Úvod do logiky (PL): logický čtverec
|
|
- Filip Kopecký
- před 6 lety
- Počet zobrazení:
Transkript
1 Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/ , OPVK) Úvod do logiky (PL): logický čtverec doc. PhDr. Jiří Raclavský, Ph.D. (raclavsky@phil.muni.cz) 1
2 3. Logický čtverec Aristotelská a posléze tradiční scholastická logika pracovala jen s jednomístnými (tj. monadickými) predikáty, je tudíž pouze fragmentem PL1. Věty byly analyzovány jako určitá spojení subjektu (nikoli gramatického subjektu, ale subjektu v logickém-aristotelském smyslu) a predikátu; říkáme přitom, že prostřednictvím takové věty subjektu predikujeme vlastnost F. Specifickými druhy výroků, které byly utříděny, jsou ty, které se nachází v logickém čtverci ( square of opposition, vzácněji logical square ). Výroky-soudy logického čtverce jsou takové stavby, že na místě subjektu je třídový termín (budeme ho obecně značit A) a v místě predikátu je jiný třídový termín (ten budeme obecně značit B). Když budeme níže mluvit o neprázdnosti termínu A, znamená to, že existuje individuum, které je (má vlastnost) A. Kvality výroků U těchto základních výroků-soudů byly rozpoznány celkem dvě dvojice charakteristik, totiž to, zda je daný výrok obecný či částečný, tedy tzv. kvantita soudu, a dále to, zda se jedná o výrok-soud kladný či záporný, tedy tzv. kvalita soudu. Výrok se nazývá: obecný - pokud se v něm něco tvrdí o individuích obecně částečný - pokud se v něm něco tvrdí jen o některých individuích kladný - pokud se v něm nevyskytuje zápor (resp. negace) záporný - pokud se v něm vyskytuje zápor (resp. negace) Na základě možných distribucí kvality a kvantity vznikají celkem čtyři možnosti druhů výroků. Tyto možnosti byly ve středověku označovány písmeny a, e, i, o, 2
3 přičemž a, značící obecný kladný soud, a i, značící částečný kladný soud, pochází ze samohlásek latinského slova affirmo (tj. tvrdím) a e, značící obecný záporný soud, a o, značící částečný záporný soud, pochází ze samohlásek latinského slova nego (tj. popírám). S pomocí těchto písmen jsou druhy soudů značeny následujícím způsobem: Každé A je B. AaB obecný kladný soud Některá A jsou B. AiB částečný kladný soud Žádné A není B. AeB obecný záporný soud Některá A nejsou B. AoB částečný záporný soud Zde je srovnání vyjádření těchto čtyř druhů výroků v tradiční logice, predikátové logice, Boolově algebře; v posledním sloupci je vyjádření s tzv. omezenými ( restricted ) kvantifikátory: tradiční predikátová Boolova s omezenými logika logika algebra kvantifikátory AaB x (A(x) B(x)) či x (A(x) B(x)) A B = A (A B=B) ( x A) B(x) AiB x (A(x) B(x)) či x (A(x) B(x)) A B ( x A) B(x) AeB x (A(x) B(x)) či x (A(x) B(x)) A B = ( x A) B(x) AoB x (A(x) B(x)) či x (A(x) B(x)) A B (A B B) ( x A) B(x) Pohotové chápání formulí predikátové logiky, jimiž přepisujeme výroky diskutovaných čtyř druhů, je jednou z nejpodstatnějších dovedností, jež adept logiky musí v úvodním kurzu ovládnout. Jako pomůcku zde proto uvádíme převyprávění těchto čtyř formulí do logičtiny. 3
