Úvod do TI - logika Aristotelova logika. Marie Duží
|
|
- Leoš Toman
- před 8 lety
- Počet zobrazení:
Transkript
1 Úvod do TI - logika Aristotelova logika Marie Duží marie.duzi@vsb.cz
2 Platón, Aristoteles (vpravo) Mine is the first step and therefore a small one, though worked out with much thought and hard labour. You, my readers or hearers of my lectures, if you think I have done as much as can fairly be expected of an initial start... will acknowledge what I have achieved and will pardon what I have left for others to accomplish. 2
3 Aristotelova logika Řecký filosof a zakladatel logiky Aristoteles zkoumal před více než 2000 lety tzv. Subjekt Predikátové výroky a úsudky z nich vytvořené: Všechna S jsou P SaP affirmo Žádné S není P SeP nego Některá S jsou P SiP afirmo Některá S nejsou P SoP nego Všechny pojmy S, P jsou zde vždy neprázdné. Z dnešního pohledu jde o fragment predikátové logiky Výrokovou logiku zkoumali v té době stoici (v opozici Aristotelovi), kteří rovněž postihli základy predikátové logiky. (Viz František Gahér: Stoická sémantika a logika). 3
4 Aristotelova logika: log. čtverec kladné záporné obecné SaP SeP částečné SiP SoP SaP SoP, SeP SiP kontradiktorické SaP SeP, SeP SaP kontrární SiP SoP, SoP SiP subkontrární SaP SiP, SeP Sop, subalterní: SiP SaP, SoP SeP neboli podřízené 4
5 Logický čtverec - obraty SiP PiS Někteří studenti jsou ženatí Někteří ženatí jsou studenti. SeP PeS Žádný člověk není strom Žádný strom není člověk. SaP PiS Všichni učitelé jsou státní zaměstnanci Někteří státní zaměstnanci jsou učitelé. SeP PoS Žádné jedovaté houby nejsou jedlé Některé jedlé houby nejsou jedovaté. 5
6 Logický čtverec (důkazy vztahu) kladné záporné obecné SaP SeP částečné SiP SoP SaP SoP, SeP SiP diagonále). kontradiktorické (po Všechna S jsou P Není pravda, že některá S nejsou P Důkaz (de Morgan): x [S(x) P(x)] x [S(x) P(x)] Žádné S není P Není pravda, že některá S jsou P 6
7 Logický čtverec (pokračování) SaP SeP SiP SoP SaP SeP, SeP SaP kontrární Všechna S jsou P Není pravda, že žádné S není P x [S(x) P(x)] x [S(x) P(x)] Důkaz (sémanticky): Je-li S U P U, pak nemůže být S U podmnožinou komplementu P U, tedy není S U P U. Žádné S není P Není pravda, že všechna S jsou P x [S(x) P(x)] x [S(x) P(x)] Důkaz (sémanticky): Je-li S U P U (komplementu), pak nemůže být S U podmnožinou P U, tedy není S U P U. 7
8 Logický čtverec (pokračování) SiP SoP, SoP SiP subkontrární Není pravda, že některá S jsou P Některá S nejsou P x [S(x) P(x)] x [S(x) P(x)] Je-li S U P U (podmnožinou komplementu) a S U (je neprázdné), pak je neprázdný také průnik S U a komplementu P U : (S U P U ), tj. x [S(x) P(x)] Analogicky: Není pravda, že některá S nejsou P Některá S jsou P (za předpokladu neprázdnosti). SaP SiP, SeP Sop, subalterní: SiP SaP, SoP SeP neboli podřízené Analogicky důkaz pro zbylé vztahy: Všechna S jsou P, tedy některá S jsou P, atd. Vše za předpokladu neprázdnosti 8
9 Logický čtverec - obraty SiP PiS SeP PeS Některá S jsou P Některá P jsou S Žádné S není P Žádné P není S x [S(x) P(x)] x [P(x) S(x)] x [S(x) P(x)] x [P(x) S(x)] SaP PiS SeP PoS Všechna S jsou P Některá P jsou S Žádné S není P Některá P nejsou S x [S(x) P(x)] x S(x) x [P(x) S(x)] x [S(x) P(x)] x P(x) x [P(x) S(x)] 9
