Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Rozměr: px
Začít zobrazení ze stránky:

Download "Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ"

Transkript

1

2 Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá tzv. prázdné slovo, označované ε. Počet členů posloupnosti v značíme v a nazýváme délkou slova Počet výskytů znaků b ve slově v značíme # b (v) 2

3 Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Jazyky nad Σ jsou tedy právě podmnožiny Σ * 3

4 Binární operace zřetězení, označována, která je definována předpisem u v = uv. Operace zřetězení je asociativní ε se chová jako jednotkový prvek Slovo u je podslovem slova v, jestliže existují slova x,y taková, že v = xuy. Pokud je x = ε, pak říkáme, že u je předponou (prefixem) slova v. Je-li y = ε, nazveme u příponou (sufixem) slova v. Unární operace i-té mocniny slova 4

5 Standardní množinové operace sjednocení, průnik a rozdíl Zřetězení i-tá mocnina Iterace a pozitivní iterace Doplněk Zrcadlový obraz 5

6 Konečný automat (Finite automaton - FA) M je pětice (Q, Σ, δ, q 0, F), kde Q je neprázdná konečná množina stavů Σ je konečná vstupní abeceda δ: Q x Σ Q je parciální přechodová funkce q 0 Q je počáteční stav F Q je množina koncových stavů 6

7 Zavedeme rozšířenou přechodovou funkci : Q x Σ * Q, definovanou induktivně vzhledem k délce slova ze Σ * : (q,ε) = q pro každý stav q (q,wa) = {δ ( (q,w),a) je-li (q,w) i δ( (q,w),a) definováno jinak Slovo w je akceptováno automatem M právě když (q 0,w) F. 7

8 Jazyk akceptovaný FA M, označovaný L(M), je tvořen právě všemi takovými slovy, pod kterými automat přejde z počátečního stavu do některého z koncových stavů: L(M) = {w Σ * (q 0,w) F} Jazyk, který je rozpoznatelný konečným automatem, se nazývá regulární. Konečné automaty M a M jsou ekvivalentní, pokud L(M) = L(M ). 8

9 Množinovou symbolikou: M = ({q 0,q 1,q 2 }, {a,b}, δ, q 0, {q 2 }), kde δ(q 0,a) = q 1 δ(q 0,b) = q 2 δ(q 1,a) = q 2 δ(q 1,b) = q 0 δ(q 2,a) = q 0 δ(q 2,b) = q 1 Nevýhodou této reprezentace konečného automatu je její nepřehlednost. 9

10 Tabulkou přechodové funkce: Pokud je pro některé dvojice přechodová funkce nedefinována, uvádí se v příslušném místě tabulky znak -. 10

11 Přechodovým grafem b q 0 a a q 1 b b q 2 a Nejpřehlednější a nejčastěji používaná varianta 11

12 Sestrojte automat rozpoznávající jazyk L = {w {a,b}* w obsahuje podslovo abaa} Označení stavů automatu zvolíme tak, aby bylo patrné, jaká část požadovaného podslova abaa již byla automatem přečtena. 12

13 Nechť L je regulární jazyk. Pak existuje n N takové, že libovolné slovo w L, jehož délka je alespoň n, lze psát ve tvaru w = xyz, kde xy n, y ε a xy i z L pro každé i N 0. (Číslo n se neformálně nazývá pumpovací konstanta.) 13

14 Pumping lemma (PL) je tvrzení tvaru implikace L je regulární ==> Q. Při dokazování, že L není regulární použijeme kontrapositivní formu PL, tj. Q ==> L není regulární, či ekvivalentně důkaz sporem: L je regulární ==> Q Λ Q. Platí tedy, že pomocí tohoto lemmatu lze dokázat, že nějaký jazyk není regulární. Nikoliv to, že jazyk regulární je!!! 14

15 Obecně tedy postupujeme tak, že ukážeme platnost Q, tj. že pro libovolné n N (pumpovací konstantu) vždy existuje takové slovo w L, které má délku alespoň n, a pro které platí, že při libovolném rozdělení slova w na takové tři části x, y, z, že xy n a y ε vždy existuje alespoň jedno i N 0 takové, že xy i z neleží v L. Pak z PL plyne, že L není regulární. 15

16 Dokažte, že L = {a p p je prvočíslo} nad abecedou {a} není regulární. Řešení: Pro dosažení sporu předpokládejme, že L je regulární. Buď n N libovolné. Jelikož prvočísel je nekonečně mnoho, existuje prvočíslo p, které je větší nebo rovno n. Zvolme w = a p patřící do L. Při jakémkoli rozdělení w na podslova x, y, z musí být y = a k, k 1. 16

17 Napumpujeme-li y p+1-krát, dostaneme: xy p+1 z = xyy p z = xyzy p = a p a kp = a p(k+1), což je jistě slovo, které nepatří do jazyka L, protože p(k+1) není prvočíslo dostáváme tedy spor s naším předpokladem, že L je regulární. Podle PL tedy L regulární není. 17

18 Dokažte, že jazyk L = {a i b i i N} nad abecedou {a,b} není regulární. Řešení: Buď n N libovolné. Slovo a n b n jistě patří do L. Pokud ho jakkoli rozdělíme na tři části x,y,z tak, že xy n a y 1, nutně x = a k, y = a l a z = a n-k-l b n, kde k+l n. Pak např. pro i = 2 dostáváme a k a 2l a n-k-l b n, což není součástí jazyka L, neboť k+2l+n-k-l = n+l n. Obdobně bychom ke sporu došli volbou i = 0. 18

19 Konstrukce minimálního automatu probíhá ve dvou krocích Eliminace nedosažitelných stavů konečného automatu Eliminace ekvivalentních stavů konečného automatu 19

20 Mějme konečný automat M = (Q, Σ, δ, q 0, F). Stav q Q nazveme dosažitelný, pokud existuje w Σ * takové, že (q 0,w) = q. Stav je nedosažitelný, pokud není dosažitelný. Teorie eliminace: Množinu dosažitelných stavů označíme Q. Označíme-li pro každé i N 0 symbolem S i množinu stavů, do kterých se lze z q 0 dostat cestou o délce nejvýše i, platí: Q = U S i i = 0 20

21 Dále pro každé i z N 0 platí, že S i Q a S i S i+1. Symbolem n označme počet prvků množiny Q. Existuje k n takové, že S k = S k+1. Z definice množin S i plyne, že pro každé j 0 platí S k = S k+j. Proto můžeme množinu Q všech dosažitelných stavů, vyjádřit jako: Q = US i = S i = 0 k Hledaný automat M je pak pětice ve tvaru: (Q, Σ, δ/q, q 0, F Q ), kde symbol δ/q značí zobrazení δ zúžené na Q. k 21

22 Nechť M = (Q, Σ, δ, q 0, F) je konečný automat bez nedosažitelných stavů. Pro každý stav q definujeme jazyk L(q) Σ * předpisem L(q) = {x Σ * (q,x) F} Stavy p,q nazveme jazykově ekvivalentní, psáno p q, pokud L(p) = L(q), tedy p q <==> x Σ * : ( (p,x) F <==> (q,x) F) 22

23 Mějme konečný automat M daný uvedenou tabulkou. Nejprve odstraníme nedosažitelné stavy a zúplníme přechodovou funkci. M a b M a b 1 2 N N N N N 23

24 Nyní přistupme ke konstrukci relací. Provedeme to tak, že sdružíme řádky odpovídající stavům stejné relace. 0 a b 1 a b 2 a b I 1 I I I 1 II I I 1 III II 2 II I N I I II N II II 4 II I II 2 III II III 2 IV III N I I 4 III II 4 IV III II 3 II II III 3 IV III IV 3 V IV 5 II II 5 IV III 5 V IV 6 I I IV 6 II I V 6 III II 24

25 Minimální automat pro jazyk L(M) vypadá takto: M/ a b I III II II II II III IV III IV V IV V III II 25

26 Nedeterministický konečný automat (NFA) je pětice M = (Q, Σ, δ, q 0, F), kde význam složek je stejný jako u automatu deterministického s výjimkou přechodové funkce δ. Ta je definována jako zobrazení δ: Q x Σ 2 Q. Rozšířená přechodová funkce : Q x Σ * 2 Q : (q,ε) = {q} (q,wa) = U p (q,w) δ(p,a) 26

27 Jazyk přijímaný NFA M je definován takto: L(M) = {w Σ * (q 0,w) F Ø} Nedeterministické konečné automaty M a M jsou ekvivalentní, pokud L(M) = L(M ). Nedeterminismus je velmi silný popisný aparát, který často umožňuje zachytit strukturu jazyka elegantním a přirozeným způsobem. Např. jazyk L = {w {a,b} * w obsahuje podslovo abba nebo bab} 27

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Turingovy stroje. Teoretická informatika Tomáš Foltýnek Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,

Více

Minimalizace KA - Úvod

Minimalizace KA - Úvod Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat

Více

AUTOMATY A GRAMATIKY

AUTOMATY A GRAMATIKY AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace

Více

Formální jazyky a automaty Petr Šimeček

Formální jazyky a automaty Petr Šimeček Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat

Více

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. PAVEL RŮŽIČKA 3.1. Kompaktní prostory. Buď (X, τ) topologický prostor a Y X. Řekneme, že A τ je otevřené pokrytí množiny Y, je-li

Více

Základy teoretické informatiky Formální jazyky a automaty

Základy teoretické informatiky Formální jazyky a automaty Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43 Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky. Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

NAIVNÍ TEORIE MNOŽIN, okruh č. 5 NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat

Více

LIMITA A SPOJITOST FUNKCE

LIMITA A SPOJITOST FUNKCE PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:

Více

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Množiny, základní číselné množiny, množinové operace

Množiny, základní číselné množiny, množinové operace 2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás

Více

Teoretická informatika - Úkol č.1

Teoretická informatika - Úkol č.1 Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20 Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března 2007 1/ 20 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3)

Více

Logické programy Deklarativní interpretace

Logické programy Deklarativní interpretace Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou

Více

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března / 50

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března / 50 Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 21. března 2013 1/ 50 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. 1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

Spojitost a limita funkce

Spojitost a limita funkce Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové

Více

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice

Více

Univerzální Turingův stroj a Nedeterministický Turingův stroj

Univerzální Turingův stroj a Nedeterministický Turingův stroj 27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

2. LIMITA A SPOJITOST FUNKCE

2. LIMITA A SPOJITOST FUNKCE . LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke

Více

Teoretická informatika TIN 2013/2014

Teoretická informatika TIN 2013/2014 Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a

Více

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme

Více

Hypergrafové removal lemma a Szemérediho

Hypergrafové removal lemma a Szemérediho Hypergrafové removal lemma a Szemérediho věta Zdeněk Dvořák 7. prosince 207 Hypergrafové removal lemma a jeho důsledek Definice. Dvojice (V, E) je k-uniformní hypergraf, je-li E množina neuspořádaných

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

3 Množiny, Relace a Funkce

3 Množiny, Relace a Funkce 3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datové typy matematiky, tj. na množiny, relace a funkce. O množinách jste sice zajisté slyšeli

Více

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S. 1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

PŘEDNÁŠKA 7 Kongruence svazů

PŘEDNÁŠKA 7 Kongruence svazů PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí

Více

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w

Více

Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}.

Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}. 2 Množiny a intervaly lgebraické výrazy 2.1 Množiny Chápání množiny lze shrnout takto: Množinou rozumíme každé shrnutí určitých a navzájem různých předmětů m našeho nazírání nebo myšlení (které nazýváme

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1 Substituce Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 2 1 Algebra termů Předpokládáme, že je dán jazyk termů. L, definovali jsme množinu jeho Zavedeme některé užitečné

Více

Fuzzy množiny, Fuzzy inference system. Libor Žák

Fuzzy množiny, Fuzzy inference system. Libor Žák Fuzzy množiny, Fuzzy inference system Proč právě fuzzy množiny V řadě případů jsou parametry, které vstupují a ovlivňují vlastnosti procesu, popsané pomocí přibližných nebo zjednodušených pojmů. Tedy

Více

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

4 Pojem grafu, ve zkratce

4 Pojem grafu, ve zkratce Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,

Více

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít

Více

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi

Více

Teoretická informatika

Teoretická informatika Teoretická informatika TIN 2017/2018 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz prof. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba dr. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno

Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Automaty a gramatiky. Roman Barták, KTIML. Chomského normální forma

Automaty a gramatiky. Roman Barták, KTIML. Chomského normální forma 10 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Chomského normální forma Podívejme se nyní na derivační stromy. Jak odhadnout výšku stromu podle délky

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Matice. a m1 a m2... a mn

Matice. a m1 a m2... a mn Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32 Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března 2017 1/ 32 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé

Více

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M. BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty

Více

Teoretická informatika

Teoretická informatika Teoretická informatika Ladislav Lhotka lhotka@cesnet.cz 2011-12 Zdroje LINZ, P. Formal Languages and Automata, Fourth Edition. Sudbury: Jones and Bartlett, 2006, 415+xiii s. ISBN 07-63-73798-4. CHYTIL,

Více

Kongruence na množině celých čísel

Kongruence na množině celých čísel 121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem

Více

1 Základní pojmy. 1.1 Množiny

1 Základní pojmy. 1.1 Množiny 1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31 Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,

Více