4 x (A(x) B(x)) Všechna A jsou B. tj. Co je v A, je v B. nebo: Je-li x v (množině) A, tak je i v (množině) B x (A(x) B(x)) Některá A jsou B. tj. Něco je v průniku A s B. nebo: Alespoň jedno x je v (množině) A i v (množině) B. x (A(x) B(x)) Žádná A nejsou B. tj. Nic není v průniku A s B. nebo: Je-li x v (množině) A, tak není v (množině) B. x (A(x) B(x)) Některá A nejsou B. tj. Prvek A není v B. nebo: Alespoň jedno x je v (množině) A, ale není v (množině) B. Vztahy výroků Výroky těchto čtyř kvalit mají rozmanité vztahy, jež byly předměty logického zájmu. Tradiční logika jich rozpoznávala více než moderní logika, jež si ponechala jen první z níže jmenovaných vztahů. Zbylé vztahy neplatí zcela obecně a příčina jejich neplatnosti se dává do souvislosti s tzv. neprázdností některých termínů. - kontradikčnost (kontradiktoričnost, protikladnost): přesný opak, negace daného výroku např. Všichni šimpanzi jsou zvířata, Někteří šimpanzi nejsou zvířata - subalternost (podřazenost): lze přejít od a k i (nikoli však naopak), či od o k e (nikoli však naopak), tedy a implikuje i (podobně pro o a e) (Dle moderní logiky tento vztah neplatí, protože první věta je pravdivá i za okolností, kdy žádní šimpanzi neexistují a tedy ta druhá věta je nepravdivá.) např. Všichni šimpanzi jsou zvířata, Někteří šimpanzi jsou zvířata - kontrárnost (protiva): výroky a a e nemohou být oba pravdivé, ovšem oba mohou být nepravdivé např. Všichni šimpanzi jsou zvířata, Žádní šimpanzi nejsou zvířata 4
5 - subkontrárost (podprotiva): výroky o a i nemohou být oba nepravdivé, ovšem oba mohou být pravdivé např. Některá zvířata nejsou šimpanzi, Některá zvířata jsou šimpanzi Obraty (platné ekvivalence výroků) Tradiční logika si uvědomovala i ekvivalentnost zachovávající transformace výroků, které uznává i moderní logika. Důvody zachování ekvivalentnosti v rámci moderní logiky jsou jasné z formálních přepisů. obrat prostý (konverze výroků) - kvantita je zachována AiB BiA AeB BeA x (A(x) B(x)) x (B(x) A(x)) x (A(x) B(x)) x (B(x) A(x)) obrat po případě - kvantita je oslabena AaB BiA x (A(x) B(x)) x (A(x) B(x)) (předpokladem platnosti tohoto vztahu je ale neprázdnost A a B) AeB BoA x (A(x) B(x)) x (A(x) B(x)) (předpokladem pravdivosti je ale neprázdnost A) Nedostatky logického čtverce Logický čtverec jako takový je značným zjednodušením jazykové situace, usouvztažňuje totiž pouze některé výroky. V jeho obvykle prezentované formě logický čtverec nezahrnuje singulární výroky (někteří středověcí logici ale do logického čtverce singulární výroky kladli, byť je museli upravovat na kvantifikující výroky). Neklasifikuje ovšem ani výroky, v nichž kromě kvantifikátoru vystupují jiné logické spojky, než v obvyklém přepisu výroků logického čtverce; srov. například Něco je kulaté nebo hranaté. 5
6 Logický čtverec Schématické výroky diskutovaných čtyři druhů jsou pro smyslovou názornost nanášeny na vrcholy čtverce tak, aby byly vyjádřeny i výše diskutované vztahy kontradiktoričnosti, (sub)kontrárnosti a subalterace. Tento obvyklý obrázek zde pro komplexnost informace obohacujeme i o formální přepisy (vč. ekvivalentu odvoditelného na základě De Morganových zákonů a tautologií z výrokové logiky odvoditelného na základě De Morganových zákonů a tautologií z výrokové logiky) a zvláště pak grafické vyjádření výroků Vennovými diagramy, jež prodiskutujeme níže. Všechna A jsou B. x (A(x) B(x)) nebo: x (A(x) B(x)) obecný kladný výrok Některá A jsou B. x (A(x) B(x)) nebo: x (A(x) B(x)) částečný kladný výrok subalternost a i k k o o n n t t r r a a kontrárnost d subkontrárnost i i k k č č n n o o s s t t e o subalternost Žádná A nejsou B. Některá A nejsou B. 6
