9. ročník SOUBOR OTÁZEK
|
|
- Pavel Matoušek
- před 6 lety
- Počet zobrazení:
Transkript
1 9. ročník SOUBOR OTÁZEK 2018
2 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo Belgie Španělsko Portugalsko Česká republika Norsko Maďarsko Švýcarsko Rakousko Irsko Polsko Litva Dánsko Srbsko Francie Slovinsko Švédsko Itálie - Celkem /Pangea Česká republika /pangeamathematic /pangeasoutez.cz
3 Školní kolo 9. ročník 1. PRŮBĚH ZÁPASU Kolik různých průběžných výsledků mohl mít hokejový zápas, který skončil 2 : 2? a) 2 b) 4 c) 6 d) 8 e) NEJDRAŽŠÍ POTRAVINY SVĚTA Nejdražší potravinou na světě je údajně kaviár z bílého jesetera. Zatímco cena 1 kg zlata se dlouhodobě pohybuje okolo 1 milionu Kč, za tuto delikatesu bychom zaplatili víc. Urči přibližnou cenu za 1 kg, když víš, že za 20 g zlata bys koupil asi jen 12 g tohoto kaviáru. a) 1,5 milionu Kč b) 1,6 milionu Kč c) 1,7 milionu Kč d) 1,8 milionu Kč e) 1,9 milionu Kč
4 3. ŽELEZNIČNÍ SÍŤ Česká republika má jednu z nejhustších železničních sítí na světě. Přibližnou celkovou délku kolejí na našem území v kilometrech určíš jako hodnotu následujícího výrazu: ( ) Zdroj: a) b) c) d) e) ODJEZDY AUTOBUSŮ Z autobusového terminálu v době ranní špičky odjíždí tři autobusové linky: autobus 223 s intervalem 6 minut, linka 240 s intervalem 8 minut a linka 250 odjíždí po 12 minutách. Jednou za čas vyjedou tyto autobusy ve stejnou chvíli. Kolikrát v době mezi 5:30 až 8:30 tato situace nastane, jestliže poprvé vyjedou společně v 5:41? a) 5krát b) 6krát c) 7krát d) 8krát e) 9krát
5 Školní kolo 9. ročník 5. NEJDELŠÍ LETECKÁ LINKA Nejdelší pravidelná letecká linka na světě spojuje novozélandský Auckland s hlavním městem Kataru Dauhá. Let trvá 17 hodin a 30 minut a cestující při něm překonají vzdálenost tisíc/e kilometrů. Chybějící údaj určíš jako součin tří nejmenších prvočísel vydělený absolutní hodnotou rozdílu dvou libovolných po sobě jdoucích lichých čísel. Zdroj: a) 2,5 b) 3 c) 5 d) 10 e) KUDY KAM? Dětský závod na in-line bruslích se koná v parku, jehož cesty mají přibližně tvar obdélníku o rozměrech 400 m x 300 m a jeho úhlopříček. Start i cíl je na stejném místě, označen písmenem S. Po cestě jsou umístěna čtyři kontrolní stanoviště (A, B, C, D), kterými musí každý závodník projet. Jejich pořadí si ale může zvolit. Které z následujících tvrzení není pravdivé? a) Trasa SCDBAS je jedna z nejkratších. b) Trasa SABCDBS měří přibližně 1600 m. c) Trasa SBDABCS je delší než trasa SBCDBAS. d) Nejkratší trasa měří přibližně 1,5 km. e) Trasa SCBDAS je stejně dlouhá jako trasa SABDCS.
6 7. ČÍM JSI PŘIJEL? Děti ve třídě mají za úkol narýsovat kruhový ( koláčový ) diagram, který znázorňuje počty jejich odpovědí na otázku, kterým dopravním prostředkem přijely do školy. Z narýsovaného diagramu jsou patrné následující informace: Kruh je rozdělen na čtyři výseče: metro, autobus, tramvaj, auto. Výseč metro pokrývá přesně jednu třetinu kruhu. Osm dětí přijelo autem. Pětina dětí zvolila jako dopravní prostředek autobus. Kolik dětí jelo tramvají? a) 5 b) 6 c) 7 d) 8 e) 9 8. CENA AUTA Běžné osobní auto po pěti letech provozu ztratí okolo 50 % své původní hodnoty a v dalších letech jeho cena klesá asi o 2,5 % ročně z původní ceny. Nová Škoda Octavia Combi stojí aktuálně Kč. Jakou hodnotu vozu zaokrouhlenou na tisíce můžeme očekávat po 10 letech provozu? a) Kč b) Kč c) Kč d) Kč e) Kč Zdroj:
7 Školní kolo 9. ročník 9. VOZOVÝ PARK ČR Jedním z nejrozšířenějších způsobů dopravy je použití osobního auta. Abys měl(a) alespoň hrubou představu o rozsahu a složení vozového parku ČR, vyřeš následující soustavu rovnic a zjistíš, že - v ČR je v provozu x miliónu/ů osobních aut, - průměrné stáří těchto vozů je y roku/ů. 3x + y = 31,3 4(x + 2y) = 138,4 a) x = 5, 0 y = 16, 3 b) x = 5, 6 y = 14, 5 c) x = 6, 2 y = 12, 7 d) x = 6, 5 y = 11, 8 e) x = 7, 1 y = 10, 0
8 10. CISTERNA Cisterna přibližně tvaru válce položeného na bok (jako na obrázku) je plněna konstantním přítokem 90 litrů za minutu. Z následujících možností vyber tu, která zachycuje graf závislosti výšky hladiny na době plnění. Pozn.: vodorovná osa čas, svislá osa výška hladiny Zdroj: a) b) c) d) e) 11. ZPRÁVA Z TISKU Výjimečný výkon v jízdě na koloběžce předvedl Ing. Miroslav Frais z Ostravy ve dnech V sólové jízdě ujel za 24 hodin km, a vytvořil tak v této disciplíně československý, dost možná i světový rekord. Dosáhl ho na asfaltovém povrchu na okruhu v prostoru Komenského sadu v Ostravě. Rekordní počet ujetých kilometrů se rovná vzdálenosti z Ostravy do Vídně. (podle serveru kolobezkovyportal.cz)
9 Školní kolo 9. ročník Pro doplnění chybějícího údaje zaokrouhleného na celé kilometry ti postačí vědět, že rekordman se pohyboval průměrnou rychlostí 3,81 m/s. a) 289 b) 329 c) 362 d) 374 e) KAMARÁDI Následující věty popisují čtyři kamarády, z nichž každý provozuje jiný sport a každý má jiný oblíbený dopravní prostředek. Karel nehraje golf ani kriket. Marek na rozdíl od Lukáše nemá rád cestování letadlem. Ten, který hraje kriket, jezdí rád autobusem. Karel nerad jezdí metrem. Ten, kdo jezdí vlakem, rád hraje frisbee. Oblíbeným dopravním prostředkem golfisty je letadlo. Marek hraje rád badminton. Kdo z kamarádů hraje frisbee? a) Karel b) Marek c) Lukáš d) Jan e) nelze určit
10 13. KOLIK OTOČEK? Průměr kol u bicyklu se uvádí v palcích. Pro potřeby této úlohy si představme bicykl s průměrem kol 28 palců a zařazeným převodem 48/16 a na něm cyklistu, který nepřestává šlapat. Kolik přibližně otoček musí udělat pedály, aby cyklista urazil 1 míli? 1. pozn.: 1 míle = palců 2. pozn.: Číselné označení převodu určuje, kolik zubů mají ozubená kola u pedálů (48) a na zadním kole (16). a) 720 b) 480 c) 360 d) 240 e) LANOVKA Velmi specifickým dopravním prostředkem je lanovka. Spojená je obvykle s prostředím hor, ale známé jsou i městské lanové dráhy. Nejdelší lanovka u nás vozí pasažéry na Komáří vížku v Krušných horách už od roku Její délku v metrech určíš jako čtyřciferné číslo následujících vlastností:
11 Školní kolo 9. ročník jeho prvočíselný rozklad má tvar p 2 r hodnota jeho první cifry umocněná na hodnotu druhé cifry dá hodnotu čtvrté cifry Zdroj: a) b) c) d) e) KOLIK RYCHLOSTÍ? Výrobci jízdních kol uvádějí počet rychlostí kola získaný jako součin počtů ozubených kol u pedálů a na zadním kole. Tak například pokud jsou u pedálů tři ozubená kola a vzadu sedm, uvede výrobce: 21 rychlostí. Možná ale i ze své zkušenosti víte, že některé rychlosti (kombinace převodů) jsou si velmi podobné a některé mohou být dokonce zcela totožné. Zjistěte, kolik má ve skutečnosti různých rychlostí kolo s těmito počty zubů na ozubených kolech: u pedálů 48, 36, 26, vzadu 12, 14, 16, 18, 21, 24, 28. a) 20 b) 29 c) 18 d) 17 e) 16