10 Aristotelovy sylogismy Jednoduché úsudky tvořené kombinacemi tří predikátů S, P, M, kde M je zprostředkující predikát, který se v závěru neopakuje, závěr je vždy tvaru S-P. I. M-P II. P-M III. M-P IV. P-M S-M S-M M-S M-S Správné módy jsou: I. aaa, eae, aii, eio (barbara, celarent, darii, ferio). II. aoo, aee, eae, eio (baroco, camestres, cesare, festino). III. oao, aai, aii, iai, eao,eio (bocardo, darapti, datisi, disamis, felapton, ferison). IV. aai, aee, iai, eao, eio (bamalip, calemes, dimatis, fesapo, fresison). Neučíme se pochopitelně nazpaměť správné módy, 10 ale
11 11. Nakonec ověříme, zda vzniklá situace Aristotelova logika: sylogismy Ověříme na základě množinových úvah pomocí Vennových diagramů: Obory pravdivosti predikátů S, P, M zakreslíme jako (vzájemně se protínající) kroužky. Poté znázorníme situaci, kdy jsou premisy pravdivé, tj. Vyšrafujeme plochy, které odpovídají prázdným třídám objektů (všeobecné předpoklady) Označíme křížkem plochy, které jsou jistě neprázdné (existenční předpoklady); křížek přitom klademe jen tehdy, když neexistuje jiná plocha, kam by mohl přijít
12 John Venn Cambridge 12
13 Sylogismy a Vennovy diagramy Všechny rodinné domy jsou x [R(x) S(x)] soukromým vlastnictvím Některé nemovitosti jsou rodinné domy x [N(x) R(x)] Některé nemovitosti jsou soukromým vlastnictvím x [N(x) S(x)] Dle 1. premisy je prázdná množina R / S Důležité je pořadí: nejdřív vyškrtáme prázdné plochy, pak klademe křížek. Dle druhé premisy je neprázdný průnik R a N uděláme křížek. 13
14 Sylogismy a Vennovy diagramy Všechny rodinné domy jsou x [R(x) S(x)] soukromým vlastnictvím Některé nemovitosti jsou rodinné domy x [N(x) R(x)] Některé nemovitosti jsou soukromým vlastnictvím x [N(x) S(x)] Dle 1. premisy je prázdná množina R / S Ověříme pravdivost závěru: průnik ploch N a S musí být neprázdný. Úsudek je platný. Dle druhé premisy je neprázdný průnik R a N uděláme křížek. 14
15 Sylogismy a Vennovy diagramy Všichni jezevci jsou sběratelé umění x [J(x) S(x)] Někteří sběratelé umění žijí v norách x [S(x) N(x)] Někteří jezevci žijí v norách x [J(x) N(x)] Dle 1. premisy neexistuje jezevec, který není sběratel šrafujeme. Jak však znázorníme pravdivost 2. premisy? Průnik S a N je neprázdný, ale nevíme, kam dát křížek! Úsudek je neplatný. 15
16 Sylogismy ověření platnosti Někteří politici jsou moudří lidé x [Pl(x) M(x)] Nikdo, kdo je moudrý, není pyšný x [M(x) Ps(x)] Někteří politici nejsou pyšní x [Pl(x) Ps(x)] Nejdříve vyhodnotíme všeobecnou premisu 2! Neexistuje žádné M, které by bylo Ps: škrtáme průnik M a Ps Dle 1. premisy je neprázdný průnik M a Pl: uděláme křížek Vyhodnotíme závěr: průnik Pl a komplementu Ps musí být neprázdný: pravdivost zaručena, úsudek je platný. 16
17 Sylogismy ověření platnosti Všechna auta jsou dopravní prostředky x [A(x) D(x)] Všechna auta mají volant x [A(x) V(x)] Některé dopravní prostředky mají volant x [D(x) V(x)] 1. Premisa - Plocha A musí být podmnožinou plochy D: šrafujeme. Dle 2. premisy je plocha A podmnožinou plochy V: šrafujeme. Vyhodnotíme závěr: pravdivost není zaručena, křížek v průniku D a V není! Úsudek je neplatný. 17
18 Všeobecné premisy ne existence Všechny skleněné hory jsou skleněné Všechny skleněné hory jsou hory Některé hory jsou skleněné Příklad Bertranda Russella ( ) Úsudek je neplatný. 18
