1) Grafy vpravo vyjadřují závislost rychlosti lyžaře v(t) na čase t. Jen jeden z nich odpovídá situaci zachycené na obrázku vlevo. Zaškrtněte jej.
|
|
- Jiřina Bártová
- před 6 lety
- Počet zobrazení:
Transkript
1 1) Grafy vpravo vyjadřují závislost rychlosti lyžaře v(t) na čase t. Jen jeden z nich odpovídá situaci zachycené na obrázku vlevo. Zaškrtněte jej. 2) Nádoba se v čase t = 0 začne naplňovat stálým přítokem vody. Grafy vpravo vyjadřují závislost výšky hladiny h(t) na čase t. Jen jeden z nich odpovídá této situaci. Zaškrtněte jej. 3) Grafy vpravo vyjadřují závislost obsahu vyšrafované části trojúhelníku S(x) na vzdálenosti x. Jen jeden z nich odpovídá této situaci. Zaškrtněte jej.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 Následující graf ukazuje, jak se měnila rychlost závodního auta v závislosti na čase při jeho druhém průjezdu závodním okruhem. Na následujícím obrázku vidíme pět závodních okruhů. Po kterém z nich auto jelo?
18 Tato úloha je převzata z tzv. PISA studie. Jde o rozsáhlý výzkum matematických znalostí a dovedností žáků provedený v roce 2000 v mnoha zemích světa. Správnou odpovědí je varianta B. Pro zajímavost zde uveďme výsledky respondentů vybraných čtyř zemí u této úlohy. Čísla v tabulce udávají četnost jednotlivých odpovědí v procentech. Německo USA Holandsko Japonsko A B C D E Je vidět, že nejčastější odpovědí německých a amerických žáků je chybná varianta E. Jde opět o případ, kdy je graf vyjadřující závislost podobný příslušnému obrázku znázorňujícímu danou situaci zde závodnímu okruhu. Oproti tomu v Holandsku a Japonsku největší část respondentů volila správnou odpověď B. Jde o země, ve kterých hrají ve výuce matematiky tradičně velkou roli aplikační úlohy, při jejichž řešení se žáci mimo jiné učí vytvářet a popisovat grafy funkčních závislostí.
19
20
21 1. Dcera se narodila v roce Její matka se narodila v roce Ve kterém roce bude či byla maminka dvakrát starší než dcera? 2. Nakresli graf vyjadřující závislost Tvého věku na letopočtu. Průsečík os zvol v roce svého narození. 3. Do tohoto obrázku zakresli i graf vyjadřující závislost věku Tvé maminky na letopočtu. 4. Jaký je rozdíl Tvého a maminčina věku? Mění se v závislosti na čase? 5. Jaký byl v roce 2005 poměr Tvého a maminčina věku? Mění se v závislosti na čase? 6. Sestav předpis funkce vyjadřující závislost Tvého věku na letopočtu. 7. Sestav předpis funkce vyjadřující závislost maminčina věku na letopočtu. 8. Nakresli graf vyjadřující závislost rozdílu Tvého a maminčina věku. 9. Nakresli graf vyjadřující závislost podílu Tvého a maminčina věku. Řešení: 1. Věk dcery..v Věk matky..v + 25 v + 25 = 2 v v = 25 Matka bude dvakrát starší než dcera v roce viz obr viz obr Rozdíl je stálý, činí 25 let a nemění se. 5. V roce 2005 byl poměr věku maminky a dcery ze shora uvedeného příkladu 40 15, tedy 8 3. V roce 2010 bude 45 20, tedy 9 4. A v roce 2015 bude roven dvěma. Stále se zmenšuje. 6. v d = t v m = t viz obr viz obr. 3