7 x (A(x) B(x)) nebo: x (A(x) B(x)) obecný záporný výrok x (A(x) B(x)) nebo: x (A(x) B(x)) částečný záporný výrok Vennovy diagramy Vennovy diagramy jsou množinovým grafickým vyjádřením výroků (připomeňme, že predikáty jsou v PL chápány jako množiny). Vennovy diagramy jsou odlišné od známějších diagramů Eulerových (Eulerovy diagramy nepostihují všechny případy vyjádření, které jsou nezbytné k zachycení výroků spadajících pod logický čtverec, následně pak nepostačují k zachycení platnosti kategorických sylogismů). Částečné výroky vyznačujeme pomocí křížku, které reprezentuje nějaké (alespoň jedno) individuum, o kterém daný výrok může platit. V případě částečného kladného výroku zakreslujeme křížek do (graficky vyjádřeného) průniku ( rybičky ) obou množin; vyznačujeme tedy takový stav, kdy alespoň jedno individuum má vlastnost A i B. V případě částečného záporného výroku zakreslujeme křížek do té (graficky vyjádřené) části množiny A, půlměsíce, který je mimo množinu B; vyznačujeme tedy takový stav, kdy alespoň jedno individuum má vlastnost A, avšak nemá vlastnost B. Obecné výroky vyznačujeme pomocí šrafování, které reprezentuje, že v daném poli se zcela žádné individuum nenachází. Šrafování je takto jaksi negativní, což je rozdíl od šrafování, které je zažité ze základní školy a Eulerových diagramů (pozor na konfúzi!). (Pozn.: v mnoha novějších učebnicích se místo šrafu radši používá znak prázdné množiny, tj. (přeškrtnutá 0); šrafování je ale přece jen výhodnější.) V případě obecného záporného výroku šrafujeme (graficky vyjádřený) průnik ( rybičku ) obou množin; vyznačujeme tedy takový stav, že žádný prvek A nenáleží zároveň do množiny B. V případě obecného kladného výroku šrafujeme tu (graficky vyjádřenou) část množiny A, půlměsíce, který je mimo množinu B; 7
8 vyznačujeme tedy takový stav, kdy žádní individuum nemá vlastnost A, aniž by mělo vlastnost B. Ačkoliv se vyznačování toho, že v případě obecného kladného výroku se žádné individuum v půlměsíci nenachází, zdá neobvyklé, zcela přesně reprezentuje to, co vyjadřuje daný výrok (totiž implikativní spojení atomických formulí). Uvědomme si, že výrok Každý jednorožec je savec je nepravdivý jen v případě, že jednorožci nejsou savci, avšak je pravdivá v případech, kdy a) pro všechna x, která jsou jednorožcem (atomický výrok J(x) je pravdivý) platí, že jsou savcem (atomický výrok S(x) je tedy také pravdivý), b) žádní jednorožci nejsou (atomický výrok J(x) je nepravdivý) a nikdo také není savcem (atomický výrok S(x) je tedy také nepravdivý), anebo c) b) žádní jednorožci nejsou (atomický výrok J(x) je nepravdivý), avšak nějací x - o nichž nic bližšího nevíme - jsou savci (atomický výrok S(x) je tedy pravdivý). Dále si na Vennových diagramech všimněme, že pokud chceme vyjádřit pravý opak tvrzení, že A a B mají společný prvek, tak musíme říci (a vyšrafovat), že v průniku A a B žádná individua nejsou. Pokud chceme vyjádřit pravý opak tvrzení, že všechny prvky A (jsou-li jaké) jsou též v množině B, tak musíme říct, že existuje alespoň jeden prvek množiny A, který nenáleží do množiny B. Analogicky naopak. 8
Úvod do logiky (PL): analýza vět přirozeného jazyka
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): analýza vět přirozeného jazyka doc. PhDr.
Okruh č.9: sémantické metody dokazování v PL1 model formule Tradiční Aristotelova logika kategorický sylogismus subjekt predikátové výroky
Okruh č.9: sémantické metody dokazování v PL1 Pomocí metody Vennových diagramů a relačních struktur vytváříme grafický model situace, která je úsudkem vyjádřena. Ověřujeme, zda náš graficky znázorněný
Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
Úvod do logiky (PL): logický čtverec (cvičení)
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): logický čtverec (cvičení) doc. PhDr. Jiří
Úvod do logiky (PL): analýza vět mimo logický čtverec
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): analýza vět mimo logický čtverec doc. PhDr.