19 Sylogismy ověření platnosti Všechna auta jsou dopravní prostředky x [A(x) D(x)] Všechna auta mají volant x [A(x) V(x)] Existují auta (implicitní předpoklad) x A(x) Některé dopravní prostředky mají volant x [D(x) V(x)] 1. Premisa - Plocha A musí být podmnožinou plochy D: šrafujeme. Dle 2. premisy je plocha A podmnožinou plochy V: šrafujeme. Vyhodnotíme závěr: pravdivost je zaručena, křížek v průniku D a V je, úsudek je platný Dle 3. premisy uděláme křížek na plochu A. 19
20 Širší použití, nejen na sylogismy P 1 : Všichni státníci jsou politici P 2 : Někteří státníci jsou inteligentní P 3 : Někteří politici nejsou státníci x [S(x) P(x)] x [S(x) I(x)] x [P(x) S(x)] Z 1 :? Někteří politici nejsou inteligentní x [P(x) I(x)]? Z 2 :? Někteří politici jsou inteligentní x [P(x) I(x)]? P 1 : šrafujeme S / P. P 2 : klademe křížek na průnik ploch S a I. Z 1 : nevyplývá, křížek není. P 3 : nemůžeme udělat křížek, nevíme na kterou plochu. Z 2 : vyplývá, křížek je. 20
21 Vennovy diagramy P 1 : Všichni zahradníci jsou zruční. x [P(x) Q(x)] P 2 : Každý, kdo je zručný, je inteligentní. x [Q(x) R(x)] (P 3 : Existuje aspoň jeden zahradník.) x P(x) ) Z:Někteří zahradníci jsou inteligentní. x [P(x) R(x)] 1. premisa říká, že neexistuje prvek, který by byl v množině P a nebyl v množině Q (De Morgan) tedy šrafujeme. 3. premisa zaručuje neprázdnost množiny P, tedy (děláme křížek). 2. premisa říká, že neexistuje prvek, který by byl v množině Q a nebyl v množině R (De Morgan) tedy šrafujeme. 21
22 Vennovy diagramy P 1 : Všichni zahradníci jsou zruční. x [P(x) Q(x)] P 2 : Každý, kdo je zručný, je inteligentní. x [Q(x) R(x)] (P 3 : Existuje aspoň jeden zahradník. x P(x) Z: Někteří zahradníci jsou inteligentní. x [P(x) R(x)] Nyní otestujeme, zda křížek v diagramu odpovídá našemu závěru. Křížek v diagramu, opravdu náleží průniku množin P a R, tedy odpovídá našemu závěru, proto je úsudek PLATNÝ. 22
23 Vennovy diagramy P 1 : Všichni studenti umějí logicky myslet. x [S(x) M(x)] P 2 : Pouze koumáci umějí logicky myslet. x [M(x) K(x)] Z: Všichni studenti jsou koumáci. x [S(x) K(x)] 1. premisa říká, že neexistuje prvek, který by byl v množině S a nebyl v množině M (De morgan) tedy šrafujeme. 2. premisa říká, že neexistuje prvek, který by byl v množině M a nebyl v množině K (M je podmnožinou K) tedy šrafujeme. 23
24 Vennovy diagramy P 1 : Všichni studenti umějí logicky myslet. x [S(x) M(x)] P 2 : Pouze koumáci umějí logicky myslet. x [M(x) K(x)] Z: Všichni studenti jsou koumáci. x [S(x) K(x)] Nyní otestujeme, zda nevyšrafované oblasti vystihují náš závěr. Závěr říká, že všechny prvky ležící v množině S leží taktéž v množině K. To opravdu podle diagramu platí, tedy úsudek je PLATNÝ. 24
25 Vennovy diagramy P 1 : Všichni studenti logiky se učí logicky myslet. x [P(x) Q(x)] P 2 : Kdo se učí logicky myslet, ten se neztratí. x [Q(x) R(x)] Z: Někteří studenti logiky se neztratí. x [P(x) R(x)] 1. premisa říká, že neexistuje prvek, který by byl v množině P a nebyl v množině Q (De Morgan) tedy šrafujeme 2. premisa říká, že neexistuje prvek, který by byl v množině Q a nebyl v množině R (De morgan) tedy šrafujeme 25