12 Poděkování Rádi bychom poděkovali všem, kteří pracovali na tvorbě a sestavování úloh pro žáky a kteří se podíleli na organizaci soutěže. Děkujeme tvůrcům úloh: Anně Marek, učitelka matematiky, Praha PhDr. Michaele Kaslové, lektorka KMDM, Pedagogická fakulta, Univerzita Karlova v Praze Mgr. Haně Schmidové, učitelka matematiky, Praha Mgr. Pavlu Sovičovi, učitel matematiky, Praha PhDr. Evě Semerádové, Ph.D., učitelka matematiky, Praha Mgr. Bc. Karlu Zavřelovi, učitel matematiky, fyziky a informatiky, Praha Naše díky patří také Poradnímu výboru Pangea: PhDr. Michaele Kaslové, KMDM, Pedagogická fakulta, Univerzita Karlova v Praze Prof. RNDr. Marii Demlové, Csc., KM, Fakulta elektrotechnická, ČVUT v Praze doc. Mgr. Petru Knoblochovi, Dr., KNM, Matematicko-fyzikální fakulta, Univerzita Karlova v Praze doc. Ing. Ľubomíře Dvořákové, Ph.D., KM, Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze Ing. Marku Kovářovi, MBE, Fakulta strojní, ČVUT v Praze, Národohospodářská fakulta, VŠE, Praha Děkujeme generálnímu partnerovi soutěže: Meridian International School, s.r.o. Veškerá práva jsou vyhrazena. Úlohy náleží soutěži Pangea. Kopírování není dovoleno. "Designed by Freepik"
13 Generální partner Partner Partneři Školní kolo : Finálové kolo :
4. ročník SOUBOR OTÁZEK
4. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
6. ročník SOUBOR OTÁZEK
6. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
6. ročník SOUBOR OTÁZEK. -Finále-
6. ročník SOUBOR OTÁZEK -Finále- 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10
SOUBOR OTÁZEK. 6. ročník
SOUBOR OTÁZEK 6. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
SOUBOR OTÁZEK. 8. ročník
SOUBOR OTÁZEK 8. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
Pokud budu chtít obejít válcovou bronzovou kašnu stojící na náměstí v Brně, tak po pěti stejně dlouhých krocích budu ve čtvrtině cesty.
2017 SOUBOR OTÁZEK 4. ročník Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
4. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
SOUBOR OTÁZEK. 5. ročník
SOUBOR OTÁZEK 5. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
1. POKLADNA Prodavač sčítal na elektronické pokladně 3 ceny. Pokaždé zmáčkl u ceny jiné jednociferné číslo. Celkový součet vyšel 9 Kč.
2017 SOUBOR OTÁZEK 5. ročník Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
6. ročník SOUBOR OTÁZEK
6. ročník SOUBOR OTÁZEK 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
SOUBOR OTÁZEK. 9. ročník
SOUBOR OTÁZEK 9. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
6. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
Mezinárodní matematická soutěž Pangea v Evropě Norsko Rakousko Irsko Polsko Litva 3 900
6. ročník SOUBOR OTÁZEK -Finále2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 127 848 10 Belgie 8 250
SOUBOR OTÁZEK. 7. ročník
SOUBOR OTÁZEK 7. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
Mezinárodní matematická soutěž Pangea v Evropě Norsko Rakousko Irsko Polsko Litva 3 200
5. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
7. ročník SOUBOR OTÁZEK
7. ročník SOUBOR OTÁZEK 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
8. ročník SOUBOR OTÁZEK
8. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
SOUBOR OTÁZEK. 8.ročník
2015 SOUBOR OTÁZEK 8.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
SOUBOR OTÁZEK. -Finále- 8. ročník
SOUBOR OTÁZEK -Finále- 8. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
8. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
7. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
SOUBOR OTÁZEK. 7.ročník
2015 SOUBOR OTÁZEK 7.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
9. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
SOUBOR OTÁZEK. ročník
2015 SOUBOR OTÁZEK 5. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
9. ročník. SOUBOR OTÁZEK -Finále-
9. ročník SOUBOR OTÁZEK -Finále- 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko
SOUBOR OTÁZEK. 6.ročník
2015 SOUBOR OTÁZEK 6.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
SOUBOR OTÁZEK. ročník
2015 SOUBOR OTÁZEK 4. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
SOUBOR OTÁZEK. -Finále- 6. ročník
SOUBOR OTÁZEK -Finále- 6. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068
7. ročník SOUBOR OTÁZEK
7. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
SOUBOR OTÁZEK. -Finále- 9. ročník
SOUBOR OTÁZEK -Finále- 9. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068
Mezinárodní matematická soutěž Pangea v Evropě Norsko Rakousko Irsko Polsko Litva 3 900
9. ročník SOUBOR OTÁZEK -Finále2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 127 848 10 Belgie 8 250
SOUBOR OTÁZEK - Finále - 4. ročník
SOUBOR OTÁZEK - Finále - 4. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5
SOUBOR OTÁZEK. 7.ročník
Finále 2015 SOUBOR OTÁZEK 7.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
Počet registrovaných účastníků. Počet registrovaných účastníků. Název země. Název země. 1 Německo Portugalsko 7 000
4. ročník SOUBOR OTÁZEK -Finále- 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko
8. ročník SOUBOR OTÁZEK
8. ročník SOUBOR OTÁZEK 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
SOUBOR OTÁZEK. 8.ročník
Finále 2015 SOUBOR OTÁZEK 8.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
8. ročník. SOUBOR OTÁZEK -Finále-
8. ročník SOUBOR OTÁZEK -Finále- 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko
BROZURA.
2015 BROZURA www.pangea-edu.cz OBSAH 1 3 5 6 8 9 11 13 15 17 HISTORIE PANGEA A JEJÍ FILOZOFIE TVŮRCI ÚLOH PORADNÍ VÝBOR PANGEA ORGANIZACE SOUTĚŽE ŠKOLNÍ KOLO FINÁLOVÉ KOLO & ZÁVĚREČNÁ CEREMONIE STATISTIKA
*+, -+. / 0( & -.7,7 8 (((!# / (' 9., /,.: (; #< # #$ (((!# / "
!"!#$ %" &' ( ) *+, -+. / 0(123! " ## $%%%& %' 45 6& -.7,7 8 (((!# / (' 9., /,.: (; #< # #$ (((!# / " * = < & ' ; '.: '. 9'= '= -+. > 8= '7 :' ' '.8 55, 5' 9'= '= -?7 +., '+.8 @ A:.. =. 0(1237 7 : :' @.
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
5. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
SOUBOR OTÁZEK -Finále- 5. ročník
SOUBOR OTÁZEK -Finále- 5. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068
Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)
Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží
6. ročník. SOUBOR OTÁZEK -Finále-
6. ročník SOUBOR OTÁZEK -Finále- 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko
8. ročník SOUBOR OTÁZEK. -Finále-
8. ročník SOUBOR OTÁZEK -Finále- 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10
MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 9. třída
MATEMATIKA 9. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705
9. ročník SOUBOR OTÁZEK
9. ročník SOUBOR OTÁZEK 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
MATEMATIKA 6. ROČNÍK. Sada pracovních listů CZ.1.07/1.1.16/
MATEMATIKA 6. ROČNÍK CZ.1.07/1.1.16/02.0079 Sada pracovních listů Resumé Sada pracovních listů zaměřená na opakování, procvičení a upevnění učiva 6. ročníku přirozená čísla a desetinná čísla. Může být
Pohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné
Funkce. Úkol: Uveďte příklady závislosti dvou veličin.
Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost
Příloha č. 1: Vstupní soubor dat pro země EU 1. část
Příloha č. 1: Vstupní soubor dat pro země EU 1. část Reálný HDP na obyvatele v Eurech Belgie 27500 27700 27800 28600 29000 29500 30200 30200 29200 29600 29800 29009 Bulharsko 2300 2500 2600 2800 3000 3200
1BMATEMATIKA. 0B5. třída
1BMATEMATIKA 0B5. třída 1. Kdybych dostal 5 Kč od své sestry, která má 10 Kč, měli bychom oba stejně. Kolik korun mám? (A) žádné (B) 5 Kč (C) 10 Kč (D) 15 Kč 2. Otci je 40 let. Věk Adélky je roven čtvrtině
GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?
GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
materiál č. šablony/č. sady/č. materiálu: Autor:
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_
Kód uchazeče ID:... Varianta:
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 01 Kód uchazeče ID:.................. Varianta: 1. Mějme dvě čísla zapsaná v sedmičkové soustavě 3456 7 a 3310 7. Vyjádřete
9. ročník SOUBOR OTÁZEK. -Finále-
9. ročník SOUBOR OTÁZEK -Finále- 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá
materiál č. šablony/č. sady/č. materiálu: Autor:
Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVCE_
MODEL ZAMĚSTNANOSTI A PŘEPRAVY
MODEL ZAMĚSTNANOSTI A PŘEPRAVY Kateřina Pojkarová Anotace:Článek se zabývá vzájemnými vazbami, které spojují počet zaměstnaných osob a osobní přepravu vyjádřenou jako celek i samostatně pro různé druhy
Neotvírej, dokud nedostaneš pokyn od zadávajícího!
9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz
ZIMNÍ PNEUMATIKY V EVROPĚ
MZA č. 55/2006 technické informace ZIMNÍ PNEUMATIKY V EVROPĚ Pneumatiky s hroty a sněhové řetězy Ve všech evropských státech je hloubka vzorku pneumatik u osobních automobilů předepsána na 1,6 mm, v některých
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,
Srovnávací studie jednotkových nákladů mezi silniční a železniční nákladní dopravou v zemích EU a Švýcarsku
České vysoké učení technické v Praze, Fakulta dopravní Srovnávací studie jednotkových nákladů mezi silniční a železniční nákladní dopravou v zemích EU a Švýcarsku Objednatel: ČD Cargo, a.s. Jankovcova
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Název projektu: Poznáváme sebe a svět, chceme poznat více
Název projektu: Poznáváme sebe a svět, chceme poznat více Registrační číslo projektu: CZ.1.07/1.4.00/21.2970 Identifikátor materiálu Název klíčové aktivity Vzdělávací oblast Vzdělávací předmět / obor Tematický
Ceník přepravce BALIKSERVIS Doba přepravy
Ceník přepravce BALIKSERVIS 1 2 3 5 10 15 20 25 30 40 50 70 100 150 200 300 400 500 700 1-1 1 55 550 596 685 716 974 1 236 1 565 1 893 2 469 2 993 SK SK 1 SK 5 90 179 180 190 211 232 239 255 272 304 349
1. března 2019 Vydává Ministerstvo dopravy
PŘEPRAVNÍ A TARIFNÍ VĚSTNÍK Povinně zveřejňované informace na základě právních předpisů Číslo 4/2019 1. března 2019 Vydává Ministerstvo dopravy ISSN 1805-9864 Obsah Věci přepravní a tarifní... 2 007/04/2019
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry
MATEMATIKA. Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno. Ing. Milan Hausner, ZŠ Lupáčova, Praha 3
MATEMATIKA Vypracovala skupina pro přípravu standardů z matematiky ve složení: Vedoucí: Koordinátor za VÚP: Členové: Doc. RNDr. Eduard Fuchs, CSc., Přírodovědecká fakulta MU Brno RNDr. Eva Zelendová, VÚP
PŘÍLOHA SDĚLENÍ KOMISE EVROPSKÉMU PARLAMENTU A RADĚ
EVROPSKÁ KOMISE V Bruselu dne 21.12.2016 COM(2016) 829 final ANNEX 1 PŘÍLOHA SDĚLENÍ KOMISE EVROPSKÉMU PARLAMENTU A RADĚ Přizpůsobení stropu vlastních zdrojů a stropu prostředků na závazky v souvislosti
specializovaný dopravní software IDOS informace o dopravním spojení
specializovaný dopravní software IDOS informace o dopravním spojení Rozvržení Struktura prezentace: 1. Evropský kontext vyhledávání v jízdních řádech 2. České řešení vyhledávače (IDOS, resp. CIS) Obsah
POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením
II. Veřejně dostupné služby v mobilních sítích elektronických komunikací
II. Veřejně dostupné služby v mobilních sítích elektronických komunikací Plán určen pro stanice podnikové/ bytové/ Nabito 350 Měrná jednotka Cena včetně DPH [Kč] 1 Připojení k síti (zřízení, aktivace)
Autorka: Pavla Dořičáková
Rychlost Obsahový cíl: - Žák pracuje s veličinami dráha, rychlost, čas. - Žák pracuje se základními jednotkami pro dráhu, rychlost, čas. Jazykový cíl: - Žák používá správné tvary přídavných jmen a jejich
SOUBOR OTÁZEK. ročník
Finále 2015 SOUBOR OTÁZEK 5. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
1. Míra ekonomické aktivity
Práce SOUHRN Míra ekonomické aktivity starší populace ve věku 65-69 let je nejvyšší na Islandu, v Norsku, Portugalsku a Rumunsku. Nejniţší na Slovensku, v Belgii, Francii a Maďarsku. Průměrné hrubé roční
Rovnoměrný pohyb IV
2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí
Mezinárodní matematická soutěž Pangea v Evropě Norsko Rakousko Irsko Polsko Litva 3 900
7. ročník SOUBOR OTÁZEK -Finále2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 127 848 10 Belgie 8 250
Obecné informace: Typy úloh a hodnocení:
Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:
Rovnoměrný pohyb II
2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,
Záruka mobility. e-vozy Volkswagen.
Záruka mobility. e-vozy Volkswagen. Asistence v tuzemsku bezplatná telefonní linka 800 123 000 nebo 261 104 363 Asistence v zahraničí +420 261 104 363 Záruka mobility pro nové čistě elektrické osobní vozy
Matematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
Alkohol, léky a narkotika. Základní statistické ukazatele ve formě komentovaných grafů
Alkohol, léky a narkotika Základní statistické ukazatele ve formě komentovaných grafů Dokument mapuje dopravní nehody pod vlivem alkoholu, omamných látek, léků a narkotik a jejich následky 20.7.2016 Obsah
Matematika s chutí Proč? S kým? A jak?
Matematika s chutí Proč? S kým? A jak? První otázka Proč jsme se rozhodli realizovat projekt Matematika s chutí? Důvod první: Motivace a vztah k matematice Od roku 2003 (PISA věnovaná především matematice)
SOUBOR OTÁZEK. ročník
inále 2015 SOUBOR OTÁZEK 4. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU
Desetinná čísla pracovní listy pro 6. 7. ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU irena.budinova@seznam.cz Moderní výuka by se měla co nejvíce orientovat na individualitu
Vývoj demografické struktury obyvatelstva v zemích EU. Tomáš Fiala Jitka Langhamrová Katedra demografie Fakulta informatiky a statistiky VŠE Praha
Vývoj demografické struktury obyvatelstva v zemích EU Tomáš Fiala Jitka Langhamrová Katedra demografie Fakulta informatiky a statistiky VŠE Praha Seznam zemí, zkratky a barvy použité v grafech Dánsko-DK,
České vysoké učení technické v Praze vyhlašuje 8. ročník celoškolské FREKTORYSOVY SOUTĚŽE. v aplikované matematice
FREKORYSOVY SOUĚŽE Fakulty jaderné a fyzikálně inženýrské ČVU, rojanova 13, Praha 2, 120 00. Kontaktní osoba (Fakulta dopravní - Ústav aplikované matematiky): RNDr. Olga Vraštilová vrastilova@fd.cvut.cz
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
Financování VVŠ v ČR
Financování VVŠ v ČR Počet studentů veřejných vysokých škol 400 000 350 000 300 000 250 000 200 000 150 000 100 000 50 000 0 prezenční studium distanční a kombinované studium počet studentů v roce 2016
Jak správně určit cestovní náhrady při pracovní cestě v roce 2018
Jak správně určit cestovní náhrady při pracovní cestě v roce 2018 Náhrada jízdních výdajů Použije-li zaměstnanec (na žádost zaměstnavatele) soukromé motorové vozidlo, přísluší mu za každý 1 km jízdy základní
KDO JSOU BRŇANÉ ZDROJE MĚS?TA
ZDROJE MĚSTA DOPRAVA Vnější dopravní obslužnost Brna Brno má strategickou polohu mezi třemi hlavními městy Prahou, Bratislavou a Vídní, kdy do všech těchto měst se dá dostat do dvou hodin. Zrychlení by
Dosavadní zapojení subjektů ČR do výzev WIDESPREAD. Informační den v oblasti Šíření excelence a podpora účasti v programu Horizont 2020
Dosavadní zapojení subjektů ČR do výzev WIDESPREAD Informační den v oblasti Šíření excelence a podpora účasti v programu Horizont 2020 Anna Vosečková 12. 11. 2015 VÝZVY 2014 2015 TÉMA OZNAČENÍ OTEVŘENÍ
PREZENTACE PRODUKTU ČD BIKE
PREZENTACE PRODUKTU ČD BIKE Strana 1 24.11.2014 PŮJČOVNY KOL ČD Doplňková služba ČD funguje již od roku 2003. V provozu od dubna do října každého roku (některé půjčovny celoročně) V roce 2014 aktuálně