Úvod do logiky (PL): ekvivalence a negace výroků logického
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): ekvivalence a negace výroků logického čtverce
Logický čtverec. Tradiční logický čtverec
Logický čtverec Tradiční logický čtverec Logický čtverec je schéma, do kterého lze poměrně přehledně znázornit následující vztahy mezi tvrzeními: Kontradikce je vztah mezi dvěma tvrzeními s přesně opačnými
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Úvod do logiky (PL): negace a ekvivalence vět mimo logický
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): negace a ekvivalence vět mimo logický čtverec
Úvod do logiky (PL): sémantika predikátové logiky
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): sémantika predikátové logiky doc. PhDr. Jiří
Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 5. Odvození z jiných doc. PhDr. Jiří Raclavský,
Aristotelská logika. Pojem
Aristotelská logika Základními stavebními kameny aristotelské logiky jsou tři témata pojmy, soudy a úsudky. Jejich rozboru Aristoteles věnuje převážnou část svých logických spisů. Kromě toho pak věnuje
Predikátová logika Individua a termy Predikáty
Predikátová logika Predikátová logika je rozšířením logiky výrokové o kvantifikační výrazy jako každý, všichni, někteří či žádný. Nejmenší jazykovou jednotkou, kterou byla výroková logika schopna identifikovat,
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot formule tabulkovou metodou
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot
Úvod do logiky (VL): 7. Ekvivalentní transformace
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 7. Ekvivalentní transformace doc. PhDr. Jiří
Aristotelská logika. Z pohledu klasické výrokové logiky má úsudek:
1 Aristotelská logika Z pohledu klasické výrokové logiky má úsudek: Všichni klokani jsou vačnatci. Všichni vačnatci jsou savci. Všichni klokani jsou savci. logickou formu: A B C Je to zjevně úsudek, který
Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.
Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová
Úvod do logiky (VL): 11. Ověřování, zda je formule tautologií metodou protipříkladu
Jiří Raclavský (214): Úvod do logiky: klasická výroková logika Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.7/2.2./28.216, OPVK) Úvod
1 Výrok a jeho negace
1 Výrok a jeho negace Výrokem se rozumí sdělení, u něhož má smysl otázka, zda je, či není pravdivé. Budeme určovat tzv. pravdivostní hodnotu výroku (PH). Příklady výroků: V Úhlopříčky čtverce jsou na sebe
Úvod do logiky: PL Kategorický sylogismus
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky: PL Kategorický sylogismus doc. PhDr. Jiří Raclavský,
λογος - LOGOS slovo, smysluplná řeč )
MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
Úvod do TI - logika Aristotelova logika. Marie Duží
Úvod do TI - logika Aristotelova logika Marie Duží marie.duzi@vsb.cz Platón, Aristoteles (vpravo) 384 322 Mine is the first step and therefore a small one, though worked out with much thought and hard
Okruh č.3: Sémantický výklad predikátové logiky
Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat
Marie Duží
Marie Duží marie.duzi@vsb.cz Platón, Aristoteles (vpravo) 384 322 Mine is the first step and therefore a small one, though worked out with much thought and hard labour. You, my readers or hearers of my
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Predikátová logika (logika predikátů)
Predikátová logika (logika predikátů) Ve výrokové logice pracujeme s jednoduchými či složenými výroky, aniž nás zajímá jejich struktura. Příklad. Jestliže Karel je studentem, pak je (Karel) chytřejší než
SINGULÁRNÍ VÝROKY: Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je.
Studijní text Co je singulární výrok SINGULÁRNÍ VÝROKY: PETR Petr je veselý. Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je. Příklad: Pavel je
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL
Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5.
Primární a sekundární výskyt označující fráze Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. 2012 Russellovo rozlišení jména a popisu Označující fráze Primární a sekundární
Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
Úvod do logiky: PL analýza vět mimo logický čtverec (cvičení)
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky: PL analýza vět mimo logický čtverec (cvičení) doc.
Přednáška 2: Formalizace v jazyce logiky.
Přednáška 2: Formalizace v jazyce logiky. Marie Duží marie.duzi@vsb.cz Úvod do teoretické informatiky (logika) Dva základní logické systémy: Výroková logika a predikátová logika. řádu. Výroková logika
Úvod do logiky (VL): 8. Negace výroků
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 8. Negace výroků doc. PhDr. Jiří Raclavský,
Výroková logika. Sémantika výrokové logiky
Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
Výroková logika. p, q, r...
Výroková logika Výroková logika je logika, která zkoumá pravdivostní podmínky tvrzení a vztah vyplývání v úsudcích na základě vztahů mezi celými větami. Můžeme též říci, že se jedná o logiku spojek, protože
LOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
KMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 3 Predikátový počet Uvažujme následující úsudek.
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
VÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá..
VÝROKOVÁ LOGIKA Teorie: Logika je vědní obor zabývající se studiem různých forem vyjadřování a pravidel správného posuzování. (Matematická logika je součástí tohoto vědního oboru a ve velké míře užívá
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Spojování výroků (podmínek) logickými spojkami
Spojování výroků (podmínek) logickými spojkami Spojování výroků logickými spojkami a) Konjunkce - spojení A B; Pravdivostní tabulka konjunkce A B A B 0 0 0 0 1 0 1 0 0 1 1 1 AND; A a současně B Konjunkce
Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).
Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Úvod do výrokové a predikátové logiky
Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
Úvod do logiky (VL): 12. Ověřování platnosti úsudků metodou protipříkladu
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 12. Ověřování platnosti úsudků metodou protipříkladu
1. Matematická logika
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 1. Matematická logika Základem každé vědy (tedy i matematiky i fyziky) je soubor jistých znalostí. To, co z těchto izolovaných poznatků
Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20
Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:
M - Výroková logika VARIACE
M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů):
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): 1. Všechna prvočísla větší než 2 jsou lichá. Je-li prvočíslo větší než 2, pak je liché.
4.2 Syntaxe predikátové logiky
36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Sylogistika. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 16
(FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 16 Výstavba logické teorie Sylogistika 1) Syntax základní symboly (logické, mimologické) gramatická pravidla (pojem formule) 2) Sémantika pojem interpretace
4.9.70. Logika a studijní předpoklady
4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,
Premisa Premisa Závěr
Studijní text Argumentace Jak to v komunikaci přirozeně děláme, jak argumentujeme? Leden má 31 dní, protože je prvním měsícem roku. Vím, že nelze nekomunikovat. Tzn. každý člověk komunikuje. A Petr je
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
Predikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)
Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr
Kvantita (u subjektu) všechny prvky množiny (všichni, každý, nikdo, žádní ) některé prvky množiny (některý, existuje,.) predikát.
Studijní text Hledisko kvality a kvantity, vztahy pravdivostních hodnot Nyní se zaměříme na obecné a částečné výroky se stejným em a em. Kvantita (u u) všechny prvky množiny (všichni, každý, nikdo, žádní
1. Matematická logika
MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika
[a) (4 (7 + 5) = 4 12) (4 12 = 48); b) ( 1< 1) (1< 3); c) ( 35 < 18) ( 35 = 18)]
Úloha 1 U každé dvojice výroků rozhodněte, zda výrok uvedený vpravo je negací výroku vlevo. Pokud tomu tak není, zdůvodněte proč. a) p: Mám bílý svetr. q: Mám černý svetr. b) r: Bod A leží vně kruhu K.
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
1 Pravdivost formulí v interpretaci a daném ohodnocení
1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří
Základy informatiky. Výroková logika
Základy informatiky Výroková logika Zpracoval: Upravila: Ing. Pavel Děrgel Daniela Sztrucová Obsah přednášky Výroková logika Výroky Pravdivostní ohodnocení Logické spojky Výrokově logická analýza Aristotelés
1 Úvod do matematické logiky
1 Úvod do matematické logiky Logikou v běžném slova smyslu rozumíme myšlenkovou cestu, která vede k určitým závěrům. Logika je také formální věda, která zkoumá způsob vyvozování závěrů. Za zakladatele
Výroková a predikátová logika - VI
Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá
Predikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
platné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
- existuje..., negace: pro všechny neplatí,... - pro všechna..., negace: existuje, že neplatí,...
.4.0 Formální logika shrnutí Předpoklady: 00409 Shrnutí logiky Důležité znalosti konjunkce, a b, "a", pravda, jen když jsou oba výroky pravdivé (jako průnik) disjunkce, a b, "nebo", lež, jen když jsou
Hierarchie tříd Třída 1. řádu obsahuje jako své prvky logická individua. Třída 3. řádu obsahuje jako své prvky třídy 2. řádu.
Logika tříd V kapitole Predikátová logika jsme uvedli, že jednomístné predikáty vyjadřují nějakou vlastnost. a) Karel je studentem. (má vlastnost být studentem ) b) Číslo 9 je dělitelné 3. (má vlastnost
LITERATURA. Čechák V.: Základy logiky a metodologie. Praha Eupress 2007
ÚVOD DO MATEMATICKÉ LOGIKY 1 LITERATURA Čechák V.: Základy logiky a metodologie. Praha Eupress 2007 2 Svátek J., Dostálová L.: Logika pro humanistiku. Aleš Čeněk, Dobrá Voda 2003 Bokr J.:, Svátek J.: Základy
Cvičení z logiky II.
Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
Predikátová logika dokončení
Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.
Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku
KMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 2 Výroková logika pokračování Logické vyplývání
Klasická výroková logika - tabulková metoda
1 Klasická výroková logika - tabulková metoda Na úrovni výrokové logiky budeme interpretací rozumět každé přiřazení pravdivostních hodnot výrokovým parametrům. (V případě přiřazení pravdivostních hodnot
Logika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Matematická indukce, sumy a produkty, matematická logika
Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní