Soustředí se na reprezentaci konceptů a vztahů (relací) mezi nimi. Používají grafickou reprezentaci, koncepty jsou uzly grafu, relace
|
|
- Bedřich Janda
- před 9 lety
- Počet zobrazení:
Transkript
1 Sémantické sítě Soustředí se na reprezentaci konceptů a vztahů (relací) mezi nimi. Používají grafickou reprezentaci, koncepty jsou uzly grafu, relace jsou hrany (většinou se uvažují pouze binární relace). is a = je půjčka je dlužník půjčka 1 půjčka 2 věřitel dlužník věřitel Karel Jiří Marie je je je osoba
2 Objekty a relace, odvozování Síť na obrázku reprezentuje znalosti o autech obecně a o konkrétních vozidlech (identifikovaných SPZ). Uzly jsou koncepty (obecné) a instance. Máme tu základní typy relací: je (is a), tj. množinová inkluze, subsumce je (is a) náležení (je prvkem) koncept má vlastnost, případně konkrétní relace, např. dlužník, věřitel každý prvek konceptu má vlastnost pro každý prvek konceptu A existuje prvek konceptu B s určitou vlastností
3 Vícerozměrných relací se zbavíme reifikací převedením relace na koncept (objekt). Možnost vztahů dále rozšiřují deskriptivní logiky (např. systém OWL), které se často používají k vytváření ontologií. Možné dedukce o autu 2A jsou např. je to Škoda Fabia má čtyřdobý motor je osobní auto má kola má spalovací motor je vozidlo...
4 brzdy má je vozidlo má pohon je osobní auto má je Skoda Fabia je 2A má spalovací motor kola je je čtyřdobý motor třídobý motor má má má je 4A
5 Rámce Daly vznik objektově orientovanému programování. Rámec má tzv. sloty, do kterých se vyplňují data: údaje, jiné rámce, vlastnosti zděděné z jiných rámců apod. JMÉNO RÁMCE Škoda Fabie položky ČÍSLO RÁMCE 1 IS-A MOTOR PŘEVODOVKA osobní auto čtyřdobý benzínový manuální
6 JMÉNO RÁMCE Škoda Fabie položky ČÍSLO RÁMCE 1 IS-A osobní auto MOTOR hodnota: třídobý benzínový default: čtyřdobý benzínový PŘEVODOVKA manuální
7 Systémy dědičnosti (inheritence systems) Pokud koncepty mají v sémantické síti částečné uspořádání, pak síť nazýváme systém s dědičností. V síti pak vynecháváme hrany, které mohou být odvozeny z dědičnosti. Klasickým příkladem je klasifikace rostlin, živočichů.
8 Manipulace v jednoduchém systému dědičnosti Základní relací naší sémantické sítě je relace is a, tj. patří mezi, je, např. pes je savec, Alík je pes. Budeme uvažovat síť s dvěma typy uzlů (konstanty a koncepty) a dvěma typy hran(absolutní a defaultní, obě mohou být negované (defaultní připustíme až časem). Navíc: žádná hrana nevede do konstanty jen absolutní hrany a jejich negace mohou vycházet z konstant hrana r s má význam r(s), je li s konstanta, jinak x(r(x) s(x)). Hrana rs znamená r(s) pro s konstantu, jinak
9 x(r(x) s(x)), což je ekvivalentní x( r(x) s(x)), čili pro negovanou absolutní hranu jsou obě orientace ekvivalentní. černá vdova Příklad pavouk členovec chován lidmi domácí mazlčci bezobratlí Špagetka jezevčík pes savec.
10 Povolené dedukce I když můžeme hrany přeložit do logiky 1. řádu, nedovolujeme všechny možné dedukce logiky, ale jen omezenou část. Dovolené operace: Symetrie: dovolíme otočit negovanou absolutní hranu, tj. z r \ s odvodit s \ r Positivní řetězec: Jsou li x i x i+1 hrany v digrafu pro 1 i < k, pak můžeme přidat hranu x 1 x k. Negativní hrana: Jsou li x i x i+1 a y j y j+1 hrany v digrafu pro 1 i < k,1 j < m, a x k \ y m je hrana digrafu, můžeme přidat hranu x 1 \ y 1, pokud y 1 není konstanta.
11 Příklad dedukce Můžeme otáčet negované (jisté) hrany, např. členovec není domácí mazlíček, i domácí mazlíček není členovec. Můžeme řetězit pozitivní hrany, např. Špagetka je pes, jezevčíci jsou chováni lidmi, atd. Štaflík je domácí mazlíček a pavouci jsou členovci kteří nejsou domácí mazlíčci, proto Štaflík není členovec. Stejného závěru můžeme dosáhnout použitím cesty přes savce a otočenou negativní hranu.
12 Lokálnost sporu pavouk členovec domácí mazlčci bezobratlí jezevčík pes savec pták krmí mlékem holub Savci krmí mláďata mlékem, ptáci ne. Nicméně holubi tvoří výměšek podobný sýru, kterým krmí mláďata..
13 Do modelu se nám dostal spor můžeme odvodit i že holubi krmí mlékem, i že nekrmí. V našem omezeném způsobu odvozování ale každý spor musí zahrnovat cestu přes holuby, takže např. že Štaflík je pavouk nelze odvodit, i když je někde v modelu u holubů spor. Lokálnost sporu je velice důležitá u velkých bází znalostí, zvlášť pokud je tvoří více lidí.
14 Default hrany Abychom se zbavili předchozího sporu úplně, změníme hranu ptak \ mleko na default hranu ptak \ mleko a vhodně upravíme možnosti dedukce. Hrana x \ y má význam defaultu x y, negovaná x \ y má význam většina x není y.
15 Dedukce s default hranami Pokud neodvodíme spor, můžeme odvozovat podobně jako s jistými hranami s dvěma rozdíly pokud cesta používá default hranu, výsledek je také default hrana default hrany nelze otáčet, tj. x \ y neznamená, že y \ x. Pokud by se došlo ke sporu, musíme odvozovat opatrněji. Pokud existuje více než jedna cesta z A do B, preferujeme tu s více specifickými default pravidly (ještě upřesníme). Pokud existuje více cest z A do B a nejsou porovnatelné inkluzí, máme nejasnou situaci a např. odmítneme odpovědět (konzervativní přístup). Nesmíme přidávat hrany odvozené default hranami, protože
16 přidání nové znalosti (hrany) může být ve sporu : pokud jsme hranu odvozenou dedukcí nepřidali, má bližší=nová přednost, pokud bychom jí přidali, konflikt by nešlo rozhodnout.
17 Fuzzy logika Doteď jsme si byli jisti pojmy, nejistota byla ve vztazích. Ani pojmy nemusí být jisté... Jsem malá?...trochu
18 Funkce náležení Základem Fuzzy logiky je zobecnění funkce náležení. 0 Klasicky: δ manohy ( jana) = 1 Nyní obecněji µ mala ( jana) [0, 1] Fuzzy množinu definujeme A jako {(x, µ A (x) x X)}, kde µ A : X [0, 1] je funkce náležení (membership function), která určuje, nakolik daný prvek x patří do množiny A.
19 Fuzzy čísla jsou speciální fuzzy množiny na množině reálných čísel R, které (zároveň) jsou normální, tj. existuje x R, pro které µ A (x) = 1
20 jsou konvexní, tj. δ [0, 1], x, y R : µ A (δ x + (1 δ) y) min(µ A (x), µ A (y))
21 Logické operace (jedna z možných definic) Mějme univerza X a Y. Fuzzy relace R mezi X a Y je fuzzy množina, kde: R = (x, y) : µ R (x, y) X Y µ R : X Y [0, 1] Mějme fuzzy množiny A, B, A X, B Y a (x, y) X Y. Spojku a AND definujeme (jsou i jiné možnosti) následující fuzzy relací: µ AND (x, y) = min(µ A (a), µ B (x)) a spojku OR: µ OR (x, y) = max(µ A (a), µ B (x))
22
23 t normy: Jiné možnosti AND Definition 1 (t norma) t norma je zobrazení [0, 1] [0, 1] [0, 1] s vlastnostmi: neklesající v každém argumentu: x y a w z, pak i t(x, w) t(y, z) komutativita: t(x, y) = t(y, x) x, y [0, 1] asociativita: t(t(x, y), z) = t(x, t(y, z)) x, y, z [0, 1] krajní body: t(x, 0) = 0 a t(x, 1) = x x [0, 1] Libovolnou t normu lze použít jako operátor průniku (AND kombinace).
24 Příklady t norem (minimum) t(x, y) = min(x, y) (limited difference) t(x, y) = max(0, x + y 1) (algebraic product) t(x, y) = x y (drastic product) pokud max(x, y) = 1 tak t(x, y) = min(x, y), jinak t(x, y) = 0
25 s normy (=t konormy): Jiné možnosti OR Definition 2 (s norma=t konorma) s norma je zobrazení [0, 1] [0, 1] [0, 1] s vlastnostmi: neklesající v každém argumentu: x y a w z, pak i s(x, w) s(y, z) komutativita: s(x, y) = s(y, x) x, y [0, 1] asociativita: s(s(x, y), z) = s(x, s(y, z)) x, y, z [0, 1] krajní body: s(x, 0) = x a s(x, 1) = 1 x [0, 1] Libovolnou s normu lze použít jako operátor sjednocení (OR kombinace).
26 Dualita t normy a s normy Pro každou s normu je takto definované t t norma: t(x, y) = 1 s(1 x, 1 y)
27 Příklady s norem (maximum) s(x, y) = max(x, y) (limited sum) s(x, y) = min(1, x + y) (algebraic sum) s(x, y) = x + y x y (drastic sum) je li min(x, y) = 0, pak s(x, y) = max(x, y), jinak s(x, y) = 1
28 IF THEN pravidla IF THEN pravidla je možné považovat za zobecněný Modus Ponens (!nebudeme používat v protisměru!) zobec. MP antecedent x is A bere číslo µ A (x) pravidlo IF x is A THEN y is B konsekvence y is B vrací fuzzy množ. B do y kde A,A,B,B jsou fuzzy množiny Antecedent i sukcedent mohou být složené, pak aplikujeme spojky OR a AND.
29
30 Skládání více pravidel Obecně skládáme výsledky více pravidel a chceme dát přesné číslo defazifikovat. Jsou různé metody defazifikace.
31
32 Defazifikace Střed maxima: u = umax +u min 2, kde u max a u min jsou nejnižší a nejvyšší hodnoty u, kde µ conseq (u) dosahuje maxima. těžiště (center of gravity) u = U u µconseq (u)du U µconseq (u)du střed součtů u = U u r µ r conseq (u)du U r µ r conseq (u)du
33 Fuzzy regulátor (shrnutí) Přijímá jeden nebo více vstupů měření a informací o stavu systému zpracuje vstupy na základě IF...THEN pravidel (případně společně s nefuzzy zpracováním) agregací (průměrováním a vážením) výstupů všech pravidel vydá jednu přesnou crisp hodnotu, která říká, jakou akci provádět.
34 Vstupy Např. pozorujeme jen rychlost, možné hodnoty jsou { Too slow, About right, Too fast }
35
36 Výstupní akce { Speed up, Not much change needed, Slow down }
37 Pravidla Rule 1: If the motor is running too slow, then speed it up. Rule 2: If motor speed is about right, then not much change is needed. Rule 3: If motor speed is to fast, then slow it down.
38 Spojky a agregace Rozhodneme se, jakou t normu použijeme pro AND a jak budeme agregovat fuzzy výstup do přesné hodnoty. např. multiplikativní t norma těžiště pro defuzzifikaci
39 Jeden rozhodovací cyklus Vstup: rychlost x = Rpm fuzzy vstupy: µ about right (x) = 0.4, µ too f ast (x) = 0.3 zkombinuji pravdivost antecedentů a jednotlivá pravidla zkombinuji výsledky (konsekventy) pravidel a najdu těžiště
Základy fuzzy řízení a regulace
Ing. Ondřej Andrš Obsah Úvod do problematiky měkkého programování Základy fuzzy množin a lingvistické proměnné Fuzzyfikace Základní operace s fuzzy množinami Vyhodnocování rozhodovacích pravidel inferenční
VíceSémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
VíceFuzzy množiny, Fuzzy inference system. Libor Žák
Fuzzy množiny, Fuzzy inference system Proč právě fuzzy množiny V řadě případů jsou parametry, které vstupují a ovlivňují vlastnosti procesu, popsané pomocí přibližných nebo zjednodušených pojmů. Tedy
VícePetr Křemen. Katedra kybernetiky, FEL ČVUT. Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112
Sémantické sítě a rámce Petr Křemen Katedra kybernetiky, FEL ČVUT Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112 Co nás čeká 1 Úvod do reprezentace znalostí 2 Sémantické sítě
VíceReprezentace znalostí. Katedra kybernetiky, ČVUT v Praze.
Reprezentace znalostí Vladimír Mařík Katedra kybernetiky, ČVUT v Praze http://cyber.felk.cvut.cz/ preprezentace znalostí V paměti počítače požadavky na modularitu (M) asociativnost (A) Čtyři základní formalizmy:
VíceLogika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
VícePro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Víceteorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
VíceVýroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
VíceVybrané přístupy řešení neurčitosti
Vybrané přístupy řešení neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 8-1 Faktory jistoty Jedná se o přístup založený na ad hoc modelech Hlavním důvodem vzniku tohoto přístupu je omezení slabin
VíceSémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
VíceFormální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
VíceVýroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
VíceMatematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
VíceNepravidlové a hybridní znalostní systémy
Nepravidlové a hybridní znalostní systémy 7. 14. listopadu 2017 _ 3-1 Nepravidlové reprezentace znalostí K nepravidlovým reprezentačním technikám patří: rozhodovací stromy rámce sémantické sítě Petriho
VíceModely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
VíceDeskripční logika. Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157
Deskripční logika Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické a acyklické TBOXy Petr Křemen
VíceFuzzy logika. Informační a znalostní systémy
Fuzzy logika Informační a znalostní systémy Fuzzy logika a odvozování Lotfi A. Zadeh (*1921) Lidé nepotřebují přesnou číslem vyjádřenou informaci a přesto jsou schopni rozhodovat na vysoké úrovni, odpovídající
VíceZáklady logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
VíceOrganizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
Více0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
VíceGrafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
VíceMnožiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do
VíceLogika pro sémantický web
ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Logika pro sémantický web Martin Žáček PROČ BALÍČEK? 1. balíček Formální logické systémy
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
VíceČíselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
VíceOmezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina
Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená
VíceReprezentace znalostí - úvod
Reprezentace znalostí - úvod Úvod do znalostního inženýrství, ZS 2015/16 6-1 Co je to znalost? Pojem znalost zahrnuje nejen teoretické vědomosti člověka z dané domény, ale také jeho dlouhodobé zkušenosti
VíceVýroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
VíceMatematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
VíceVýroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
VíceDatabáze SQL SELECT. David Hoksza http://siret.cz/hoksza
Databáze SQL SELECT David Hoksza http://siret.cz/hoksza Osnova Úvod do SQL Základní dotazování v SQL Cvičení základní dotazování v SQL Structured Query Language (SQL) SQL napodobuje jednoduché anglické
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
VíceÚvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
VíceBooleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
VíceZískávání a reprezentace znalostí
Získávání a reprezentace znalostí 11.11.2014 6-1 Reprezentace znalostí Produkční pravidla Sémantické sítě Získávání znalostí 6-2 a) Česká 6. Reprezentace znalostí v ZS Literatura Berka P.: Tvorba znalostních
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
VíceBooleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí
Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
Více2. Konceptuální model dat, E-R konceptuální model
2. Konceptuální model dat, E-R konceptuální model Úvod Databázový model souhrn prostředků, pojmů a metod, jak na logické úrovni popsat data a jejich strukturu výsledkem je databázové schéma. Databázové
VíceDatabázové systémy. * relační kalkuly. Tomáš Skopal. - relační model
Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření
VíceKterá tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.
Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo
VíceJak je důležité být fuzzy
100 vědců do SŠ 1. intenzivní škola Olomouc, 21. 22. 6. 2012 Jak je důležité být fuzzy Libor Běhounek Ústav informatiky AV ČR 1. Úvod Klasická logika Logika se zabývá pravdivostí výroků a jejím přenášením
VíceMatematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
VíceVýroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
VíceVYUŽITÍ FUZZY MODELŮ PŘI HODNOCENÍ OBTÍŽNOSTI CYKLOTRAS
VYUŽITÍ FUZZY MODELŮ PŘI HODNOCENÍ OBTÍŽNOSTI CYKLOTRAS ArcGIS ModelBuilder, Python Pavel Kolisko Cíle motivace zastaralost, neúplnost a nepřesnost dat obtížnosti cyklotras na portálu cykloturistiky JMK
VícePopis zobrazení pomocí fuzzy logiky
Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy
VíceBooleovy algebry. Irina Perfilieva. logo
Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry
VíceParadigmata programování 1
Paradigmata programování 1 Explicitní aplikace a vyhodnocování Vilém Vychodil Katedra informatiky, PřF, UP Olomouc Přednáška 6 V. Vychodil (KI, UP Olomouc) Explicitní aplikace a vyhodnocování Přednáška
VíceKIV/ZIS cvičení 5. Tomáš Potužák
KIV/ZIS cvičení 5 Tomáš Potužák Úvod do SQL (1) SQL (Structured Query Language) je standardizovaný strukturovaný dotazovací jazyk pro práci s databází Veškeré operace v databázi se dají provádět pomocí
Víceprof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
VíceÚvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
VíceKMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 2 Výroková logika pokračování Logické vyplývání
VíceAlgoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
VíceVýroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
VíceInovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh. Ing. Hodál Jaroslav, Ph.D. VY_32_INOVACE_25 09
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh Operátory Autor:
VíceMíry podobnosti, základy fuzzy matematiky
Evropský sociální fond Investujeme do vaší budoucnosti Míry podobnosti, základy fuzzy matematiky Matematika pro informatiky, FIT ČVUT Martin Holeňa, 9. týden LS 2010/2011 O čem to bude? Přehled vzdáleností
Více6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS
Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,
VíceKaždé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
VíceFuzzy regulátory Mamdaniho a Takagi-Sugenova typu. Návrh fuzzy regulátorů: F-I-A-D v regulátorech Mamdaniho typu. Fuzzifikace. Inference. Viz. obr.
Fuzzy regulátory Mamdaniho a Takagi-Sugenova typu Návrh fuzzy regulátorů: Fuzzifikace, (fuzzyfikace), (F) Inference, (I), Agregace, (A), Defuzzifikace (defuzzyfikace) (D). F-I-A-D v regulátorech Mamdaniho
VíceMatematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
VíceFunkce, elementární funkce.
Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
Více1 Základní pojmy. 1.1 Množiny
1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat
Vícepřednáška 2 Marie Duží
Logika v praxi přednáška 2 Marie Duží marie.duzi@vsb.cz 1 1 Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok? Výrok je tvrzení,
VíceObsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
VíceLogika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.
Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Vícepostaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy
Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných
VícePravidlové znalostní systémy
Pravidlové znalostní systémy 31. října 2017 2-1 Tvary pravidel Pravidla (rules) mohou mít například takovéto tvary: IF předpoklad THEN závěr IF situace THEN akce IF podmínka THEN závěr AND akce IF podmínka
VíceŘídicí technika. Obsah. Fuzzy řízení Fuzzy množiny Operace s fuzzy množinami Fuzzy pravidla Fuzzy regulátory. Fuzzy řízení.
20..207 Akademický rok 207/208 Připravil: Radim Farana Řídicí technika Fuzzy řízení 2 Obsah Fuzzy řízení Operace s fuzzy množinami y 3 Fuzzy řízení Fuzzy řízení je spolu s dalšími přístupy, jako například
Více1 Expertní systémy. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Expertní systém (ES) 1.4 Komponenty expertních systémů
Obsah 1 Expertní systémy... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Expertní systém (ES)... 2 1.4 Části ES... 2 1.5 Pravidlové ES... 3 1.5.1 Reprezentace znalostí... 3 1.5.2... 3 1.5.3
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
Víceu odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming
Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály
VíceMnožinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
VíceProgramovací jazyk Pascal
Programovací jazyk Pascal Syntaktická pravidla (syntaxe jazyka) přesná pravidla pro zápis příkazů Sémantická pravidla (sémantika jazyka) pravidla, která každému příkazu přiřadí přesný význam Všechny konstrukce
VíceÚvod do logiky (VL): 5. Odvození výrokových spojek z jiných
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 5. Odvození z jiných doc. PhDr. Jiří Raclavský,
VíceVýroková logika dokazatelnost
Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
VíceMatematika 6F fuzzy množiny
Pojem fuzzy množiny Matematika 6F fuzzy množiny Mirko Navara http://cmp.felk.cvut.cz/ navara/m6f/fset print.pdf. dubna 007. Minimum o klasických množinách Abychom se vyhnuli problémům, omezíme se na podmnožiny
VíceMatematická indukce, sumy a produkty, matematická logika
Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro
VíceVýroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií
VíceHodnocení obtížnosti cyklotras pomocí fuzzy modelů na území Jihomoravského kraje
Hodnocení obtížnosti cyklotras pomocí fuzzy modelů na území Jihomoravského kraje Rastrová analýza pomocí Mamdaniho metody RNDr. Pavel Kolisko Úvod aktualizace obtížnosti sítě cyklotras je vyžadována zastaralostí,
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
Víceplatné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
VíceVysoké učení technické v Brně Fakulta elektrotechniky a informatiky Ústav biomedicínského inženýrství EXPERTNÍ SYSTÉMY.
Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Ústav biomedicínského inženýrství EXPERTNÍ SYSTÉMY praktická cvičení Ing. Ivo Provazník, Ph.D., Ing. Jana Bardoňová 2000 Obsah 1 Úvod
VíceZáklady matematické logiky
OBSAH 1 Základy matematické logiky Obsah 1 Úvod 2 1.1 Předmět matematiky.......................... 2 1.2 Nástin historie.............................. 2 1.3 Axiomatická výstavba matematických teorií.............
VícePřednáška 2: Formalizace v jazyce logiky.
Přednáška 2: Formalizace v jazyce logiky. Marie Duží marie.duzi@vsb.cz Úvod do teoretické informatiky (logika) Dva základní logické systémy: Výroková logika a predikátová logika. řádu. Výroková logika
VíceB i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík
B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1
VíceVýroková a predikátová logika - V
Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský
VícePredikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
VíceÚvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.
Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá
Vícefakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Více4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE
4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak jsou definovány goniometrické rovnice a nerovnice; jak se řeší základní typy goniometrických rovnic a nerovnic. Klíčová slova této
VíceDoporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
Více