Konstrukce s prostorovým působením
|
|
- Blažena Květoslava Pavlíková
- před 6 lety
- Počet zobrazení:
Transkript
1 Konstrukce s prostorovým působením
2 Typy a dělení konstrukcí
3 Rozdělení podle charakteru vnitřních sil Konstrukce s ohybovým, normálových a smykovým působením (a,b) deskové a roštové konstrukce dvouvrstvé struktury Konstrukce s normálových a smykovým působením (c) skořepiny předepjaté membrány jednovrstvé prutové struktury s diagonálními pruty Konstrukce s normálovým působením (d) lanové sítě tensegridy
4 Rozdělení podle charakteru působení Prostorově působící homogenní plošné konstrukce: klenby skořepiny lomenice membrány Prostorově působící jednovrstvé prutové konstrukce ohybově tuhé roštové konstrukce Prostorově působící jednovrstvé prutové konstrukce ohybově netuhé jednovrstvé struktury lanové sítě Prostorově působící dvouvrstvé prutové konstrukce dvouvrstvé struktury tensegridy
5 Rozdělení podle tvaru plochy Plochy s nulovou gaussovou křivostí rovinná plocha válcová plocha (rotační, parabolická) kuželová plocha konoidní plochy Plochy s kladnou gaussovou křivostí kulová plocha rotační paraboloid Plochy se zápornou gaussovou křivostí rotační jednodílný hyperboloid nerotační jednodílný hyperboloid
6 Rozdělení podle tvořícího principu a podepření obousměrně působící desková konstrukce dlouhá válcová skořepina krátká válcová skořepina kopule hyperbolicko-parabolická skořepina visutá konstrukce ortogonální visutá konstrukce rotační
7 Klenby vaulted structures
8
9 Statické působení klenbové konstrukce stálé svislé zatížení je přenášeno tlakovým působením (rozkladem zatížení do střednice) pro přenesení nahodilých zatížení a zajištění tuhosti proti vybočení musí mít klenba přiměřenou ohybovou tuhost ohybová tuhost průřezu klenby poskytuje tlakové předpětí od vlastní tíhy k zamezení tahovým napětím, musí výslednicová čára být v jádru průřezu stabilitu proti vybočení lze podobně jako u skořepinových konstrukcí získat i spolupůsobením s žebry, jinou tuhou částí apod.
10 Klášterní a křížová klenba stabilita proti vybočení je zajištěna prostorovým spolupůsobením obou částí a žebra
11 Kopule svislé zatížení je přenášeno tlakovými silami (1) charakter radiální napjatosti (2) závisí na tvaru kopule (tahová, tlaková napětí) tahová napětí musí být zachycena obručemi, řetězy apod. stabilitu konstrukce poskytuje spolupůsobení s ostatním částmi 1- meridián, 2 rovnoběžka
12 Pantheon Roma (126 n.l.) betonová konstrukce 5000 tun, rozpon 43 m
13 S.Maria del Fiore (Brunelleschi 1436)
14 St. Peter's Basilica (Michalangelo 1585)
15 Skořepiny shell roof
16
17 Statické působení tenká skořepina nepřenáší ohybová namáhání zatížení je přenášeno tlakem, tahem a smykem tvarování plochy zajišťuje stabilitu tlačených částí podpory tvoří obrubní žebra, tuhá čela, rámové nosníky, stěny ze statického hlediska jsou výhodné nerozvinutelné plochy s dvojí křivostí
18 Základní tvary skořepin optimální jsou jednoduché tvary s vysokou statickou účinností translační nebo přímkové plochy jednoduchý nebo opakovatelný tvar zjednodušuje výrobu Nejčastější tvary: krátká válcová skořepina (a) dlouhá válcová skořepina (b) kopule (c) hyperbolický paraboloid(d)
19 Další příklady tvarového řešení: a) dlouhá válcová skořepina, b) krátká válcová skořepina, c) segmentová translační skořepina, d) kopule, e) translační skořepina nad čtvercovým půdorysem, f) zvlněná translační skořepina, g) žlabová skořepina, h) výseky hyperbolickoparabolické plochy, i) konoidní sdružená skořepina, j) konoidní skořepina, k) l) hyperbolicko-parabolická plocha
20 Porovnání působení oblouku a skořepiny oblouk (1) je ve své rovině proti vybočení stabilizován vlastní ohybovou tuhostí EI krátká válcová skořepina (4) je tenká a má zanedbatelnou vlastní ohybovou tuhost, proto musí být stabilizována proti vybočení spolupůsobením s tuhým čelem (5) nebo ohybově tuhým žebrem (6) C v konstrukci kupole je pás skořepiny (4) stabilizována spolupůsobením s částmi skořepiny (7) mimo rovinu stabilizovaného pásu
21 Krátká válcová skořepina stabilita konstrukce zajištěna spolupůsobením s výztužnými žebry nebo čely skořepiny (ne ohybovou tuhostí!) podepření je v patě oblouku na stěně nebo tuhém nosníku
22 Dlouhá válcová skořepina konstrukce je podepřená tuhým čelem působí obdobně jako prizmatická lomenice jedná se o ohýbanou konstrukci
23 Rotační skořepinová kupole (báň) tlakové působení (meridiány) tahové nebo tlakové působení (rovnoběžky)
24 Příklady bání s čelními oblouky a žebry a) hladká kulová báň s čelními oblouky, b) žebrová báň nad půdorysem šestiúhelníka, c) žebrová báň nad mnohoúhelníkovým půdorysem, d) báň sestavená ze skořepinových segmentů
25 Skořepina ve tvaru hyperbolického paraboloidu zatížení je v jednom směru přenášeno tahovým a ve druhém směru tlakovým napětím do obrubních žeber smykovým napětím obrubní žebra jsou namáhána převážně normálovým napětím
26 Restaurant Los Manantiales - Mexico City (Felix Candela 1958 ) Tloušťka skořepiny 40 mm,
27 Norfolk Scope (Nervi 1961) rozpon 134 m (v době vzniku a nyní největší na světě), výška 33 m
28 Kresge Auditorium MIT, Cambridge (Eero Saarinen 1953 )
29 TWA Flight Center at John F. Kennedy International Airport (Eero Saarinen 1962)
30 Lomenice folded plate roof
31
32 Tvarová a materiálová řešení prizmatické, poloprizmatické pyramidové, rotační rámy a oblouky a) b) prizmatická lomenicová konstrukce, c) poloprizmatická lomenicová konstrukce, d) pyramidová lomenicová konstrukce, e) rotační lomenicová konstrukce, f) lomenicové rámy a oblouky
33 Lomenicové desky a rámy v podpoře musí být přenesena koncentrovaná napětí do podpory (čelní desky,..) rámový roh musí přenést spojitě tahová i tlaková napětí!
34 Lomenice vyztužené horizontální deskou o Zvýšení únosnosti lomenicového rámu vložením desky do tlačené zóny průřezu (Sál Unesco, Paříž Nervi 1957) o
35 Folded plate roof for gymnasium and cafeteria US (Ketchum)
36 Church OverLand park Kansas (US)
37 Parque Fundidora, Monterrey, Mexico lomenice na bázi oceli
38 Jednovrstvé strukturální konstrukce ohybově měkké gridshell
39 Příklady strukturálních konstrukcí v přírodě radiolaria (prvok 0,1-0,05 mm) oko hmyzu atomární struktury
40 Strukturální válcová klenba jednovrstvé dvouvrstvé (nad 36 m rozponu) stabilita se zajišťuje čely a vloženými oblouky, ohybovou tuhostí (dvouvrstvé) nebo táhly a),b),c) příklady uspořádání prutů jednovrstvé válcové strukturální klenby, d) dvouvrstvá strukturální klenba, e) prolamovaná a příhradová lamela, f) uspořádání prutů dvouvrstvé strukturální klenby, 1- lamela z trubkového průřezu, 2- tuhé čelo, 3- prolamována lamela, 4- příhradová lamela
41 Passage of Upper Trading Rows (GUM) in Moscow (Suchov) struktura ztužená táhly
42 Lamelová klenba
43 2005 Serpentina Gallery London, U.K. (Alvaro Siza)
44 Strukturální kopule zpravidla jednovrstvé charakter tenké skořepiny stabilita je zajištěna prostorovým působením (u dvouvrstvých kopulí také ohybovou tuhostí) a) Schwedlerova struktura, b) Fopplova struktura, c) Fullerova struktura, d) struktura použitá na zastřešení pavilonu Z (výstaviště Brno), e) geodetická struktura, f) použití struktury pro zastřešení ve tvaru kužele, g) použití struktury pro zastřešení ve tvaru translační plochy
45 Materiálové varianty strukturálních konstrukcí
46 Styčníky strukturálních soustav na bázi kovu a) styčník systému MERO, b) styčník systému TRIODETIC, c) styčník systému GYRO II, d) styčník systému UNISTRUT, e) styčník dvouvrstvé klenby, f) styčník jednovrstvé klenby, 1- prostorový kulový styčník, 2- prut příhradové struktury, 3- šroub, 4- převlečná matice, 5- prostorový styčník z tvarovaného plechu, 6- šroubové spojení, 7- svislý stabilizační prut, 8- vnitřní prut struktury, 9- prut dolního pásu struktury, 10- dolní část svěrného talíře, 11- horní část svěrného talíře, 12- výsečový plech, 13- spojovací matice, 14- prostorový válcový styčník, 15- svěrný šroub, 16- lamela dvoupásové struktury, 17- styčníkový plech, 18- lamela jednopásové struktury
47 Styčníky strukturálních soustav na bázi dřeva dřevěné pruty nebo lamely se spojují pomocí kovových prvků a) styčník prostorové lamelové struktury, b) styčník kosoúhlé lamelové sítě, c) styčník jednovrstvé lamelové struktury, 1- dřevěná lamela, 2- ocelový spojovací svorník, 3- ocelový prostorový styčník, 4- ocelové táhlo, 5- vložený styčníkový plech, 6- šroubové spojení, 7- styčníkový prvek podle:
48 1900 Production hall, Vyksa - Rossia (Suchov Vladimir)
49 The Riverside Museum Glasgow strukturální lomenice
50 1983 Tacoma Dome, Washington - U.S. (McGranahan) rozpětí 161m
51 2000 Great Court at the British Museum, London - UK (Foster)
52 2005 Vela, Milano - Italy (Massimiliano Fuksas)
53 Takenaka Corporation, Nagoya Dome, Japan
54 Jednovrstvé strukturální konstrukce ohybově tuhé
55 Italian Airforce hangars at Orvieto (Nervi, L ) předepjatá železobetonová lamelová struktura rozpon 41 x 100 m
56 Station Hall návrh (Nervi, L ) o rozpon 200 m, předepjatý beton
57 Faculty of Law, Cambridge, UK dvouvrstvá struktura
58 ELBBRUCKEN-STATION (project)
59 Dvouvrstvé strukturální konstrukce space truss
60
61 Strukturální konstrukce plošně působící konstrukce s ohybovou tuhostí využití pro desky, prostorové rámy, klenby a kopule a) ortogonální příhradová roštová struktura, b) trojúhelníková příhradová roštová struktura, c) ortogonální příhradová prostorová struktura, d) trojúhelníková příhradová prostorová struktura, 1- horní tlačné pásy příhradového roštu, 2- dolní tažené pásy příhradového roštu, 3- diagonály příhradového roštu, 4- pruty horní tlačené osnovy, 5- pruty dolní tažené osnovy, 6- prostorové diagonál
62 Principy deskového působení obousměrné ohybové působení obousměrné kroutící působení
63 Obousměrně pnutá roštová konstrukce diagonály spojující spodní a horní osnovu jsou nad sebou deska nemá tuhost ve vlastní rovině nepřenáší kroutící momenty dvojsměrná (b) a trojsměrná (a,c) deska trojúhelníkový, ortogonální a šestiúhelníkový půdorys
64 Obousměrně pnutá desková konstrukce (s torzní tuhostí) dvousměrné a trojsměrné příhradové desky a) půdorys a boční pohled na příhradovou ortogonální desku, b) půdorys a boční pohled na trojsměrnou desku
65 Podepření strukturálních konstrukcí velké koncentrace smykových sil u podpor
66 Příklady strukturálních deskových konstrukcí aplikace na ortogonálním a trojúhelníkovém půdorysu (a,b) spojitá dvousměrná deska (c) čtvercové (a,c) a kosočtverečné (b) sítě o
67 Příklad strukturálního prostorového rámu o velká variabilita tvarů, podpor i půdorysů
68 US Pavilon Montreal Expo 67 (B. Fuller 1967)
69 Biosféra Eden Cornwall (GB) Dvouvrstvá strukturální kopule (systém Mero)
70 Lanové sítě a membrány
71 Základní principy stabilizace tvaru tažené konstrukce pomocí předpětí (viz přednáška tažené konstrukce) staticky účinný opěrný systém (viz přednáška tažené konstrukce)
72 2012 VeloPark London G.B., 2012
73 THTR-300 cable-net dry cooling tower (Germany)
74 Denver International Airport
75 Pavillion Downtown Wellington Australia
76 Tensegrity
77
78 Historie vynález R. Buckminster Fuller 1961 oddělení tahu a tlaku v konstrukci
79 Sculpture
80 Needle tower by Kenneth Snelson
81 Tensegrity domes
82 1992 Georgia Dome, Atlanta - USA (Scott Braley) délka 227m
83 Konstrukce ve tvaru minimální plochy
84
85 Konstrukce ve tvaru minimální plochy lze získat experimentálně ponořením drátu představujícího dané okraje do mýdlového roztoku, nebo výpočtem je namáhána ve všech místech stejně velikými tahovými napětími hlavní křivosti v libovolném bodě plochy jsou stejně velké, ale mají opačná znaménka
86 Konstrukční využití principu z hlediska napjatosti je ideální plošnou konstrukcí lze provést lanovou sítí, skořepinou
87 Německý pavilon Expo 67 Montreal (Frei, O. 1972) Georgia dome -
88 Stromové sloupy
89 1998 Gare do Oriente, Lisabon - Portugal (Calatrava)
90 1991 Stansted Airport UK (Foster)
91 Konstrukce obvodových stěn velkých výšek (téma nebylo z časových důvodů zařazeno)
Prostorová tuhost rovinných konstručních systémů
Prostorová tuhost rovinných konstručních systémů Ztužení halového objektu příčné ztužení = zachycení příčných sil (x) podélné ztužení = zachycení podélných (y) zajištění stability tlačených částí konstrukcí
POZEMNÍ STAVITELSTVÍ I
POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora
ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI
ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI KONSTRUKČNÍ SYSTÉMY POZEMNÍCH STAVEB Halové stavby Konstrukční
Tlačené konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016
Tlačené konstrukce Působení a vlastnosti obloukové konstrukce Typy obloukových konstrukcí rovinné působení jednostupňové strukturální vícestupňové válcová klenba válcová dvouvrstvá struktura oblouková
Konstrukce s převažujícím ohybovým namáháním
Konstrukce s převažujícím ohybovým namáháním Statické působení konstrukcí s převažujícím ohybovým namáháním Účinek zatížení a svislé reakce na oddělené části vyvolává ohybový moment M, který musí být v
Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016
Rámové konstrukce Obsah princip působení a vlastnosti rámové konstrukce statická a tvarová řešení optimalizace tvaru rámu zachycení vodorovných sil stabilita rámu prostorová tuhost Uspořádání a prvky rámové
4 Halové objekty a zastřešení na velká rozpětí
4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické
KONSTRUKČNÍ SYSTÉMY BUDOV II KOMPLEXNÍ PŘEHLED
KONSTRUKČNÍ SYSTÉMY BUDOV II KOMPLEXNÍ PŘEHLED 1 STAVEBNĚ KONSTRUKČNÍ TŘÍDĚNÍ jedno a vícepodlažní konstrukce halové a velkorozponové konstrukce výškové konstrukce speciální konstrukce (superkonstrukce
Prostorové konstrukce - rošty
Prostorové konstrukce - rošty a) princip působení roštu, b) uspořádání nosníků v pravoúhlé c) kosoúhlé, d) šestiúhelníkové, e) trojúhelníkové osnově, f) příhradový rošt 14.4.2010 Nosné konstrukce III 1
M pab = k(2 a + b ) + k(2 a + b ) + M ab. M pab = M tab + k(2 a + b )
Míra tuhosti styku sloupu a příčle = M p : M t 1 Moment příčle (průvlaku) při tuhém styku M tab = k(2 a + b ) + M ab při pružném připojení M pab = k(2 a + b ) + M ab M pab = k(2 a + b ) + k(2 a + b ) +
STROPNÍ KONSTRUKCE Petr Hájek 2009
STROPNÍ KONSTRUKCE FUNKCE A POŢADAVKY Základní funkce a poţadavky architektonická funkce a poţadavky - půdorysná variabilita - estetická funkce - konstrukční tloušťka stropu statická funkce a poţadavky
KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Nosné konstrukce budov
Nosné konstrukce budov Základní koncept budovy jedna statička mi říkala, že jsou to stejně jenom nosníky a konzoly Koncept výškové budovy dominantní vodorovné zatížení je přenášeno účinkem konzoly celkový
Rámové konstrukce Konstrukce zastřešení namáhané převážně tlakem Vladimír Žďára, FSV ČVUT Praha 2012
Rámové konstrukce Ukázky rámových konstrukcí Železobetonový rám - Henebique (1892) Betonový předepjatý rám Dřevěná rámová konstrukce Podle vazníky D.N.K s.r.o Expo 2000 Hannover Ocelová rámová konstrukce
Modulová osnova. systém os, určující polohu hlavních nosných prvků
Modulová osnova systém os, určující polohu hlavních nosných prvků čtvercová, obdélníková, (trojúhelníková, lichoběžníková, kosodélná) pravidelná osnova - opakovatelnost dílů, detailů, automatizace při
Modulová osnova. systém os, určující polohu hlavních nosných prvků
Modulová osnova systém os, určující polohu hlavních nosných prvků čtvercová, obdélníková, (trojúhelníková, lichoběžníková, kosodélná) pravidelná osnova - opakovatelnost dílů, detailů, automatizace při
Prostorová tuhost. Nosná soustava. podsystém stabilizační. podsystém gravitační. stropy, sloupy s patkami, základy. (železobetonové), jádra
Prostorová tuhost Nosná soustava podsystém gravitační přenáší zatížení vyplývající z působení gravitačních sil stropy, sloupy s patkami, základy podsystém stabilizační ztužidla, zavětrování, rámové vazby,
Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D.
Konstrukční systémy I Třídění, typologie a stabilita objektů Ing. Petr Suchánek, Ph.D. Zatížení a namáhání Konstrukční prvky stavebního objektu jsou namáhány: vlastní hmotností užitným zatížením zatížením
KONSTRUKČNÍ SYSTÉMY HALOVÝCH STAVEB
téma přednášek: KONSTRUKČNÍ SYSTÉMY HALOVÝCH STAVEB Obsah přednášek: Funkce a součásti halových a velkoobjemových objektů Konstrukční systém halového objektu vývoj ohýbaný, tlačený a tažený konstrukční
KONSTRUKCE POZEMNÍCH STAVEB
6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle
KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VODOROVNÉ NOSNÉ KONSTRUKCE
VODOROVNÉ NOSNÉ KONSTRUKCE STAVITELSTVÍ I. FAKULTA ARCHITEKTURY ČVUT PRAHA VODOROVNÉ NOSNÉ KONSTRUKCE Základní funkce a požadavky architektonická funkce a požadavky - variabilita vnitřního prostoru - estetická
Haly velkých rozpětí Nosné konstrukce III 1
Haly velkých rozpětí 8.4.2010 Nosné konstrukce III 1 Systémy zastřešení Zastřešení na velké rozpětí podle způsobu namáhání ohyb tlak tah kombinace rovinné prostorové rovinné prostorové rovinné prostorové
TECHNOLOGIE STAVEB TECHNOLOGIE STAVEB PODLE KONSTRUKCE. Jitka Schmelzerová 2.S
TECHNOLOGIE STAVEB TECHNOLOGIE STAVEB PODLE KONSTRUKCE Jitka Schmelzerová 2.S Konstrukční systém - je celek složený z navzájem propojených konstrukčních prvků a subsystémů, které jsou vzhledem k vnějšímu
Konstrukce namáhané převážně tahem
Konstrukce namáhané převážně tahem Tažené konstrukční systémy 1. visuté konstrukce 2. zavěšené konstrukce 3. pneumatické konstrukce materiálové varianty o ocelová lana o lepené dřevo o membrány Rozdělení
Doporučen. ená literatura: Viz intranet
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Petr Šimůnek Nosné konstrukce - AL01 1. přednp ednáška Harmonogram přednp
Konstrukce s převažujícím tahovým namáháním. Zavěšené konstrukce Visuté konstrukce Pneumatické konstrukce
Konstrukce s převažujícím tahovým namáháním Zavěšené konstrukce Visuté konstrukce Pneumatické konstrukce Zavěšené konstrukce Působení a vlastnosti zavěšené konstrukce Řetězové mosty (Schnirch 1839, 1848)
Haly velkých rozpětí. Nosné konstrukce III 1
Haly velkých rozpětí Nosné konstrukce III 1 Systémy zastřešení Nosné konstrukce III 2 Ohyb nosníky soustava PUMS Nosné konstrukce III 3 Ohyb -rámy zastřešení kluziště Nosné konstrukce III 4 Ohyb -lomenice
Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.
Výpočet spojovacích prostředků a spojů (Prostý smyk) Průřez je namáhán na prostý smyk: působí-li na něj vnější síly, jejichž účinek lze ekvivalentně nahradit jedinou posouvající silou T v rovině průřezu
KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Příklad č.1. BO002 Prvky kovových konstrukcí
Příklad č.1 Posuďte šroubový přípoj ocelového táhla ke styčníkovému plechu. Táhlo je namáháno osovou silou N Ed = 900 kn. Šrouby M20 5.6 d = mm d 0 = mm f ub = MPa f yb = MPa A s = mm 2 Střihová rovina
Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )
Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a
NK 1 Konstrukce. Co je nosná konstrukce?
NK 1 Konstrukce Přednášky: Prof. Ing. Milan Holický, DrSc., Doc. Ing. Karel Lorenz, CSc., FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc. - Uspořádání konstrukce - Zásady
Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání
Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Stavební technologie
S třední škola stavební Jihlava Stavební technologie 1. Konstrukční systémy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace
HALOVÉ OBJEKTY ÚČEL A FUNKCE
HALOVÉ OBJEKTY ÚČEL A FUNKCE OBJEKTY HALOVÉHO TYPU UMOŽŇUJÍ TVORBU VOLNÝCH VNITŘNÍCH PROSTOR S MALÝM POČTEM NEBO ZCELA BEZ VNITŘNÍCH PODPOR.UŽÍVAJÍ SE ZEJMÉNA TEHDY, NEVYŽADUJE-LI PROVOZNÍ USPOŘÁDÁNÍ VÍCE
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
Příklad č.1. BO002 Prvky kovových konstrukcí
Příklad č.1 Posuďte šroubový přípoj ocelového táhla ke styčníkovému plechu. Táhlo je namáháno osovou silou N Ed = 900 kn. Šrouby M20 5.6 d = mm d 0 = mm f ub = MPa f yb = MPa A s = mm 2 Střihová rovina
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
POZEMNÍ STAVITELSTVÍ II Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora
Zastřešení staveb - krovy
ČVUT v Praze Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB 2 - K Zastřešení staveb - krovy Ing. Jiří Pazderka, Ph.D. Katedra konstrukcí pozemních staveb K124 LS 2011/12 Základní rozdělení krovových soustav
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019
Sada 2 Dřevěné a ocelové konstrukce
S třední škola stavební Jihlava Sada 2 Dřevěné a ocelové konstrukce 12. Ocelové nosníky Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona:
Témata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů Stavební konstrukce Adresa.: Střední průmyslová
Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,
Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
KONSTRUKČNÍ SYSTÉMY POZEMNÍCH STAVEB STAVEBNÍ SOUSTAVY HALOVÝCH OBJEKTŮ NAMÁHANÉ PŘEVÁŽNĚ TLAKEM
KONSTRUKČNÍ SYSTÉMY POZEMNÍCH STAVEB STAVEBNÍ SOUSTAVY HALOVÝCH OBJEKTŮ NAMÁHANÉ PŘEVÁŽNĚ TLAKEM Ústav stavitelství I Fakulta architektury České vysoké učení technické v Praze Ing.Vladimír Jirka, Ph.D.
Skořepinové konstrukce. tloušťka stěny h a, b, c
Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Katedra ocelových a dřevěných konstrukcí Obsah přednášek 2 Stabilita stěn, nosníky třídy 4. Tenkostěnné za studena tvarované profily. Spřažené ocelobetonové spojité
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
NK 1 Konstrukce 2. Volba konstrukčního systému
NK 1 Konstrukce 2 Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta
Uplatnění prostého betonu
Prostý beton -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový průřez -Konstrukční ustanovení - Základová patka -Příklad Uplatnění prostého
Prostorové prefabrikované systémy. HABITAT 67 - Montreal, Canada
Prostorové prefabrikované systémy HABITAT 67 - Montreal, Canada HABITAT 67 - Montreal, Canada Prostorové jednotky Nakagin Tokyo (hotel, nyní domov důchodců, 1971) Prostorové jednotky New Jersey, USA
14/03/2016. Obsah přednášek a cvičení: 2+1 Podmínky získání zápočtu vypracovaná včas odevzdaná úloha Návrh dodatečně předpjatého konstrukčního prvku
133 BK5C BETONOVÉ KONSTRUKCE 5C 133 BK5C BETONOVÉ KONSTRUKCE 5C Lukáš VRÁBLÍK B 725 konzultace: úterý 8 15 10 email: web: 10 00 lukas.vrablik@fsv.cvut.cz http://concrete.fsv.cvut.cz/~vrablik/ publikace:
KONSTRUKČNÍ SYSTÉMY HALOVÝCH STAVEB
Ing. Vladimír Jirka, Ph.D. Ústav stavitelství I fakulty architektury učební texty předmětu POZEMNÍ STAVITELSTVÍ KONSTRUKČNÍ SYSTÉMY HALOVÝCH STAVEB 2006 Obsah Členění konstrukčních systémů halových staveb
1 Použité značky a symboly
1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req
Zastřešení staveb - krovy
ČVUT v Praze Fakulta stavební PS01 - POZEMNÍ STAVBY 1 Zastřešení staveb - krovy doc. Ing. Jiří Pazderka, Ph.D. Katedra konstrukcí pozemních staveb Zpracováno v návaznosti na původní přednášky KP20 prof.
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ
KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Návrh prutů stabilizovaných sendvičovými panely
Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky Návrh prutů stabilizovaných sendvičovými panely Michal Jandera České vysoké učení technické v Praze Obsah prezentace sendvičovým panelem
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví
5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými
Průmyslové haly. Halové objekty. překlenutí velkého rozponu snížení vlastní tíhy konstrukce. jednolodní haly vícelodní haly
Průmyslové haly Halové objekty překlenutí velkého rozponu snížení vlastní tíhy konstrukce průmyslové haly do 30 m rozpětí haly velkých rozpětí jednolodní haly vícelodní haly bez jeřábové dráhy jeřáby mostové
Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.
Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením
KONSTRUKCE KŘÍDLA - I
Konstrukční prvky KONSTRUKCE KŘÍDLA - I - Podélné nosné prvky (podélný nosný systém) nosníky, podélné výztuhy - Příčné nosné prvky žebra - Potah - Závěsy, spojovací kování Nosníky přenos zatížení ohybové
Nosné konstrukce AF01 ednáška
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce AF01 3. přednp ednáška Deska působící ve dvou směrech je
NCCI: Koncepce a typické uspořádání jednoduchých prutových konstrukcí
NCCI: Koncepce a typické uspořádání jednoduchých prutových konstrukcí V NCCI je předložena koncepce jednoduchých konstrukcí pro vícepodlažní budovy. Příčná stabilita je zajištěna buď ztužujícími jádry,
pedagogická činnost
http://web.cvut.cz/ki/ pedagogická činnost -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový ýprůřez - Konstrukční ustanovení - Základová
Conclusions from Rehabilitation of Existing Timber Roof Structures 1
Stavby pro plnění funkcí lesa Odborný seminář Brno, 14. října j a 2010 0 doc.ing. Bohumil STRAKA, CSc. Charakteristický příčný řez lávky: 1-podlaha, 2-trámové hlavní nosníky, 3-zábradlí Konstrukční skladba
Účinky smršťování a dotvarování a opatření pro omezení jejich nepříznivého působení
PŘEDNÁŠKY Účinky smršťování a dotvarování a opatření pro omezení jejich nepříznivého působení Pozemní stavby Pozemní stavby rámové konstrukce Vliv dotvarování a smršťování na sloupy a pilíře střední sloupy
9. Velkorozponové haly Konstrukce z tuhých prvků, visuté konstrukce, zavěšené konstrukce, pneumatické konstrukce s lany.
9. Velkorozponové haly Konstrukce z tuhých prvků, visuté konstrukce, zavěšené konstrukce, pneumatické konstrukce s lany. Zvolené rozdělení podle hlavních nosných prvků: (doplnit o plášť, zavětrování, stěny
BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K
BETONOVÉ KONSTRUKCE B03C +B03K Betonové konstrukce - B03C +B03K SKOŘEPINOVÉ KONSTRUKCE Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (
INŽENÝRSKÉ KONSTRUKCE
INŽENÝRSKÉ KONSTRUKCE sylabus přednášek pro předmět 133BK02 a Michal Drahorád Marek Foglar INŽENÝRSKÉ KONSTRUKCE Stavební konstrukce nebo jejich části, které nelze primárně klasifikovat jako pozemní stavby,
PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM
PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM 1. Úvod Tvorba fyzikálních modelů, tj. modelů skutečných konstrukcí v určeném měřítku, navazuje na práci dalších řešitelských týmů z Fakulty stavební Vysokého
Betonové a zděné konstrukce Přednáška 1 Jednoduché nosné konstrukce opakování
Betonové a zděné konstrukce Přednáška 1 Jednoduché nosné konstrukce opakování Ing. Pavlína Matečková, Ph.D. 2016 Pavlína Matečková, LP-A-303 pavlina.mateckova@vsb.cz http://homel.vsb.cz/~zid75/ Zkouška:
Výpočet sedání kruhového základu sila
Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody
BO004 KOVOVÉ KONSTRUKCE I
BO004 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ VYPRACOVAL: Ing. MARTIN HORÁČEK, Ph.D. AKADEMICKÝ ROK: 2018/2019 Obsah Dispoziční řešení... - 3 - Příhradová vaznice... - 4 - Příhradový vazník... - 6 - Spoje
STAVEBNÍ KONSTRUKCE. Témata k profilové ústní maturitní zkoušce. Školní rok 2014 2015. Třída 4SVA, 4SVB. obor 36-47-M/01 Stavebnictví
Střední průmyslová škola stavební Střední odborná škola stavební a technická Ústí nad Labem, příspěvková organizace tel.: 477 753 822 e-mail: sts@stsul.cz www.stsul.cz STAVEBNÍ KONSTRUKCE Témata k profilové
Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce
133 BK4K BETONOVÉ KONSTRUKCE 4K Betonové konstrukce BK4K Program výuky Přednáška Týden Datum Téma 1 40 4.10.2011 2 43 25.10.2011 3 44 12.12.2011 4 45 15.12.2011 Skořepinové konstrukce úvod Úvod do problematiky
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce Návrh
Dřevěné konstrukce 8
Statickokonstrukční zásady nízkopodlažní dřevostavby Dřevěné konstrukce 8 1 Základní konstrukční úvaha: tuhost Primárním konstrukčním prvkem je nosník resp. sloupek kostra kostrové systémy Kostrový systém
Část 3: Analýza konstrukce. DIF SEK Část 3: Analýza konstrukce 0/ 43
DIF SEK Část 3: Analýza konstrukce DIF SEK Část 3: Analýza konstrukce 0/ 43 Požární odolnost řetěz událostí Θ zatížení 1: Vznik požáru ocelové čas sloupy 2: Tepelné zatížení 3: Mechanické zatížení R 4:
Konstrukce krovů II Návrh nosné konstrukce šikmého zastřešení 1 Vladimír Žďára, FSV ČVUT Praha 2013
Konstrukce krovů II Prostorová tuhost a stabilita o prostorová tuhost konstrukce o prostorová stabilita konstrukce Zatížení konstrukce o X - příčná zatížení, tuhost, ztužení o Y - příčná zatížení, tuhost,
Betonové konstrukce (S)
Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy
Problematika navrhování železobetonových prvků a ocelových styčníků a jejich posuzování ČKAIT semináře 2017
IDEA StatiCa Problematika navrhování železobetonových prvků a ocelových styčníků a jejich posuzování ČKAIT semináře 2017 Praktické použití programu IDEA StatiCa pro návrh betonových prvků Složitější případy
STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA
STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 04. VYZTUŽOVÁNÍ - TRÁMY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284
STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA
STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 03. VYZTUŽOVÁNÍ - DESKOVÉ PRVKY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284
Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017
Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním
STŘECHY - VAZNÍKY. 16. Typy vazníků, úvod. Digitální učební materiál projektu: SŠS Jihlava - šablony
S třední škola stavební Jihlava STŘECHY - VAZNÍKY 16. Typy vazníků, úvod Digitální učební materiál projektu: SŠS Jihlava - šablony Ing. Jaroslava Lorencová 2012 Projekt je spolufinancován Evropským sociálním
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
Různé druhy spojů a spojovací součásti (rozebíratelné spoje)
Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Kolíky, klíny, pera, pojistné a stavěcí kroužky, drážkování, svěrné spoje, nalisování aj. Nýty, nýtování, příhradové ocelové konstrukce. Ovládací
Technologie staveb podle konstrukce. Technologie staveb Jan Kotšmíd,3.S
Technologie staveb podle konstrukce Technologie staveb Jan Kotšmíd,3.S Konstrukční třídění Konstrukční systém-konstrukční systém je celek tvořený navzájem propojenými konstrukčními prvky a subsystémy,
při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní
při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní prvek, stádium II dříve vznikají trhliny ohybové a
8. Střešní ztužení. Patky vetknutých sloupů. Rámové haly.
8. Střešní ztužení. Patky vetknutých sloupů. Rámové haly. Střešní ztužení hal: ztužidla příčná, podélná, svislá. Patky vetknutých sloupů: celistvé, dělené, plastický a pružný návrh. Rámové halové konstrukce:
Úvod do pozemního stavitelství
Úvod do pozemního stavitelství 6/12 ZS 2018 Ing. Michal Kraus, Ph.D. Budovy jsou členění na trakty - prostorové části budovy vymezené dvěma vzájemně následnými vertikálními rovinami, procházejícími geometrickými
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné