.

5 Výpočtem jednoduché kombinatorické úlohy lze zjistit, že se jedná o jednosměrných spojení, která mají být algoritmem vyhledávána. To ovšem vyžaduje zadání velkého počtu (rovněž 13530) N-tic vstupních parametrů, které by nebylo reálné bez odpovídající automatizace při přípravě vstupních dat. Obr.1 Znázornění částí obcí v okresu Bruntál S ohledem na postup při zjišťování časové dostupnosti je možné přípravu geodat rozdělit do dvou stadií: výběr a ohodnocení liniových segmentů modelu dopravní sítě příprava vstupních parametrů pro dávkové zpracování geodat Výběr a ohodnocení liniových segmentů modelu dopravní sítě Analýza časové dostupnosti částí obcí okresu Bruntál byla provedena pro předpoklad využití individuální dopravy, tedy dopravy zaměstnanců vlastním automobilem. Z této podmínky vychází rovněž ohodnocení segmentů grafu impedancí, vyjadřující čas potřebný pro osobní automobil k překonání tohoto segmentu rychlostí, která se co nejvíce přibližuje realitě a zároveň je v souladu s dopravními předpisy. Data pro model dopravní sítě byla nejprve připravována na základě dříve vyzkoušeného postupu [4] a výběr požadovaných liniových segmentů z vrstvy komunikací byl proveden na základě dotazu s využitím číselníku kom.tuc, který vypovídá o dopravním využití jednotlivých liniových segmentů. Do výsledného

6 modelu byly vybrány linie s dopravním využitím, které je zvýrazněno v níže uvedeném číselníku (tabulka č.1). Takto vybrané liniové segmenty však nedostatečně reprezentují silniční síť, na níž měla být analýza prováděna, neboť výběr neobsahuje například mosty a tunely. V důsledku těchto nedostatků se nepodařilo zajistit spojitost grafu, což se projevovalo nemožností zjistit dopravní spojení mezi většinou dvojic požadovaných lokalit. Některé části sítě byly tedy izolované. Kvalita údajů tematické složky popisu liniových geoprvků (katalog topografických objektů) tedy neumožňovala jednoznačný a úplný výběr chybějících segmentů sítě. Příprava dat pro liniový model dopravní sítě by tedy vyžadovala dlouhodobou práci, spočívající v detailní kontrole linií a v manuálním výběru chybějících segmentů. Kód Způsob využití komunikace 002 dálniční typ 003 železnice 006 ulice 007 hlavní průjezd 020 letiště 201 pouliční dráha 202 vlečka 203 metro 204 účelová komunikace 205 zpevněná cesta 206 silnice 1. kategorie 207 silnice 2. kategorie 999 jiné Tabulka 1. Číselník kom.tuc způsobů využití komunikací. Pro účely dalších analýz měla být proto převzata liniová vrstva připravená, v rámci diplomové práce [6], ing. Ondřejem Rennerem. Tato data vznikala po dobu dvou let, ze stejných zdrojových dat (DMÚ 25) pro účely síťových analýz realizovaných pro potřeby integrovaného záchranného systému. Za dobu zpracování prošla tato data kontrolou, která umožnila odstranit mnoho chyb a zajistit tak spojitost grafu především výběrem segmentů, představujících (v tabulce č.1) popsané způsoby využití komunikací. Liniová vrstva, zpracovaná Rennerem, obsahuje navíc i zpevněné a účelové komunikace, které měly být z větší části snadno odstraněny na základě dotazu. Hodnoty identifikátorů takto upravených geoprvků však z neznámých důvodů neodpovídaly všem hodnotám původních identifikátorů a proto nebylo možno všem geoprvkům přiřadit odpovídající způsob využití, uvedený v číselníku kom.tuc a následně stanovit průměrnou dopravní rychlost. Pro účely dalších analýz v řešeném území byl proto převzat kompletní soubor pozemních komunikací z databáze DMÚ 25. Ohodnocení liniových segmentů bylo provedeno na základě výběrů požadovaných linií (tabulka č.1). S ohledem na způsob využití komunikace byl každé linii vypočten a přiřazen čas (v sekundách), potřebný na překonání vzdálenosti délky linie, při průměrné dopravní rychlosti stanovené tabulkou č. 2. Ostatní typy komunikací, u nichž se nepředpokládalo, že by byly algoritmem vybrány do nejkratší cesty, byly ohodnoceny časovým údajem odpovídajícím průměrné dopravní rychlosti 30 km.h-1. Neodmyslitelnou činností spojenou s přípravou modelu sítě je ohodnocení linií impedancemi představujícími časy potřebné pro překonání délky segmentu. Průměrná rychlost pro jízdu na jednotlivých úsecích byla převzata na základě informace poskytnuté ing. Jiřím Datinským z oddělení dopravní a technické koncepce útvaru hlavního architekta na Magistrátu města Ostravy. Způsob využití komunikace Průměrná dopravní rychlost [km.hod -1 ]

7 dálniční typ 85 silnice 1. kategorie 75 silnice 2. kategorie 55 hlavní průjezd 40 ulice 35 jiné 30 Tabulka 2. Rychlosti jízdy použité na vybraných typech komunikací Datový model, používaný pro síťové analýzy v prostředí produktu ArcGIS Workstation, umožňuje ohodnotit každý segment dvěma odlišnými hodnotami impedance, kde první hodnota impedance se vztahuje ke směru od počátku ke konci segmentu a druhá hodnota impedance platí pro směru opačném. Tím je možno do určité míry zohlednit anizotropii, která se v praxi projevuje například odlišnou rychlostí jízdy po silnici ve směru z kopce od rychlosti dosažitelné na stejném segmentu sítě při jízdě ve směru do kopce. Možnost uplatnění anizotropie prozatím nebyla využita, neboť by to vyžadovalo znalost podstatně většího množství relevantních údajů o použitelné dopravní rychlosti. Impedance, tedy časy vypočtené z průměrné rychlosti a z délky odpovídající linie byly uloženy do atributové tabulky linií (AAT) do pole seconds. Příprava vstupních parametrů pro dávkové zpracování geodat V modelu dopravní sítě je možno zohlednit také čekání na některých zastávkách včetně zástavky na níž cesta začíná. Tato doba je spolu s dobou jízdy a s dobou zdržení při odbočování na křižovatkách důležitým kriteriem pro vyhledání časově nejvýhodnější cesty a v součtu je jako tzv. kumulativní impedance zapisována do speciální tabulky (STP), obsahující vstupní a výstupní informace pro hledané cesty. Poloha tzv. zastávek, tedy bodů, mezi nimiž se v síťovém modelu hledá nejkratší cesta, musí být určena polohou uzlu sítě, neboť nejkratší cesta se zjišťuje mezi dvěma uzly. Body, představující části obcí (vrstva cobj ), je tedy možno použít k orientaci při vyhledávání uzlů sítě, které budou části obcí následně reprezentovat. Tuto činnost je nutno provést postupným vyhledáním vhodných uzlů sítě a zapsáním identifikátoru uzlu do atributové tabulky bodové vrstvy představující části obcí. V tomto případě se jedná o zjištění identifikátorů vhodných uzlů a jejich zapsaní do atributové tabulky pro 165 bodů. Popsané zpracování není možno provádět automatizovaně, protože nalezení nejbližšího vhodného uzlu vyžaduje vizuální posouzení. Jednotlivá pole atributové tabulky Cobj.pat mají následující význam: Area rozloha výměra (pro bodové geoprvky nulová), Perimeter obvod plochy (pro bodové geoprvky nulový), Cobj# systémový (vnitřní) identifikátor geoprvku, Cobj-id uživatelský identifikátor geoprvku, Kodob identifikátor obce, Kodcob identifikátor části obce, Nazcob název části obce,

8 Kodok identifikátor okresu, Bruntal-id identifikátor (z atributové tabulky uzlů bruntal.nat ) zastupujícího uzlu na síti, V modelu dopravní sítě je možno zohlednit rovněž čekání resp. zpoždění při odbočování vlevo resp. vpravo na některých křižovatkách a také v uzlu zablokovat vstup do některého segmentu sítě (impedance se záporným znaménkem - zákaz vjezdu ). To lze provést ohodnocením všech nebo jen části uzlů impedancemi, představujícími dobu čekání. Uplatnění těchto možností vyžaduje vygenerování souboru odbočení (TRN z angl. turn file ) a ohodnocení příslušných uzlů hodnotami impedance. Tyto možnosti byly použity pouze ve velice omezené míře, a to pro zablokování vybraných komunikací ve směru do Polska a zpět, neboť se předpokládá, že časová dostupnost obcí bude zkoumána bez možnosti vedení cesty přes Polsko. Takový počet dílčích hledání nejkratší cesty je možno provést dávkově za předpokladu, že použitý programový produkt možností dávkového zpracování disponuje a jestliže jsou připravena vstupní data. Ta se zadávají prostřednictvím tzv. souboru zastávek (zkr. STP podle angl. stop file ), který je nutno vytvořit podle doporučených požadavků na strukturu a naplnit jej povinnými a případně i nepovinnými údaji o počátečních a koncových zastávkách hledaných tras. Mezi povinné údaje patří čísla zastávek, čísla hledaných tras a pořadí v němž jsou dvě zkoumané zastávky algoritmem zpracovávány. Další pole této tabulky mohou obsahovat nepovinné údaje, které jsou patrné z ukázky tabulky č. 3. Mezi ně patří další byly využity impedance pro zastávky a příprava pole pro kumulovanou impedanci (celkový čas pro cestu z počáteční do koncové zastávky [s]). Počáteční obsah souboru se generuje programovou aplikací GenerZastavek.aml, která je uvedena v příloze č.1. Bruntal-id In_order Route_id Stop_imp Transfer Out_order Cumul_imp Cumul_trans Tabulka 3. Ukázka souboru zastávek - tabulka spojení.stp Jednotlivá pole atributové tabulky spojení.stp mají následující význam: Bruntal-id identifikátor uzlu v síti zastupujícího konkrétní část obce, In_order pořadí zastávek (počáteční a koncová), Route_id číslo nalezeného nejkratšího spojení (nejrychlejší trasy), Stop_imp zpoždění v počátečním bodu (v analýze nebylo zohledněno), Transfer množství naloženého nákladu (komodity), Cumul_imp kumulativní hodnota vyjadřující dobu jízdy (pro nejrychlejší trasu), Cumul_trans celkové množství přepraveného nákladu (komodity),

9 Vyhledání nejkratších cest Příprava tabulky se vstupními parametry (tabulka č.3) vyžadovala čas řádově desítek minut běhu programové aplikace speciálně vytvořené k tomuto účelu. Nalezení a označení nejkratších cest proběhlo řádově v jednotkách minut. Toto velice jednoduché srovnání platí s ohledem na použitou techniku. Jednalo se o PC, Pentium 4 (2,4 GHz), 256 MB RAM, s operačním systémem Windows 2000 Professional, nezatížené jinými úlohami. Jako příklad následuje postup pro spuštění úlohy v prostředí ArcGIS 8.3 workstation: Arcplot: NETCOVER bruntal spojeni Arcplot: STOPS bruntal.stp in_order route_id stop_imp transfer # cumul_imp Arcplot: IMPEDANCE from_to_imp to_from_imp turn_imp Arcplot: PATH STOPS Parametry použité v příkazech představují: bruntal datová vrstva (coverage) reprezentující model silniční sítě, spojeni pojmenování datové struktury pro uložení výsledku analýzy hledání nejkratší cesty resp. nejkratších cest, bruntal.stp soubor pro zadaní vstupních parametrů zastávek uživatelem a pro uložení části výstupních hodnot programem provádějícím analýzu, in_order pole tabulky bruntal.stp pro zadání pořadí zastávek při hledání nejkratší cesty, route_id pole tabulky bruntal.stp pro zadání čísla hledané nejkratší cesty mezi dvěma zastávkami, stop_imp pole tabulky bruntal.stp pro zadání hodnoty zpoždění na každé ze zastávek (zvolena hodnota 0), transfer pole tabulky bruntal.stp pro zadání hodnoty týkající se množství přepravované komodity mezi dvěma zastávkami, cumul_imp pole tabulky bruntal.stp pro zapsání výsledku analýzy týkajícího se celkového zpoždění při přesunu z jedné zastávky do druhé. Bezprostředním výsledkem provedené analýzy je vygenerování tzv. systému spojení či systému tras (angl. route system), který v popsaném případě nese název spojeni. Tento systém obsahuje komplexních geoprvků, z nichž každý představuje jednu, časově nejvýhodnější možnost spojení mezi dvěmi částmi obcí.

10 Obr.2 Znázornění tras individuální dopravy do zaměstnání v okresu Bruntál Výsledkem analýzy je rovněž naplnění souboru bruntal.stp kumulovanou impedancí pro počáteční a koncovou zastávku každé trasy. Výsledná doba jízdy (uvedená v sekundách) mezi dvěma částmi obcí je uvedena u druhé (tedy cílové) zastávky. Čas zaznamenaný v poli cumul_imp pro první zastávku je nulový, neboť při analýze nebylo simulováno zpoždění při výjezdu. Následným zpracováním byly vypočteny délky jednotlivých tras a výsledek byl uložen do atributové tabulky spojeni (tabulka č. 4). Spojeni# Odkud_id Kam_id Cas_vzdal Metr_vzdal , , , , ,867

11 , , , Tabulka 4. Ukázka tabulky spojeni, obsahující popis nalezených nejkratších tras Názvy polí v tabulce představují: Route_id datová vrstva Odkud_id pojmenování da Kam_id soubor pro Cas_vzdal pole tab Metr_vzdal pol. Vizualizace a interpretace výsledků analýzy Takto zjištěné hodnoty nejkratší časové vzdálenosti pak byly pro každou lokalitu resp. část obce ve vybraném území sumarizovány a tím byl získána míra časové dostupnosti [3], vypovídající o úrovni dopravní dostupnosti jednotlivých zpracovávaných lokalit vzhledem k ostatním lokalitám v zájmovém území. Výsledky byly zobrazeny metodou izolinií resp. izoploch (obrázky č. 4 a 5). Transformace hodnot bodového pole do ploch spočívala v převedení dat do rastrového datového modelu gridováním, přičemž byla uplatněna interpolační metoda spline (obrázek č. 3). Izoplochy resp. izolinie obsažené ve výsledném gridu byly vizualizovány za použití klasifikace hodnot do 6 tříd. Hranice třídních intervalů byly stanoveny variantně jednak s využitím Janksovy optimalizační metody (natural breaks) a následně zaokrouhleny na tisíce. Druhou metodou stanovující třídní intervaly s ohledem na stejný počet hodnot v intervalech. Autoři přistoupili k variantnímu zpracování kartografické vizualizace s ohledem na specifikum dat. Janksova optimalizační metoda je vhodná pro klasifikaci statistických souborů s nenormálním, vícevrcholovým rozdělením a často se používá ke zpracování dat vztahujících se k socioekonomickým jevům. Následná analýza by měla zjištěná data porovnat s hodnotami vypovídajícími o míře nezaměstnanosti a případně s dalšími ukazateli popisujícími trh práce [7]. Očekávaným výsledkem takového zpracování by mělo být vyslovení hypotézy o podobě a míře závislosti ukazatelů trhu práce na dopravní dostupnosti částí obcí. Z mapek na obrázcích č. 4 a 5 je patrné, že v rámci zkoumaného území mají nejhorší časovou resp. dopravní dostupnost především oblasti na severu okresu Bruntál (Osoblažsko) a dále též části území na jihu okresu. V širším kontextu, z něhož není možné jeden okres zcela vyjmout a zkoumat izolovaně, však dopravní dostupnost jižní části není možno hodnotit tak negativně jako dopravní dostupnost Osoblažska. Na jižní část okresu Bruntál bezprostředně navazují sousední okresy ČR, kde probíhá intenzívní osobní automobilová doprava. Osoblažsko je od severu a od východu izolováno státní hranicí s Polskou republikou, která představuje barieru pro tento způsob využití individuální dopravy.

12 Obr.3 Znázornění časové dostupnosti částí obcí okresu Bruntál ve formě gridu

13 Obr.4 Znázornění časové dostupnosti částí obcí okresu Bruntál ve formě izolinií (intervaly se stejnou četností)

14 Obr.5 Znázornění časové dostupnosti částí obcí okresu Bruntál ve formě izolinií (Janksova optimalizační metoda) Závěr Zkoumání časové dostupnosti založené na principu síťových analýz, je možno provádět s pomocí programových produktů, které disponují vhodnou funkčností. Úspěch analýz a důvěryhodnost jejich výsledků stojí především na kvalitě použitých dat a také na schopnosti zadavatele formulovat požadavky na prováděnou úlohu. Prostorové databáze, dostupné v současné době na trhu, není možno k takovým analýzám využít v původní podobě, neboť tomu brání jejich nedostatečná kvalita. Klíčová je především sémantická přesnost, která rozhoduje o výběru segmentů dopravní sítě a o rozlišení komunikací podle způsobu jejich využití a tedy o možnosti jejich správného ohodnocení. Vyžaduje-li uživatel či zpracovatel výsledky s velkou přesností, je třeba soustředit se na přípravu vstupních dat do odpovídající podoby. To je však reálné pouze na pracovišti, které se problematikou rutinně zabývá a je tedy schopno udržet data ve stavu, který co nejlépe odpovídá skutečnosti. Vždyť silniční síť a silniční doprava, o jejímž modelování hovoříme, tvoří velice dynamický fenomén. Takový systematický přístup vyžadující vyhraněnou specializaci na uvedenou problematiku, však reálný na pracovištích jakými jsou dispečinky záchranných služeb integrovaného záchranného systému.

15 Druhým aspektem, který má vliv na přesnost prováděné analýzy, je nepochybně schopnost zadavatele formulovat dostatečně precizně parametry, které budou před analýzou aplikovány formou ohodnocení grafu znázorňujícího dopravní síť. Jedná se především o odhadnutí rychlosti, které bude předpokládaný dopravní prostředek schopen dosáhnout na jednotlivých komunikací tedy segmentech sítě. Významný vliv na přesnost modelu sítě může též sehrát ohodnocení uzlů grafu. Tím lze zohlednit zpoždění na křižovatkách či některé dopravní předpisy, jako například zákazy odbočení či vjezdu. Zajímavý je rovněž pohled na tento druh analýzy z pohledu výkonu výpočetní techniky a objemu použitých dat. Plošná velikost okresu Bruntál a tomu odpovídající množství prvků použitého grafu (řádově desítky tisíc linií a uzlů), představuje množství dat, s nimiž je možno uskutečnit popsanou finální síťovou analýzu za čas, který se pohybuje řádově v desítkách minut. To však za předpokladu, že použitá data nevykazují chyby, které by vyžadovaly opakování analýzy. Literatura 1. Horák, J. (2002): Prostorová analýza dat. [on-line] Ostrava, 2002, 180 s. Dostupné na WWW: < 2. Hůrský, J.: Metody grafického znázornění dojížďky do práce. Praha, Rozpravy československé akademie věd, řada matematických a přírodních věd, ročník 79, 1969, sešit 3, Academia, 85 s. 3. Kusendová, D.: Analýza dostupnosti obcí Slovenska. In Sbor. ref. konference Aktivity v kartografii 96, Kartografická spoločnosť SR a Geografický ústav SAV, Bratislava, s Peňáz, T., Horák, J: Využití DMÚ 25 pro prostorovou analýzu nezaměstnanosti na území okresu Nový Jičín. In: Sborník referátů z konference GIS Ostrava VŠB-TU Ostrava, , ISSN , s Peňáz, T., Horák, J., Horáková, B.: Analýza územní dostupnosti významných firem na území okresu Nový Jičín. In GIS ve státní správě 2000, Seč u Chrudimi, Univerzita Pardubice, 2000, s Renner, O.: Geoinformační podpora návrhu hasebních obvodů. Diplomová práce, VŠB-TU Ostrava, Růžička, L., Horák, J., Peňáz, T.: Dostupnost zaměstnavatelů v okrese Bruntál. [CD-ROM] In Sbor. ref. konference GIS Seč , Seč, 2003, 11 s : Network analysis. [CD-ROM] Elektronická dokumentace k produktu ArcGIS 8.3 Workstation, ESRI, Redland, 2003.

Zpřesnění liniového dopravního modelu sítě silničních komunikací pro účely analýzy dopravní dostupnosti

Zpřesnění liniového dopravního modelu sítě silničních komunikací pro účely analýzy dopravní dostupnosti Zpřesnění liniového dopravního modelu sítě silničních komunikací pro účely analýzy dopravní dostupnosti Abstract Tomáš Peňáz Institut geoinformatiky VŠB Technická univerzita Ostrava 17. Listopadu 15 708

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

METODY HODNOCENÍ MĚSTSKÉ HROMADNÉ DOPRAVY

METODY HODNOCENÍ MĚSTSKÉ HROMADNÉ DOPRAVY METODY HODNOCENÍ MĚSTSKÉ HROMADNÉ DOPRAVY Ivana Olivková 1 Anotace:Článek se zabývá provozním hodnocením městské hromadné dopravy. Provozní hodnocení zahrnuje kriteria související s provozem MHD tj. charakteristiky

Více

Geografické informační systémy

Geografické informační systémy Geografické informační systémy ArcGIS Břuska Filip 2.4.2009 Osnova 1. Úvod 2. Architektura 3. ArcGIS Desktop 4. ArcMap 5. ShapeFile 6. Coverage 7. Rozšíření ArcGIS ArcGIS - Úvod ArcGIS je integrovaný,

Více

Návrh tras turistických zájezdů po krasových oblastech ČR

Návrh tras turistických zájezdů po krasových oblastech ČR Návrh tras turistických zájezdů po krasových oblastech ČR Boucný Luděk Geoinformatika VŠB Technická univerzita Ostrava 17. Listopadu 15 708 33 Ostrava Poruba E - mail: lboucny@email.cz ABSTRACT Subject

Více

Využití geografických informačních systémů v analýzách místních trhů práce

Využití geografických informačních systémů v analýzách místních trhů práce Využití geografických informačních systémů v analýzách místních trhů práce Šimek Milan - Horák Jiří VŠB Technická univerzita Ostrava tř. 17. listopadu, 708 33 Ostrava Poruba e-mail: milan.simek@vsb.cz,

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu geoprvků. Geometrická

Více

Rizikové úseky silnic z pohledu dopravních nehod

Rizikové úseky silnic z pohledu dopravních nehod Rizikové úseky silnic z pohledu dopravních nehod Ing. Jan TESLA, Ing. Igor IVAN, Ph.D. INSTITUT GEOINFORMATIKY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA Cíle projektu Zpracování dat o dopravních

Více

2. přednáška z předmětu GIS1 Data a datové modely

2. přednáška z předmětu GIS1 Data a datové modely 2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.

Více

GEOINFORMATICKÁ PODPORA CHARAKTERISTIKY OBYVATELSTVA ČESKÉHO SLEZSKA

GEOINFORMATICKÁ PODPORA CHARAKTERISTIKY OBYVATELSTVA ČESKÉHO SLEZSKA GEOINFORMATICKÁ PODPORA CHARAKTERISTIKY OBYVATELSTVA ČESKÉHO SLEZSKA Bakalářská práce SIRNÝ Lukáš Institut geoinformatiky VŠB - Technická univerzita Ostrava 17. Listopadu 15 708 33 Ostrava Poruba E mail:

Více

Grafický informační systém Hasičského záchranného sboru České republiky

Grafický informační systém Hasičského záchranného sboru České republiky Bc. Jaromír Bok, DiS., Grafický informační systém Hasičského záchranného sboru České republiky (2014-2015_B_05) Bc. Jaromír Bok, DiS. Grafický informační systém Hasičského záchranného sboru České republiky

Více

Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1

Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1 GIS 1 153GS01 / 153GIS1 Martin Landa Katedra geomatiky ČVUT v Praze, Fakulta stavební 14.11.2013 Copyright c 2013 Martin Landa Permission is granted to copy, distribute and/or modify this document under

Více

GIS v regionální analýze a jejich využití na příkladu Moravskoslezského kraje a města Ostravy

GIS v regionální analýze a jejich využití na příkladu Moravskoslezského kraje a města Ostravy GIS v regionální analýze a jejich využití na příkladu Moravskoslezského kraje a města Ostravy Mgr. Luděk Krtička Ostravská univerzita v Ostravě Katedra sociální geografie a regionálního rozvoje Inovace

Více

Lekce 10 Analýzy prostorových dat

Lekce 10 Analýzy prostorových dat Lekce 10 Analýzy prostorových dat 1. Cíle lekce... 1 2. Základní funkce analýza prostorových dat... 1 3. Organizace geografických dat pro analýzy... 2 4. Údržba a analýza prostorových dat... 2 5. Údržba

Více

Hlavní rysy produktu MapInfo Professional

Hlavní rysy produktu MapInfo Professional Michal Hrnčiřík MapInfo historie Hlavní rysy produktu MapInfo Professional Oblasti použití MapInfo MapInfo a webové služby Ostatní schopnosti produktu Vyvíjeno stejnojmennou firmou MapInfo (1986) MapInfo

Více

Pracovní celky 3.2, 3.3 a 3.4 Sémantická harmonizace - Srovnání a přiřazení datových modelů

Pracovní celky 3.2, 3.3 a 3.4 Sémantická harmonizace - Srovnání a přiřazení datových modelů Pracovní celky 3.2, 3.3 a 3.4 Sémantická harmonizace - Srovnání a datových modelů Obsah Seznam tabulek... 1 Seznam obrázků... 1 1 Úvod... 2 2 Metody sémantické harmonizace... 2 3 Dvojjazyčné katalogy objektů

Více

Geoinformatika. IX GIS modelování

Geoinformatika. IX GIS modelování Geoinformatika IX GIS modelování jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Geoinformatika

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více

KIG/1GIS2. Geografické informační systémy. rozsah: 2 hod přednáška, 2 hod cvičení způsob ukončení: zápočet + zkouška

KIG/1GIS2. Geografické informační systémy. rozsah: 2 hod přednáška, 2 hod cvičení způsob ukončení: zápočet + zkouška Geografické informační systémy KIG/1GIS2 rozsah: 2 hod přednáška, 2 hod cvičení způsob ukončení: zápočet + zkouška vyučující: e-mail: Ing. Jitka Elznicová, Ph.D. jitka.elznicova@ujep.cz Konzultační hodiny:

Více

MAPOVÉ PODKLADY A VYUŽITÍ VÝPOČETNÍ TECHNIKY A GISU PRO TVORBU TRAS LINEK MAP BASIS AND USING OF COMPUTERS AND GIS FOR TRANSPORT LINE DESIGN

MAPOVÉ PODKLADY A VYUŽITÍ VÝPOČETNÍ TECHNIKY A GISU PRO TVORBU TRAS LINEK MAP BASIS AND USING OF COMPUTERS AND GIS FOR TRANSPORT LINE DESIGN MAPOVÉ PODKLADY A VYUŽITÍ VÝPOČETNÍ TECHNIKY A GISU PRO TVORBU TRAS LINEK MAP BASIS AND USING OF COMPUTERS AND GIS FOR TRANSPORT LINE DESIGN Jaroslav Kleprlík 1, David Šourek 2 Anotace: Tento článek se

Více

ANALÝZA DOJÍŽĎKY STUDENTŮ NA VŠB - TU OSTRAVA

ANALÝZA DOJÍŽĎKY STUDENTŮ NA VŠB - TU OSTRAVA ANALÝZA DOJÍŽĎKY STUDENTŮ NA VŠB - TU OSTRAVA Abstract Jiří Juroš Geoinformatika VŠB TU Ostrava 17. Listopadu 15 708 33 Ostrava Poruba E mail : jur289@vsb.cz This thesis is interested in analysis of commute

Více

7. Tematická kartografie

7. Tematická kartografie 7. Tematická kartografie Zabývá se tvorbou tematických map, které na topografickém podkladě přebíraném z vhodné podkladové mapy podrobně zobrazují zájmové přírodní, socioekonomické a technické objekty

Více

7. Geografické informační systémy.

7. Geografické informační systémy. 7. Geografické informační systémy. 154GEY2 Geodézie 2 7.1 Definice 7.2 Komponenty GIS 7.3 Možnosti GIS 7.4 Datové modely GIS 7.5 Přístup k prostorovým datům 7.6 Topologie 7.7 Vektorové datové modely 7.8

Více

ANALÝZA PRŮMYSLU NA ÚZEMÍ MORAVSKOSLEZSKÉHO KRAJE

ANALÝZA PRŮMYSLU NA ÚZEMÍ MORAVSKOSLEZSKÉHO KRAJE ANALÝZA PRŮMYSLU NA ÚZEMÍ MORAVSKOSLEZSKÉHO KRAJE ANOTACE FILIP Ivo Geoinformatika VŠB -Technická univerzita Ostrava 17. Listopadu 15 708 33 Ostrava -Poruba E -mail: ivo.filip.st@vsb.cz Tato práce se zabývá

Více

Rastrová reprezentace

Rastrová reprezentace Rastrová reprezentace Zaměřuje se na lokalitu jako na celek Používá se pro reprezentaci jevů, které plošně pokrývají celou oblast, případně se i spojitě mění. Používá se i pro rasterizované vektorové vrstvy,

Více

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1 GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU Veronika Berková 1 1 Katedra mapování a kartografie, Fakulta stavební, ČVUT, Thákurova 7, 166 29, Praha, ČR veronika.berkova@fsv.cvut.cz Abstrakt. Metody

Více

VYUŽITÍ METOD TEORIE GRAFŮ PRO HLEDÁNÍ NEJSPOLEHLIVĚJŠÍ CESTY V DOPRAVNÍ SÍTI

VYUŽITÍ METOD TEORIE GRAFŮ PRO HLEDÁNÍ NEJSPOLEHLIVĚJŠÍ CESTY V DOPRAVNÍ SÍTI 18 LOGVD 212 - Žilina 2.-21.9.212 VYUŽITÍ METOD TEORIE GRAFŮ PRO HLEDÁNÍ NEJSPOLEHLIVĚJŠÍ CESTY V DOPRAVNÍ SÍTI Andrea Peterková *) Anotace: V článku je přiblíženo sociální riziko dopravní nehody, o kterých

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

ÚLOHY S POLYGONEM. Polygon řetězec úseček, poslední bod je totožný s prvním. 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU

ÚLOHY S POLYGONEM. Polygon řetězec úseček, poslední bod je totožný s prvním. 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU ÚLOHY S POLYGONEM Polygon řetězec úseček, poslední bod je totožný s prvním 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU 3 úsečky (segmenty) v horní části 2 úsečky ve spodní části

Více

Monitorování vývoje meteo situace nad ČR pomocí GPS meteorologie

Monitorování vývoje meteo situace nad ČR pomocí GPS meteorologie Monitorování vývoje meteo situace nad ČR pomocí GPS meteorologie Bc. Michal Kačmařík Instutut geoinformatiky, Hornicko-geologická fakulta, Vysoká škola báňská Technická univerzita Ostrava, 17. listopadu

Více

OBSAH 1. ÚVOD ZPRACOVÁNÍ VSTUPNÍCH DAT DOPRAVNÍ MODEL - QUESTOR FUNKČNÍ SCHÉMA POSTUP TVORBY MODELU STÁVAJÍCÍ KO

OBSAH 1. ÚVOD ZPRACOVÁNÍ VSTUPNÍCH DAT DOPRAVNÍ MODEL - QUESTOR FUNKČNÍ SCHÉMA POSTUP TVORBY MODELU STÁVAJÍCÍ KO Studie IAD Valašské Meziříčí Model dopravy stávajícího stavu a výhledové komunikační sítě Kontaktní adresa pro projekt: Ing. Václav Starý Černopolní 39, 613 00 Brno Tel.: 545 425 237 Fax: 545 425 280 Mobil:

Více

PODROBNÁ SPECIFIKACE PŘEDMĚTU VEŘEJNÉ ZAKÁZKY

PODROBNÁ SPECIFIKACE PŘEDMĚTU VEŘEJNÉ ZAKÁZKY Příloha č. 1 smlouvy PODROBNÁ SPECIFIKACE PŘEDMĚTU VEŘEJNÉ ZAKÁZKY 1. PŘEDMĚT A ÚČEL VEŘEJNÉ ZAKÁZKY Předmětem zakázky je: 1.1 Zpracování akčních plánů (AP) Jihomoravského kraje v souladu se zákonem č.

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

2. Účel a cíl koncepce, zdroje dat

2. Účel a cíl koncepce, zdroje dat 2. Účel a cíl koncepce, zdroje dat 2.1. Účel a cíl koncepce Koncepce vychází s principů a cílů Státního programu ochrany přírody a krajiny, který byl schválen usnesením vlády č.415 ze dne 17. června 1998.

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Optimalizace zimní údržby Plzeňský kraj. Petra Pelikánová

Optimalizace zimní údržby Plzeňský kraj. Petra Pelikánová Optimalizační seminář 17. 4. 2019, Praha Optimalizace zimní údržby Plzeňský kraj Petra Pelikánová O čem to bude? Úvod Arc Routing Problems Cíle optimalizace Model Podmínky Statistiky a čísla Příklady vstupních

Více

Úvod do GIS. Prostorová data I. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Prostorová data I. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Prostorová data I. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální prostorová

Více

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka FVZ UO Hradec Králové } Dostatečné množství dostupných zdrojů nejenom na místě MU Lidé Materiál Transportní prostředky } Rychlost poskytnutí pomoci

Více

Popis funkcí tlačítek jednotlivých modulů programu OGAMA

Popis funkcí tlačítek jednotlivých modulů programu OGAMA Nevázaná příloha bakalářské práce VYUŽITÍ OPEN-SOURCE NÁSTROJŮ PRO PŘÍPRAVU, PRŮBĚH A VYHODNOCENÍ EYE-TRACKING EXPERIMENTŮ Popis funkcí tlačítek jednotlivých modulů programu OGAMA Michal KUČERA, 2014 Replay

Více

VÝZKUM APLKACÍ GEOINFORMAČNÍCH TECHNOLOGIÍ V SYSTÉMECH NAKLÁDÁNÍ S ODPADY

VÝZKUM APLKACÍ GEOINFORMAČNÍCH TECHNOLOGIÍ V SYSTÉMECH NAKLÁDÁNÍ S ODPADY VÝZKUM APLKACÍ GEOINFORMAČNÍCH TECHNOLOGIÍ V SYSTÉMECH NAKLÁDÁNÍ S ODPADY Ing. Jiří Fryč, Ph.D. Školitel: doc. Ing. Rudolf Rybář, CSc. Mendelova univerzita v Brně Agronomická fakulta Ústav zemědělské,

Více

12. přednáška ze stavební geodézie SG01. Ing. Tomáš Křemen, Ph.D.

12. přednáška ze stavební geodézie SG01. Ing. Tomáš Křemen, Ph.D. 12. přednáška ze stavební geodézie SG01 Ing. Tomáš Křemen, Ph.D. Definice: Geografické informační systémy (GIS) GIS je informační systém pracující s prostorovými daty. ESRI: GIS je organizovaný soubor

Více

Tomáš Hudeček Zuzana Žáková

Tomáš Hudeček Zuzana Žáková Tomáš Hudeček Zuzana Žáková disertační, diplomové a bakalářské práce v tématech analýzy dostupnosti různých částíúzemí s využitím různých dopravních módů změny dostupnosti v čase vztahy dostupnosti a dalších

Více

Tab Vývoj základních ukazatelů dojížďky za prací v letech 1991 a v tom. v tom celkem. denně celkem muži ženy muži ženy

Tab Vývoj základních ukazatelů dojížďky za prací v letech 1991 a v tom. v tom celkem. denně celkem muži ženy muži ženy 2. Vyjížďka za prací 2.1 Vývoj vyjížďky za prací a její intenzity K datu sčítání žilo v Jihomoravském kraji 1 127 718 obyvatel (546 818 mužů a 580 900 žen). Z tohoto počtu obyvatel bylo 568 315 osob ekonomicky

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí KARTOGRAFIE V GIS PROJEKT TEMATICKÁ MAPA

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí KARTOGRAFIE V GIS PROJEKT TEMATICKÁ MAPA SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí KARTOGRAFIE V GIS MAPA MAPA je zmenšený generalizovaný konvenční obraz Země, nebeských těles, kosmu či jejich částí, převedený do roviny pomocí matematicky

Více

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59

Více

5. GRAFICKÉ VÝSTUPY. Zásady územního rozvoje Olomouckého kraje. Koncepce ochrany přírody Olomouckého kraje

5. GRAFICKÉ VÝSTUPY. Zásady územního rozvoje Olomouckého kraje. Koncepce ochrany přírody Olomouckého kraje 5. GRAFICKÉ VÝSTUPY Grafickými výstupy této studie jsou uvedené čtyři mapové přílohy a dále následující popis použitých algoritmů při tvorbě těchto příloh. Vlastní mapové výstupy jsou označeny jako grafické

Více

3. ROZMÍSTĚNÍ OBYVATELSTVA

3. ROZMÍSTĚNÍ OBYVATELSTVA 3. ROZMÍSTĚNÍ OBYVATELSTVA O čem je mapový oddíl ROZMÍSTĚNÍ OBYVATELSTVA? Mapový oddíl obsahuje tři mapové listy, které se věnují základním charakteristikám vývoje počtu a rozmístění obyvatelstva v českých

Více

Geografické informační systémy ArcGIS Pavel Juška (jus011) 4. března 2010, Ostrava

Geografické informační systémy ArcGIS Pavel Juška (jus011) 4. března 2010, Ostrava Geografické informační systémy ArcGIS Pavel Juška (jus011) 4. března 2010, Ostrava Charakterisitka ArcGIS Geografický informační systém. Integruje mnoho součástí v jednom systému. Integrované sady aplikací

Více

8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra

8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra 8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI,

Více

Geografické informační systémy GIS

Geografické informační systémy GIS Geografické informační systémy GIS Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION

INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION VLIV INFORMATIVNÍ TABULE NA ZMĚNU RYCHLOSTI VE VYBRANÉ LOKALITĚ INFLUENCE OF SPEED RADAR SIGN ON VELOCITY CHANGE IN THE SELECTED LOCATION Martin Lindovský 1 Anotace: Článek popisuje měření prováděné na

Více

Vliv svahu na energetické a exploatační parametry zemědělské dopravy

Vliv svahu na energetické a exploatační parametry zemědělské dopravy Vliv svahu na energetické a exploatační parametry zemědělské dopravy Shrnutí Článek se zabývá vyhodnocením provozních měření traktorových dopravních souprav s cílem stanovit vliv svahu na energetické a

Více

3. přednáška z předmětu GIS1 atributové a prostorové dotazy

3. přednáška z předmětu GIS1 atributové a prostorové dotazy 3. přednáška z předmětu GIS1 atributové a prostorové dotazy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor

Více

PostGIS. Luboš Hejduk, Petr Sedlář 2007

PostGIS. Luboš Hejduk, Petr Sedlář 2007 PostGIS Luboš Hejduk, Petr Sedlář 2007 Obsah Co je PostGIS Využití prostorových dat Způsob instalace PostgreSQL/PostGIS Správa databáze postgresql/postgis Práce s daty v PostgreSQL/PostGIS Import dat do

Více

NÁVRH ZPRACOVÁNÍ DAT SCIO V PROSTŘEDÍ GIS

NÁVRH ZPRACOVÁNÍ DAT SCIO V PROSTŘEDÍ GIS NÁVRH ZPRACOVÁNÍ DAT SCIO V PROSTŘEDÍ GIS Zajícová Zuzana Geoinformatika VŠB Technická univerzita Ostrava 17. Listopadu 15 708 33 Ostrava Poruba E-mail: zzajic@volny.cz Abstract The aim of this work is

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

Analýza situace na trhu práce v měřítku okresního města

Analýza situace na trhu práce v měřítku okresního města Analýza situace na trhu práce v měřítku okresního města Marcela Glacová studentka oboru Geoinformatika VŠB Technická univerzita Ostrava mobil.: 0776/109541 E-mail: marglacova@email.cz Jiří Horák Institut

Více

METODIKA PRÁCE S TOUTO APLIKACÍ

METODIKA PRÁCE S TOUTO APLIKACÍ Aplikace Statistické zobrazení nehodovosti v silničním provozu na vybrané trase METODIKA PRÁCE S TOUTO APLIKACÍ květen 14 Obsah ÚVOD 3 PŘÍSTUP DO APLIKACE 4 DEFINOVÁNÍ KRITÉRIÍ VYHLEDÁVÁNÍ POŽADOVANÝCH

Více

NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU. Projektová dekompozice

NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU. Projektová dekompozice NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Projektová dekompozice Úvod do vybraných nástrojů projektového managementu METODY A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Tvoří jádro projektového managementu.

Více

Lokační referenční metody a jejich interpretace ve standardech

Lokační referenční metody a jejich interpretace ve standardech Lokační referenční metody a jejich interpretace ve standardech Jiří Plíhal Tento příspěvek by rád na konkrétním příkladu standardu přiblížil referenční metody stanovení polohy a zejména jejich dynamickou

Více

POSOUZENÍ VLIVU ZPROVOZNĚNÍ DÁLNICE D47 EXAMINATION OF INFLUENCE OF PUTTING OF HIGHWAY D47 INTO SERVICE

POSOUZENÍ VLIVU ZPROVOZNĚNÍ DÁLNICE D47 EXAMINATION OF INFLUENCE OF PUTTING OF HIGHWAY D47 INTO SERVICE POSOUZENÍ VLIVU ZPROVOZNĚNÍ DÁLNICE D47 EXAMINATION OF INFLUENCE OF PUTTING OF HIGHWAY D47 INTO SERVICE Martin Blatoň 1, Vladislav Křivda 2 Anotace: Článek posuzuje vliv zprovoznění úseku dálnice D47 z

Více

4. ROZMÍSTĚNÍ OBYVATELSTVA

4. ROZMÍSTĚNÍ OBYVATELSTVA 4. ROZMÍSTĚNÍ OBYVATELSTVA O čem je mapový oddíl ROZMÍSTĚNÍ OBYVATELSTVA? Oddíl obsahuje tři mapové dvojlisty, které se věnují základním charakteristikám vývoje počtu a rozmístění obyvatelstva v českých

Více

Směrový průzkum ve městě Boskovice

Směrový průzkum ve městě Boskovice Směrový průzkum ve městě Boskovice červen 17 IDENTIFIKAČNÍ ÚDAJE Předmět zakázky: Objednatel: Zhotovitel: Zodpovědný řešitel: Řešitelský tým: Směrový průzkum ve městě Boskovice Město Boskovice Masarykovo

Více

DATOVÝ MODEL DOPRAVNÍ SÍTĚ PRO SPRÁVU DAT A ŘÍZENÍ VEŘEJNÉ HROMADNÉ DOPRAVY

DATOVÝ MODEL DOPRAVNÍ SÍTĚ PRO SPRÁVU DAT A ŘÍZENÍ VEŘEJNÉ HROMADNÉ DOPRAVY DATOVÝ MODEL DOPRAVNÍ SÍTĚ PRO SPRÁVU DAT A ŘÍZENÍ VEŘEJNÉ HROMADNÉ DOPRAVY Lenka ZAJÍČKOVÁ, Katedra geoinformatiky UPOL Patrik BŘEČKA, Asseco Central Europe, a.s. SPRÁVA GEODAT O SÍTI VEŘEJNÉ DOPRAVY

Více

Dopravní průzkum - Analytická část

Dopravní průzkum - Analytická část Dopravní model města Kuřim Dopravní průzkum - Analytická část 11/2009 2 OBSAH 1. ÚVOD... 4 2. PRŮZKUMY INDIVIDUÁLNÍ AUTOMOBILOVÉ DOPRAVY... 5 2.1. PŘÍPRAVA PRŮZKUMU... 5 2.1.1. Typ prováděho průzkumu...

Více

SEIZMICKÝ EFEKT ŽELEZNIČNÍ DOPRAVY ÚVODNÍ STUDIE

SEIZMICKÝ EFEKT ŽELEZNIČNÍ DOPRAVY ÚVODNÍ STUDIE SEIZMICKÝ EFEKT ŽELEZNIČNÍ DOPAVY ÚVODNÍ STUDIE Josef Čejka 1 Abstract In spite of development of road transport, carriage by rail still keeps its significant position on traffic market. It assumes increases

Více

Platforma ArcGIS. Platforma ArcGIS se skládá ze čtyř komponent: dat, zdrojů, portálu a aplikací.

Platforma ArcGIS. Platforma ArcGIS se skládá ze čtyř komponent: dat, zdrojů, portálu a aplikací. Platforma ArcGIS Platforma ArcGIS Platforma ArcGIS je tvořena datovým obsahem, službami a softwarovými produkty, které spolu vzájemně komunikují. Je určena každému, kdo chce snadno a rychle sdělit informaci

Více

Kartografické modelování V Topologické překrytí - Overlay

Kartografické modelování V Topologické překrytí - Overlay Kartografické modelování V Topologické překrytí - Overlay jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech

Více

GIS S SYSTÉMY KRIZOVÉHO ŘÍZENÍ. Bc. Vladimír Bátrla,BAT027

GIS S SYSTÉMY KRIZOVÉHO ŘÍZENÍ. Bc. Vladimír Bátrla,BAT027 GIS S SYSTÉMY KRIZOVÉHO ŘÍZENÍ Bc. Vladimír Bátrla,BAT027 Obsah GIS s systémy Krizového řízení Účel Data Informační systémy IS Havárie GIS CO KrS32 IS ARGIS Krizové stavy v ČR Krizová legislativa v ČR

Více

Využití tabulkového procesoru MS Excel

Využití tabulkového procesoru MS Excel Semestrální práce Licenční studium Galileo srpen, 2015 Využití tabulkového procesoru MS Excel Ing Marek Bilko Třinecké železárny, a.s. Stránka 1 z 10 OBSAH 1. ÚVOD... 2 2. DATOVÝ SOUBOR... 2 3. APLIKACE...

Více

Manažerský GIS. Martina Dohnalova 1. Smilkov 46, 2789, Heřmaničky, ČR MartinaDohnalova@seznam.cz

Manažerský GIS. Martina Dohnalova 1. Smilkov 46, 2789, Heřmaničky, ČR MartinaDohnalova@seznam.cz Manažerský GIS Martina Dohnalova 1 1 VŠB TU Ostrava, HGF, GIS, Smilkov 46, 2789, Heřmaničky, ČR MartinaDohnalova@seznam.cz Abstrakt. Téma této práce je manažerský GIS, jehož cílem je vytvořit prostředek,

Více

GEOINFORMATIKA. -základní pojmy a principy -ukázky aplikací GIS v praxi. Lukáš MAREK a Vít PÁSZTO

GEOINFORMATIKA. -základní pojmy a principy -ukázky aplikací GIS v praxi. Lukáš MAREK a Vít PÁSZTO GEOINFORMATIKA -základní pojmy a principy -ukázky aplikací GIS v praxi Lukáš MAREK a Vít PÁSZTO GEOINFORMATIKA JE... spojením informatiky a geografie uplatnění geografie v počítačovém prostředí je obor,

Více

ČÁST B ORIENTAČNÍ DOPRAVNÍ ZNAČENÍ V OBCI

ČÁST B ORIENTAČNÍ DOPRAVNÍ ZNAČENÍ V OBCI ČÁST B ORIENTAČNÍ DOPRAVNÍ ZNAČENÍ V OBCI 1 UŽITÍ A PROVEDENÍ DOPRAVNÍCH ZNAČEK 1.1 Všeobecně V této části jsou stanoveny zásady pro užití jednotlivých značek ODZ v obci včetně příkladů jejich provedení.

Více

VÝUKA SYSTÉMU IDRISI NA KATEDŘE GEOINFORMATIKY PŘÍRODOVĚDECKÉ FAKULTY UNIVERZITY PALACKÉHO V OLOMOUCI

VÝUKA SYSTÉMU IDRISI NA KATEDŘE GEOINFORMATIKY PŘÍRODOVĚDECKÉ FAKULTY UNIVERZITY PALACKÉHO V OLOMOUCI VÝUKA SYSTÉMU IDRISI NA KATEDŘE GEOINFORMATIKY PŘÍRODOVĚDECKÉ FAKULTY UNIVERZITY PALACKÉHO V OLOMOUCI Vilém Pechanec, Pavel SEDLÁK http://www.geoinformatics.upol.cz Geoinformatika v Olomouci ECO-GIS Centrum

Více

Časová dostupnost krajských měst České republiky

Časová dostupnost krajských měst České republiky Časová dostupnost krajských měst České republiky Jedním z významných faktorů ovlivňujících konkurenceschopnost dopravního módu je cestovní doba mezi zdrojem a cílem cesty. Úkolem tohoto dokumentu je proto

Více

Automatizace tvorby výškopisu pro mapy velkého měřítka v prostředí ArcGIS

Automatizace tvorby výškopisu pro mapy velkého měřítka v prostředí ArcGIS Automatizace tvorby výškopisu pro mapy velkého měřítka v prostředí ArcGIS Aleš Tippner Oldřich Kafka / Zeměměřický úřad Jakub Lysák / Přírodovědecká fakulta UK v Praze O čem bude prezentace Úkol: Z digitálního

Více

VYUŽITÍ DATA DRIVEN PAGES

VYUŽITÍ DATA DRIVEN PAGES VYUŽITÍ DATA DRIVEN PAGES Oldřich MAŠÍN oddělení krizového řízení, krajský úřad Pardubického kraje, Komenského nám. 125, 53211 Pardubice, Česká republika oldrich.masin@pardubickykraj.cz Abstrakt Uživatelé

Více

ZEMĚMĚŘICKÝ ÚŘAD. Výzkum a vývoj programového aparátu pro generalizaci státního mapového díla. Ing. Přemysl JINDRÁK

ZEMĚMĚŘICKÝ ÚŘAD. Výzkum a vývoj programového aparátu pro generalizaci státního mapového díla. Ing. Přemysl JINDRÁK ZEMĚMĚŘICKÝ ÚŘAD Výzkum a vývoj programového aparátu pro generalizaci státního mapového díla Představení projektu Technologická Agentura ČR Praha, 31. 7. 2018 Ing. Přemysl JINDRÁK Základní vymezení Projekt

Více

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

Ing. Alena Šafrová Drášilová, Ph.D.

Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách

Více

PRODUKTY. Tovek Tools

PRODUKTY. Tovek Tools Analyst Pack je desktopovou aplikací určenou k vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci i s velkým objemem textových dat z různorodých informačních

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Geografické informační systémy (GIS) Výukový materiál l pro gymnázia a ostatní středn ední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ 1357P2006

Více

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D. Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických

Více

Statistické zobrazení nehod v geografickém informačním systému

Statistické zobrazení nehod v geografickém informačním systému Statistické zobrazení nehod v geografickém informačním systému (JDVM) Odborný technický seminář SRVO 5. 6. 11. 2009 2009 Co je JDVM? - geografický informační systém Ministerstva dopravy ČR - provozován,

Více

JAK STANOVIT ZRANITELNOST ÚZEMÍ JINAK HOW TO ASSESS TERITORY VULNERABILITY

JAK STANOVIT ZRANITELNOST ÚZEMÍ JINAK HOW TO ASSESS TERITORY VULNERABILITY JAK STANOVIT ZRANITELNOST ÚZEMÍ JINAK HOW TO ASSESS TERITORY VULNERABILITY Vilém ADAMEC, Lenka MALÉŘOVÁ, Martin ADAMEC vilem.adamec@vsb.cz, lenka.malerova@vsb.cz, martin.adamec@hzsmsk.cz Abstract Vulnerability

Více

INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY A JEJICH VYUŽITÍ V KRIZOVÉM ŘÍZENÍ ING. JIŘÍ BARTA, RNDR. ING.

INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY A JEJICH VYUŽITÍ V KRIZOVÉM ŘÍZENÍ ING. JIŘÍ BARTA, RNDR. ING. INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY A JEJICH VYUŽITÍ V KRIZOVÉM ŘÍZENÍ ING. JIŘÍ BARTA, RNDR. ING. TOMÁŠ LUDÍK Operační program Vzdělávání pro konkurenceschopnost Projekt:

Více

Aplikace. prostorového navázání nehod v silničním provozu na přilehlou pozemní komunikaci s využitím prostorových a popisných dat

Aplikace. prostorového navázání nehod v silničním provozu na přilehlou pozemní komunikaci s využitím prostorových a popisných dat Aplikace prostorového navázání nehod v silničním provozu na přilehlou pozemní komunikaci s využitím prostorových a popisných dat METODIKA PRÁCE S TOUTO APLIKACÍ červen 13 Obsah ÚVOD 3 UŽIVATELÉ 4 OPERÁTOR

Více

1. ÚVOD. Vladislav Křivda 1

1. ÚVOD. Vladislav Křivda 1 ODVOZENÍ PŘEPOČTOVÝCH KOEFICIENTŮ SILNIČNÍCH VOZIDEL V DOPRAVNÍM PROUDU DLE JEJICH DYNAMICKÝCH CHARAKTERISTIK DERIVATION OF COEFFICIENTS OF ROAD VEHICLES IN TRAFFIC FLOW ACCORDING TO ITS DYNAMIC CHARACTERISTICS

Více

UŽIVATELSKÁ PŘÍRUČKA K INTERNETOVÉ VERZI REGISTRU SČÍTACÍCH OBVODŮ A BUDOV (irso 4.x) VERZE 1.0

UŽIVATELSKÁ PŘÍRUČKA K INTERNETOVÉ VERZI REGISTRU SČÍTACÍCH OBVODŮ A BUDOV (irso 4.x) VERZE 1.0 UŽIVATELSKÁ PŘÍRUČKA K INTERNETOVÉ VERZI REGISTRU SČÍTACÍCH OBVODŮ A BUDOV (irso 4.x) VERZE 1.0 OBSAH 1 ÚVOD... 3 1.1 HOME STRÁNKA... 3 1.2 INFORMACE O GENEROVANÉ STRÁNCE... 4 2 VYHLEDÁVÁNÍ V ÚZEMÍ...

Více

GEODATA PRO 3D MODEL PORUBSKÉHO AREÁLU VŠB-TUO BUDOVA NK

GEODATA PRO 3D MODEL PORUBSKÉHO AREÁLU VŠB-TUO BUDOVA NK GEODATA PRO 3D MODEL PORUBSKÉHO AREÁLU VŠB-TUO BUDOVA NK Pavlína Kiszová Geoinformatika VŠB Technická univerzita Ostrava 17. Listopadu 15 708 33 Ostrava Poruba E-mail: pavlina.kiszova.st@vsb.cz Abstrakt.

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY Mgr. Aleš RUDA Teorie, základnz kladní principy Organizovaný, počíta tačově založený systém m hardwaru, softwaru a geografických informací vyvinutý ke vstupu, správě,, analytickému

Více

xrays optimalizační nástroj

xrays optimalizační nástroj xrays optimalizační nástroj Optimalizační nástroj xoptimizer je součástí webového spedičního systému a využívá mnoho z jeho stavebních bloků. xoptimizer lze nicméně provozovat i samostatně. Cílem tohoto

Více

GEOINFORMATIKA. -základní pojmy a principy -ukázky aplikací GIS v praxi. Lukáš MAREK a Vít PÁSZTO

GEOINFORMATIKA. -základní pojmy a principy -ukázky aplikací GIS v praxi. Lukáš MAREK a Vít PÁSZTO GEOINFORMATIKA -základní pojmy a principy -ukázky aplikací GIS v praxi Lukáš MAREK a Vít PÁSZTO GEOINFORMATIKA JE spojením informatiky a geografie uplatnění geografie v počítačovém prostředí je obor, který

Více

Kartografické modelování. VIII Modelování vzdálenosti

Kartografické modelování. VIII Modelování vzdálenosti VIII Modelování vzdálenosti jaro 2015 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Vzdálenostní funkce

Více

Stanovení nejistot při výpočtu kontaminace zasaženého území

Stanovení nejistot při výpočtu kontaminace zasaženého území Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních

Více

KARTOGRAFICKÉ HODNOCENÍ. RNDr. Tomáš Hudeček, Ph.D. Katedra aplikované geoinformatiky a kartografie PřFUK v Praze

KARTOGRAFICKÉ HODNOCENÍ. RNDr. Tomáš Hudeček, Ph.D. Katedra aplikované geoinformatiky a kartografie PřFUK v Praze KARTOGRAFICKÉ HODNOCENÍ UČEBNIC ZEMĚPISU RNDr. Tomáš Hudeček, Ph.D. Katedra aplikované geoinformatiky a kartografie PřFUK v Praze hudecek@dr.com +420 776 661 708 TERMINOLOGIE regionální učivo učivo, které

Více

ZJIŠTĚNÍ ÚČINNOSTI ZAŘÍZENÍ PRO PROVOZNÍ INFORMACE V OBCI KOKORY

ZJIŠTĚNÍ ÚČINNOSTI ZAŘÍZENÍ PRO PROVOZNÍ INFORMACE V OBCI KOKORY ZJIŠTĚNÍ ÚČINNOSTI ZAŘÍZENÍ PRO PROVOZNÍ INFORMACE V OBCI KOKORY DETERMINING THE EFFECTIVENESS OF EQUIPMENT FOR TRAFFIC INFORMATION IN THE MUNICIPALITY KOKORY Martin Lindovský 1 Anotace: Tento článek se

Více