26 Vennovy diagramy P 1 : Všichni studenti logiky se učí logicky myslet. x [P(x) Q(x)] P 2 : Kdo se učí logicky myslet, ten se neztratí. x [Q(x) R(x)] Z: Někteří studenti logiky se neztratí. x [P(x) R(x)] Poznámka: V tradiční Aristotelově logice je tento úsudek považován za platný. Avšak, ze všeobecných premis nemůžeme usuzovat na existenci! Nezapomeňte však, že dle Aristotela jsou zde všechny pojmy Nyní otestujeme, zda je opravdu úsudek platný či nikoliv. Závěr říká, že existuje prvek v průniku množin P a R. Diagram ale toto nepotvrzuje (není křížek), proto úsudek je NEPLATNÝ. 26
27 Vennovy diagramy P 1 : Všichni studenti logiky se učí logicky myslet. x [P(x) Q(x)] P 2 : Kdo se učí logicky myslet, ten se neztratí. x [Q(x) R(x)] Existují studenti logiky (implicitní předpoklad) x P(x) Z: Někteří studenti logiky se neztratí. x [P(x) R(x)] Poznámka: dle Aristotela jsou zde všechny pojmy neprázdné. Přidáme-li implicitní předpoklad, že Nyní můžeme na plochu existují studenti odpovídající průniku P a R logiky, je úsudek dát křížek je neprázdná. platný. Závěr říká, že existuje prvek v průniku množin P a R. Diagram toto nyní potvrzuje (je křížek), proto úsudek je PLATNÝ. 27
28 Definice ploch S A : S(x) P(x) P B C H A D F E G M M(x) B : S(x) P(x) M(x) C : S(x) P(x) M(x) D : S(x) P(x) M(x) E : S(x) P(x) M(x) F : S(x) P(x) M(x) G : S(x) P(x) M(x) H: S(x) P(x) 28
29 Vennovy diagramy a sylogismy P 1 : Žádný pták není savec x [P(x) S(x)] P 2 : Někteří ptáci jsou běžci x [P(x) B(x)] Z: Někteří běžci nejsou savci x [B(x) S(x)] 1. premisa říká, že neexistuje prvek, který by byl v průniku množin P a S tedy šrafujeme. 2. premisa říká, že průnik P a B je neprázdný klademe křížek. Ověříme závěr: průnik P a komplementu S je neprázdný, úsudek je platný. 29
30 Vennovy diagramy P 1 : Někteří vládci jsou krutí. x [V(x) K(x)] P 2 : Žádný dobrý hospodář není krutý. x [H(x) K(x)] Z: Některá vládci nejsou dobří hospodáři. x [V(x) H(x)] Nejprve 2. premisa: šrafujeme průnik H a K. Pak dle 1. premisy klademe křížek na průnik V a K. Nyní testujeme závěr: průnik V a komplementu H je neprázdný. Úsudek je platný 30
Marie Duží
Marie Duží marie.duzi@vsb.cz Platón, Aristoteles (vpravo) 384 322 Mine is the first step and therefore a small one, though worked out with much thought and hard labour. You, my readers or hearers of my
Okruh č.9: sémantické metody dokazování v PL1 model formule Tradiční Aristotelova logika kategorický sylogismus subjekt predikátové výroky
Okruh č.9: sémantické metody dokazování v PL1 Pomocí metody Vennových diagramů a relačních struktur vytváříme grafický model situace, která je úsudkem vyjádřena. Ověřujeme, zda náš graficky znázorněný
Úvod do logiky: PL Kategorický sylogismus
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky: PL Kategorický sylogismus doc. PhDr. Jiří Raclavský,
Aristotelská logika. Z pohledu klasické výrokové logiky má úsudek:
1 Aristotelská logika Z pohledu klasické výrokové logiky má úsudek: Všichni klokani jsou vačnatci. Všichni vačnatci jsou savci. Všichni klokani jsou savci. logickou formu: A B C Je to zjevně úsudek, který
Úvod do logiky (PL): sylogismy (cvičení)
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): sylogismy (cvičení) doc. PhDr. Jiří Raclavský,
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů):
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): 1. Všechna prvočísla větší než 2 jsou lichá. Je-li prvočíslo větší než 2, pak je liché.
Sylogistika. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 16
(FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 16 Výstavba logické teorie Sylogistika 1) Syntax základní symboly (logické, mimologické) gramatická pravidla (pojem formule) 2) Sémantika pojem interpretace
Cvičení 7 - řešení. Vennovy diagramy
Cvičení 7 - řešení Vennvy diagramy B C A D F E G A: (x ) (x ) (x ) B: (x ) (x ) (x ) C: (x ) (x ) (x ) D: (x ) (x ) (x ) E: (x ) (x ) (x ) F: (x ) (x ) (x ) G: (x ) (x ) (x ) H: (x ) (x ) (x ) H stup:
Česká republika - ŽENY
2012 Česká republika - ŽENY věk qx px lx dx Lx Tx ex Dx Cx Nx Mx Sx Rx 0 0.002338 0.997662 100000 234 99804 8088058 80.88 100 000.00 229.43 4 164 194.04 22 355.11 130 483 842.84 1 731 180.86 1 0.000144
2016 Česká republika ŽENY (aktuální k )
2016 Česká republika ŽENY (aktuální k 27. 11. 2017) věk qx px lx dx Lx Tx ex Dx Cx Nx Mx Sx Rx 0 0.002462 0.997538 100 000.00 246.23 99787 8205207 82.05 100 000.00 243.07 5 066 877.57 34 975.90 176 922
Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
Úvod do logiky (PL): logický čtverec
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): logický čtverec doc. PhDr. Jiří Raclavský,
Úvod do logiky (PL): ekvivalence a negace výroků logického
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): ekvivalence a negace výroků logického čtverce
Logika. Materiály ke kurzu MA007. Poslední modifikace: prosinec zkoumá způsob vyvozování. Lidské uvažování
Výroková úplnosti Materiály ke kurzu MA007 Poslední modifikace: prosinec 2018 http://www.fi.muni.cz/usr/kucera/teaching.html 2. věta o dokazování prosinec 2018 1/171 Logika. Výroková úplnosti 2. věta o
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
Materiály ke kurzu MA007
Výroková Matematická Materiály ke kurzu MA007 Poslední modifikace: říjen 2016 http://www.fi.muni.cz/usr/kucera/teaching.html 2. věta o říjen 2016 1/159 Logika. Výroková 2. věta o Bůh Lidské uvažování Logika
Přednáška 2: Formalizace v jazyce logiky.
Přednáška 2: Formalizace v jazyce logiky. Marie Duží marie.duzi@vsb.cz Úvod do teoretické informatiky (logika) Dva základní logické systémy: Výroková logika a predikátová logika. řádu. Výroková logika
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL
Úvod do TI - logika 1. přednáška. Marie Duží
Úvod do TI - logika 1. přednáška Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Učební texty: http://www.cs.vsb.cz/duzi Courses Introduction to Logic: Informace pro studenty Učební texty: Kapitoly: Úvod
Materiály ke kurzu MA007
Výroková Matematická Materiály ke kurzu MA007 Poslední modifikace: 29. září 2009 http://www.fi.muni.cz/usr/kucera/teaching.html 2. věta o 29. září 2009 1/147 Logika. Výroková 2. věta o Bůh Lidské uvažování
Kvantita (u subjektu) všechny prvky množiny (všichni, každý, nikdo, žádní ) některé prvky množiny (některý, existuje,.) predikát.
Studijní text Hledisko kvality a kvantity, vztahy pravdivostních hodnot Nyní se zaměříme na obecné a částečné výroky se stejným em a em. Kvantita (u u) všechny prvky množiny (všichni, každý, nikdo, žádní
Úvod do logiky (PL): logický čtverec (cvičení)
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): logický čtverec (cvičení) doc. PhDr. Jiří
384 321 př. Kr., narozen ve Stageiře, žák Platónův, učitel Alexandra Velikého, Lykeion (peripatetická škola), po smrti Alexandrově exil a brzká smrt.
ARISTOTELÉS Život a dílo 384 321 př. Kr., narozen ve Stageiře, žák Platónův, učitel Alexandra Velikého, Lykeion (peripatetická škola), po smrti Alexandrově exil a brzká smrt. Dochované dílo obsahuje esoterní
Aristotelská logika. Pojem
Aristotelská logika Základními stavebními kameny aristotelské logiky jsou tři témata pojmy, soudy a úsudky. Jejich rozboru Aristoteles věnuje převážnou část svých logických spisů. Kromě toho pak věnuje
Aristotelská logika. Pojem
Aristotelská logika Základními stavebními kameny aristotelské logiky jsou tři témata pojmy, soudy a úsudky. Jejich rozboru Aristoteles věnuje převážnou část svých logických spisů. Kromě toho pak věnuje
Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1
Úvod do predikátové logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 1 Relace Neuspořádaná vs. uspořádaná dvojice {m, n} je neuspořádaná dvojice. m, n je uspořádaná dvojice. (FLÚ AV ČR) Logika:
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
Úvod do logiky (PL): analýza vět přirozeného jazyka
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): analýza vět přirozeného jazyka doc. PhDr.
Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.
Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová
Úvod do logiky (PL): negace a ekvivalence vět mimo logický
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): negace a ekvivalence vět mimo logický čtverec
Okruh č.3: Sémantický výklad predikátové logiky
Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat
Úvod do logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 23
Úvod do logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 23 Co je logika? Čeho se týkají logické zákony? Tři možnosti: (1) světa (2) myšlení (3) jazyka (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216
Logický čtverec. Tradiční logický čtverec
Logický čtverec Tradiční logický čtverec Logický čtverec je schéma, do kterého lze poměrně přehledně znázornit následující vztahy mezi tvrzeními: Kontradikce je vztah mezi dvěma tvrzeními s přesně opačnými
Přednáška 3: rozhodování o platnosti úsudku
Přednáška 3: rozhodování o platnosti úsudku Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky Úsudky Úsudek je platný, jestliže nutně, za všech okolností, tj. při všech interpretacích, ve kterých
Predikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.
Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová logika Aristotelovský čtverec 4.
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Premisa Premisa Závěr
Studijní text Argumentace Jak to v komunikaci přirozeně děláme, jak argumentujeme? Leden má 31 dní, protože je prvním měsícem roku. Vím, že nelze nekomunikovat. Tzn. každý člověk komunikuje. A Petr je
Úvod do logiky: PL analýza vět mimo logický čtverec (cvičení)
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky: PL analýza vět mimo logický čtverec (cvičení) doc.
Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)
Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.
Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová
)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
Marie Duží
Marie Duží marie.duzi@vsb.cz Učební texty: http://www.cs.vsb.cz/duzi Tabulka Courses, odkaz Mathematical Učební texty, Presentace přednášek kursu Matematická logika, Příklady na cvičení + doplňkové texty.
Marie Duží
Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
Základy informatiky. Výroková logika
Základy informatiky Výroková logika Zpracoval: Upravila: Ing. Pavel Děrgel Daniela Sztrucová Obsah přednášky Výroková logika Výroky Pravdivostní ohodnocení Logické spojky Výrokově logická analýza Aristotelés
Úvod do logiky (VL): 12. Ověřování platnosti úsudků metodou protipříkladu
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 12. Ověřování platnosti úsudků metodou protipříkladu
k n ( k) n k F n N n C F n F n C F F q n N C F n k 0 C [n, k] [n, k] q C [n, k] k n C C (n k) n C u C u T = T. [n, k] C (n k) n T = k (n k). F n N u = (u 1,..., u n ) v = (v 1,..., v n ) F n d(u, v) u
2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.
6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy
Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných
Predikátová logika (logika predikátů)
Predikátová logika (logika predikátů) Ve výrokové logice pracujeme s jednoduchými či složenými výroky, aniž nás zajímá jejich struktura. Příklad. Jestliže Karel je studentem, pak je (Karel) chytřejší než
12. Funkce více proměnných
12. Funkce více proměnných 12.1 Parciální derivace a totální diferenciál Definice Necht f je reálná funkce n proměnných, a 2 R n a 1 i n. 12.1 Parciální derivace a totální diferenciál Definice Necht f
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5.
Primární a sekundární výskyt označující fráze Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. 2012 Russellovo rozlišení jména a popisu Označující fráze Primární a sekundární
2.2 Sémantika predikátové logiky
14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky
UDL 2004/2005 Cvičení č.6 řešení Strana 1/5
UDL 2004/2005 Cvičení č.6 řešení Strana 1/5 Opakování pojmů relace a funkce Relace R nad množinami A, B je podmnožina kartézského součinu: R A B Kartézský součin množin A = {a 1, a 2,, a 4 }, B = {b 1,
Úvod do logiky (PL): analýza vět mimo logický čtverec
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): analýza vět mimo logický čtverec doc. PhDr.
λογος - LOGOS slovo, smysluplná řeč )
MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho
výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
4.2 Syntaxe predikátové logiky
36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a
Predikátová logika. 3.1 Formule predikátové logiky
12 Kapitola 3 Predikátová logika 3.1 Formule predikátové logiky 3.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.
Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
Úvod do logiky (PL): sémantika predikátové logiky
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): sémantika predikátové logiky doc. PhDr. Jiří
Predikátová logika. Kapitola 2. 2.1 Formule predikátové logiky
5 Kapitola 2 Predikátová logika 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.
Matematické důkazy Struktura matematiky a typy důkazů
Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}.
2 Množiny a intervaly lgebraické výrazy 2.1 Množiny Chápání množiny lze shrnout takto: Množinou rozumíme každé shrnutí určitých a navzájem různých předmětů m našeho nazírání nebo myšlení (které nazýváme
2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se
MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika
Logika 1 Logika Slovo logika se v češtině běžně používá ve smyslu myšlenková cesta, která vedla k daným závěrům. Logika je formální věda, zkoumající právě onen způsob vyvozování závěrů. Za zakladatele
platné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
1 Pravdivost formulí v interpretaci a daném ohodnocení
1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří
KMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 2 Výroková logika pokračování Logické vyplývání
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Úvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Implikace letitá, ale stále atraktivní dáma
Implikace letitá, ale stále atraktivní dáma Jan Kábrt Proč se zajímat o logiku a v ní právě o implikaci? Mimo jiné pro souvislost s takovými oblastmi lidského myšlení, jako jsou matematika, ostatní přírodní
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
SINGULÁRNÍ VÝROKY: Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je.
Studijní text Co je singulární výrok SINGULÁRNÍ VÝROKY: PETR Petr je veselý. Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je. Příklad: Pavel je
Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
Úvod do logiky a logického programování.
Úvod do logiky a logického programování Luboš Popelínský popel@fi.muni.cz www.fi.muni.cz/~popel Přehled učiva Opakování základů výrokové a predikátové logiky Normální formy ve výrokové a predikátové logice
Matematická analýza III.
3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické
Množiny, základní číselné množiny, množinové operace
2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás
Logika před rokem 1879
Logika před rokem 1879 Petr Kuchyňka (7765@mail.muni.cz) 1 Úvod V roce 1879 vyšel Fregův Begriffsschrift, který je mnohými považován za přelomové dílo v dějinách logiky. (Např. Quine zahajuje své Methods
Logika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Predikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
I. Úvodní pojmy. Obsah
I. Úvodní pojmy Obsah 1 Matematická logika 2 1.1 Výrok,logickéoperátory,výrokovéformuleaformy... 2 1.2 Logickávýstavbamatematiky... 3 1.2.1 Základnímetodydůkazůmatematickýchvět..... 3 1.2.2 Negacevýroků.....
Logika, výroky, množiny
Logika, výroky, množiny Martina Šimůnková 23. srpna 2017 Učební text k předmětu Matematická analýza pro studenty FP TUL Jazyk matematiky Budeme používat dva jazyky: jazyk matematiky a běžně používaný jazyk.
Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.
Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,