22 Obr. 2 Obr. 3
23 Interpretujte závislost popsanou obrázkem grafu funkce na obr. 1. Popište děj, který graf vystihuje.
24 Odpověď: Graf funkce na obrázku č. 1 vyjadřuje závislost rychlosti přítoku vody v(t) do vany na čase t. V čase t = 0 byla vana prázdná. Čas je uveden v minutách, rychlost přítoku v litrech za minutu. obr. 1 Úkoly a otázky 1. Popište vlastními slovy děj, který tento graf zachycuje. 2. Kolik litrů vody bylo ve vaně maximálně? Ve jakém čase to bylo? 3. Kolik litrů bylo ve vaně v 35. minutě? 4. Kdy byla vana prázdná? 5. Nakreslete graf funkce V(t) vyjadřující závislost množství vody ve vaně na čase t. 6. Sestavte předpis funkce vyjadřující závislost množství vody na čase a) od okamžiku napouštění vany do 10. minuty b) od 10. do 15. minuty c) od 15. do 25. minuty d) od 25. minuty do vyprázdnění 7. Popište co nejstručněji souvislost mezi funkcemi V(t) a v(t). 8. Popisuje graf na obr. č. 1 reálnou situaci věrně a nebo je zjednodušením? Pokud ano, v čem? Řešení 1. Jde o koupání ve vaně. Někdo si začal napouštět vanu (přítok činil 6 litrů za minutu). Po 10 minutách zjistil, že je vody málo a kohoutkem přítok zvětšil (na 8 litrů za minutu). Po pěti minutách kohoutek zavřel, 10 minut se koupal a poté vytáhl špunt. 2. Ve vaně bylo maximálně 100 litrů vody. Bylo to mezi 15. a 25. minutou litrů 4. v 50. minutě 5. viz obr a) V(t) = 6 t b) V(t) = 8 t 20
25 c) V(t) = 100 d) V(t) = 4 t Funkce v(t) je derivací funkce V(t). 8. Zjednodušení jsou minimálně dvě. Manipulace s kohoutkem neumožňuje ve skutečnosti skokové změny rychlosti přítoku vody, tak jak to prezentuje graf na obr. 1. Vzhledem k celkovému času napouštění je to však nepřesnost zanedbatelná. Vypouštění vody neprobíhá ve skutečnosti lineárně, závisí také na aktuálním množství vody ve vaně. obr. 2
Rozvoj funkčního myšlení ve výuce matematiky na základní škole
Rozvoj funkčního myšlení ve výuce matematiky na základní škole Petr Eisenmann Alena Kopáčková Studijní materiály k projektu Podíl učitele matematiky ZŠ na tvorbě ŠVP č. projektu: CZ.04.3.07/3.1.01.1/0137
KEA 2007/2008-6. A. Analýza dovedností a tematických částí - ČJ
Analýza dovedností a tematických částí - ČJ třída 6. A ZŠ 1 9 8 7 69 71 64 66 67 průměrný percentil 6 5 4 58 3 2 1 46 45 46 42 46 44 Celek Mluvnice Sloh a literatura Znalost Porozumění Aplikace Poznámka:
Dvojštěrbina to není jen dvakrát tolik štěrbin
Dvojštěrbina to není jen dvakrát tolik štěrbin Začneme s vodou 1.) Nejprve pozorujte vlnění na vodě (reálně nebo pomocí appletu dle vašeho výběru), které vytváří jeden zdroj. Popište toto vlnění slovy
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY
SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY V široce otevřených úlohách 2 7 zapisujte celý postup řešení. 1 Vypočtěte, kolikrát kratší je časový interval sekund oproti časovému intervalu minuty. úzce otevřená 6krát
Funkce. Úkol: Uveďte příklady závislosti dvou veličin.
Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost
Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.
Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je
Základní škola, Příbram II, Jiráskovy sady Příbram II
Výběr tematicky zaměřených matematických úloh pro posouzení dovedností žáků 5. ročníku při jejich zařazování do tříd se skupinami s rozšířenou výukou matematiky a informatiky 1) Pokračuj v řadách čísel:
Optimalizace 2007/2008-9. B
Analýza částí - NJ třída 9. B ZŠ 1 9 94 89 93 82 83 8 7 71 průměrný percentil 6 5 4 3 2 1 48 45 42 45 46 46 Celek Poslech Konverzace Čtení a porozumění Komplexní cvičení Slovní zásoba a gramatika Poznámka:
5.2. Funkce, definiční obor funkce a množina hodnot funkce
5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Cyklistický převod výpočet rychlosti pohybu cyklisty
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika, fyzika Téma: Cyklistický převod výpočet rychlosti pohybu cyklisty Věk žáků: 16-19 Časová
Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Autor: Mgr. Marie Smolíková. Datum: 9.3. 2012. Ročník: 7.
VY_40_INOVACE_1SMO50 Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Autor: Mgr. Marie Smolíková Datum: 9.3. 2012 Ročník: 7. Vzdělávací oblast: Matematika a její
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ..07/..00/6.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické funkce Autor: Ondráčková
Testy do hodin - souhrnný test - 6. ročník
Kolik procent škol jste předstihli Škola: Název: Obec: BCEH ZŠ a MŠ, Slezská 316 Slavkov - 6. ročník ČESKÝ JAZYK Máte lepší výsledky než 7 % zúčastněných škol. MATEMATIKA Máte lepší výsledky než 7 % zúčastněných
MATEMATIKA základní úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Lineární funkce, graf lineární funkce
FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE
1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE
Souhrnné výsledky za školu
XYZ třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre směrodatná odchylka skóre x geometrie funkce algebra třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre
Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce
2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací
2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY
2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací
MATEMATICKÉ DOVEDNOSTI
Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA04Z9 MATEMATICKÉ DOVEDNOSTI B Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu
MATEMATICKÉ DOVEDNOSTI
Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu
1BMATEMATIKA. 0B9. třída
BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za
Mgr. Radmila Jonešová. Datum: 27. 4. 2012. Ročník: 4. Vzdělávací obor: Rozvoj čtenářské gramotnosti. Dopravní značky výstražné
VY_12_INOVACE_1JON09 Autor: Mgr. Radmila Jonešová Datum: 27. 4. 2012 Ročník: 4. Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Téma: Rozvoj čtenářské gramotnosti Dopravní výchova Dopravní značky
STONOŽKA 2014/2015 9. ROČNÍKY
Škola: Název: Obec: ADHN ADHN Církevní základní škola, Česká Církevní 4787 základní škola, Česká 4787 Zlín Zlín STONOŽKA 214/215 9. ROČNÍKY ČESKÝ JAZYK Svými výsledky v českém jazyce se vaše škola řadí
Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor
Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.
Cesta do školy. PhDr.FilipRoubíček,Ph.D.,Praha
PhDr.FilipRoubíček,Ph.D.,Praha Obor RVP ZV: Ročník: Časový rámec: (tematický okruh: závislosti, vztahy a práce s daty) 4. 7. ročník ZŠ a odpovídající ročníky víceletých gymnázií 45 60 minut METODIKA MATERIÁL
p ACD = 90, AC = 7,5 cm, CD = 12,5 cm
Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru
3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE
. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její
NÁRODNÍ TESTOVÁNÍ 2018/ ROČNÍK
Škola: Název: Obec: BDFK ZŠ a MŠ, Chrudimská 77 Ždírec nad Doubravou BDFK ZŠ a MŠ, Chrudimská 77 Ždírec nad Doubravou NÁRODNÍ TESTOVÁNÍ 18/19-9. ROČNÍK ČESKÝ JAZYK Výsledky vašich žáků v českém jazyce
Pythagorova věta Pythagorova věta slovní úlohy
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu
} Vyzkoušej všechny povolené možnosti.
VZOROVÉ ŘEŠENÍ 1 2 2, 5 = 0, 5 2, 5 = 1, 25 1 2 = 0, 5 } 1, 25 0, 5 = 0, 75 256: 2 100 0, 029 = 128 2, 9 = 125, 1 1,44 (0,1)2 0,01 10 = 120 1 1,2 3600 = 0,01 3600 = 0,01 10 0, 001 3600 = 120 3, 6 = 116,
Postup při řešení matematicko-fyzikálně-technické úlohy
Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice.
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika, fyzika Téma: Diferenciální kladkostroj výpočet délky l zdvihu břemene Věk žáků: 15-19
Slouží k procvičení slovních úloh řešených rovnicí. list/anotace
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Martina Smolinková Datum 9. 8. 2014 Ročník 8. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
Pražská sídliště 2010 - závěrečná zpráva
Pražská sídliště 2010 - závěrečná zpráva (Švorcová, Makovcová, Mach) Úvod: Naše práce je jednou z částí většího projektu výzkumu sídlišť, v jehož rámci byli dotazováni obyvatelé sídlišť Petrovice, Barrandov,
1. Obecné vlastnosti grafu 1.1
1. Obecné vlastnosti grafu 1.1 Popište, čím se vzájemně liší grafy zobrazené na dvojicích obrázků obr. 1 a obr. 2, obr. 3 a obr. 4, obr. 5 a obr. 6. Které zobrazení je správné? Pokuste se určit, o jaké
Cvičná bakalářská zkouška, 1. varianta
jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární
1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity
1.4.1 Inerciální vztažné soustavy, Galileiho princip relativity Předpoklady: 1205 Pedagogická poznámka: Úvodem chci upozornit, že sám považuji výuku neinerciálních vztažných soustav na gymnáziu za tragický
Řešení pro informační technologie
Řešení pro informační technologie s přílohou - ukázky zpracovaných prací - OBSAH obsah... 0 úvod... 1 cílová skupina... 1 cíle projektu... 1 zadání úkolu... 2 obrazová příloha... 15 ÚVOD V projektu je
Integrovaná střední škola, Sokolnice 496
Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných
TISKOVÁ ZPRÁVA K VÝSLEDKŮM VÝZKUMU PŘECHODU DĚTÍ Z MATEŘSKÉ ŠKOLY DO 1. TŘÍDY ZÁKLADNÍ ŠKOLY
TISKOVÁ ZPRÁVA K VÝSLEDKŮM VÝZKUMU PŘECHODU DĚTÍ Z MATEŘSKÉ ŠKOLY DO 1. TŘÍDY ZÁKLADNÍ ŠKOLY Předškoláci umějí čím dál tím lépe počítat. U odkladů rozhoduje věk a pohlaví dítěte. Školu prvňákům vybírají
STONOŽKA 2014/15 6. ROČNÍKY modul KEA
Škola: Název: Obec: ADHN ADHN Církevní základní škola, Česká Církevní 4787 základní škola, Česká 4787 Zlín Zlín STONOŽKA 14/15 6. ROČNÍKY modul KEA ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =
Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší
Matematika. 9. ročník. Číslo a proměnná. peníze, inflace. finanční produkty, úročení. algebraické výrazy, lomené výrazy (využití LEGO EV3)
list 1 / 5 M časová dotace: 4 hod / týden včetně 1 hod z disponibilní časové dotace Matematika 9. ročník M 9 1 06 M 9 1 07 M 9 1 08 řeší aplikační úlohy na procenta (i pro případ, že procentová část je
ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D05_Z_MECH_Rovnomerne_zrychleny_pohyb_z pomaleny_pohyb_pl Člověk a příroda Fyzika
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
MATEMATIKA ZÁKLADNÍ ÚROVEŇ
NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém
Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž
Výsledky sledování indikátoru ECI. B.6: Cesta dětí do školy a zpět
Výsledky sledování indikátoru ECI B.6: Cesta dětí do školy a zpět Obsah Obsah 2 Úvod 3 Výsledky šetření 3 Způsob dopravy dětí do a ze školy (teplé měsíce a hezké počasí) 5 Způsob dopravy dětí do a ze školy
Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo užívá různé způsoby kvantitativního vyjádření vztahu celek část (procentem) řeší aplikační úlohy
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
Experimentální realizace Buquoyovy úlohy
Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 10. 2012 Číslo DUM: VY_32_INOVACE_01_FY_B
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 10. 2012 Číslo DUM: VY_32_INOVACE_01_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
Konvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
Filmová odparka laboratorní úlohy
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Filmová odparka laboratorní úlohy Část 1 ÚLOHY PRO VÝUKU PŘEDMĚTU MĚŘICÍ A ŘÍDICÍ TECHNIKA Verze: 1.0 Prosinec 2004 ÚLOHA 1 Regulace tlaku v brýdovém prostoru
3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který
ELEKTROMOTORY: Elektrický proud v magnetickém poli (pracovní list) RNDr. Ivo Novák, Ph.D.
ELEKTROMOTORY: Elektrický proud v magnetickém poli (pracovní list) RNDr. Ivo Novák, Ph.D. třední škola, Havířov-Šumbark, ýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci
PŘIJÍMACÍ ZKOUŠKY II.termín 23.dubna 2014
MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Příklady můžete řešit v libovolném pořadí.
Kritický stav jaderného reaktoru
Kritický stav jaderného reaktoru Autoři: L. Homolová 1, L. Jahodová 2, J. B. Hejduková 3 Gymnázium Václava Hlavatého Louny 1, Purkyňovo gymnázium Strážnice 2, SPŠ Stavební Plzeň 3 jadracka@centrum.cz Abstrakt:
Úloha 1 prokletá pyramida
Úloha 1 prokletá pyramida a) V celé dolní řadě Baltíkovy plochy vyčarujte pouštní písek (z předmětu 148). Baltík si stoupne na povrch této pouště (tj. na políčkovou pozici X=0, Y=8), dojde až ke středu
4. Stezkou, která vede na vrchol hory, vystupuje turista rychlostí 2,5 km/h, sestupuje rychlostí 5 km/h. Jakou průměrnou rychlostí jde?
1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte
Matematika a její aplikace Matematika 1. období 3. ročník
Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika
MATEMATIKA MAMZD13C0T04
MATEMATIKA MAMZD13C0T04 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku
Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,
Prohlášení ú astníka výb rového ízení k výb rovému ízení ís. SBN/020/2015
#@p Jméno / Název:.. Adresa / Sídlo: Datum narození / I :... #@p Jméno / Název:.. Adresa / Sídlo: Datum narození / I :... #@p Jméno / Název:.. Adresa / Sídlo: Datum narození / I :... #@p Jméno / Název:..
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. IDEÁLNÍ PLYN - Ideální plyn je plyn, který má na rozdíl od skutečného plynu tyto ideální vlastnosti:
VZ2017 matematika 5R MATEMATIKA. Jan Strnad. Třída: 5.třída
Výsledky testu Výběrové zjišťování výsledků žáků 2016/2017 5. a 9. ročník ZŠ Školní rok 2016/2017 VZ2017 matematika 5R MATEMATIKA Jan Strnad Třída: 5.třída Základní škola a mateřská škola, Praskačka, okres
Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
VZ2017 ČASP 5R ČLOVĚK A SVĚT PRÁCE. Jakub Kvasnička. Třída: 5.třída
Výsledky testu Výběrové zjišťování výsledků žáků 2016/2017 5. a 9. ročník ZŠ Školní rok 2016/2017 VZ2017 ČASP 5R ČLOVĚK A SVĚT PRÁCE Jakub Kvasnička Třída: 5.třída Základní škola a mateřská škola, Praskačka,
TEST Porozumění kinematickým grafům
Příloha I Zadávaný test TEST Porozumění kinematickým grafům Pokyny: nepište nic do zadání testu odpovědi zakroužkujte ve svém záznamovém archu zakroužkujte vždy jen jednu odpověď u každé otázky snažte
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Funkce Petra Směšná žák chápe funkci jako vyjádření závislosti veličin, umí vyjádřit funkční vztah tabulkou, rovnicí i grafem, dovede vyjádřit reálné situace
FO53G1: Převážíme materiál na stavbu Ve stavebnictví se používá řada nových materiálů; jedním z nich je tzv. pórobeton. V prodejní nabídce jsou
FO53G1: Převážíme materiál na stavbu Ve stavebnictví se používá řada nových materiálů; jedním z nich je tzv. pórobeton. V prodejní nabídce jsou uvedeny pórobetonové tvárnice o rozměrech 300 mm x 249 mm
Příklady PLC - STR. Autoři: Ing. Josef Kovář a) Ing. Zuzana Prokopová b) Ing. Ladislav Šmejkal, CSc. Partneři projektu:
Příklady PLC - STR Autoři: Ing. Josef Kovář a) Ing. Zuzana Prokopová b) Ing. Ladislav Šmejkal, CSc. Partneři projektu: Rostra s.r.o. Trimill, a.s. Výukový materiál byl vytvořen v rámci projektu Implementace
c ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =
MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
ČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50
1. Rada pro televizní vysílání prováděla průzkum sledovanosti českých televizních stanic. Průzkumu se zúčastnilo 500 tzv. respondentů. Sledovanost stanic ČT1, ČT2, Nova a Prima je uvedena v diagramu. Kolik
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA DOPRAVNÍ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA DOPRAVNÍ SEMESTRÁLNÍ PRÁCE ZE STATISTIKY Znalosti pravidel silničního provozu žáků páté až deváté třídy 1. ZŠ Podbořany Skupina: 2 38 Ak. rok: 2011/2012 Autoři: Ladislav
MEZIROČNÍ POROVNÁNÍ 2012/ /17
Škola: Název: Obec: ADHN Církevní základní škola, Česká 4787 Zlín MEZIROČNÍ POROVNÁNÍ 12/13-16/17 5. ročník, šk.r. 12/13 ČESKÝ JAZYK 9. ročník, šk.r. 16/17 Výsledky vaší školy v českém jazyce byly nadprůměrné.
Fyzikální laboratoř. Kamil Mudruňka. Gymnázium, Pardubice, Dašická /8
Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Fyzikální laboratoř Kamil Mudruňka Gymnázium, Pardubice, Dašická 1083 1/8 O projektu Cílem projektu bylo vytvořit
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Mgr. Zora Hauptová ANALYTICKÁ GEOMETRIE PŘÍMKY TEST VY_32_INOVACE_MA_3_20 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Lineární rovnice o jedné neznámé a jejich užití
Lineární rovnice o jedné neznámé a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období
Buffonova jehla. Jiří Zelenka. Gymnázium Zikmunda Wintra Rakovník
Buffonova jehla Jiří Zelenka Gymnázium Zikmunda Wintra Rakovník jirka-zelenka@centrum.cz Abstrakt Zaměřil jsem se na konstantu π. K určení hodnoty jsem použil matematický experiment nazývaný Buffonova
CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
Charlesův zákon (pt závislost)
Charlesův zákon (pt závislost) V této úloze pomocí čidla tlaku plynu GPS-BTA a teploměru TMP-BTA (nebo čidla Go!Temp) objevíme součást stavové rovnice ideálního plynu Charlesův zákon popisující izochorický
MATEMATIKA 7 M7PID15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 7 M7PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování
Pracovní list č. 3 Charakteristiky variability
1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte
Podkrušnohorské gymnázium, Most
Aktivita je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky V rámci projektu Nebojte se matematiky č. CZ.1.07/1.1.34/01.0022 Podkrušnohorské gymnázium, Most 10.-11 11.4.201.2013
ÚLOHA R1 REGULACE TLAKU V BRÝDOVÉM PROSTORU ODPARKY
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav počítačové a řídicí techniky Ústav fyziky a měřicí techniky LABORATOŘ OBORU IIŘP ÚLOHA R1 REGULACE TLAKU V BRÝDOVÉM PROSTORU ODPARKY Zpracoval: Miloš Kmínek
MATEMATIKA jak naučit žáky požadovaným znalostem
17 30. DUBNA 2008 MATEMATIKA jak naučit žáky požadovaným znalostem Na pomoc učitelům základních škol V rámci systémového projektu Kvalita I, jednoho z projektů Evropského sociálního fondu, vydal Ústav
EVALUACE PRAHA 2007/2008
EVALUACE PRAHA 7/8 Souhrnné výsledky za školu český jazyk celkový průměrný výsledek průměrný percentil za části testu průměrný percentil za dovednosti v testu třída počet žáků percentil skupinový percentil
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace