9. ročník SOUBOR OTÁZEK. -Finále-
|
|
- Jarmila Horáčková
- před 6 lety
- Počet zobrazení:
Transkript
1 9. ročník SOUBOR OTÁZEK -Finále- 2017
2 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo Francie Polsko Dánsko Španělsko Belgie Slovenská republika Itálie Maďarsko Švédsko Česká republika Irsko Rakousko Slovinsko Portugalsko Litva Švýcarsko Norsko Celkem /Pangea Česká republika /pangeamathematic /PraguePangea
3 Finálové kolo 9. ročník 1. TVARY OKEN Na obrázku jsou tři typy oken. Seřaď je vzestupně podle obsahu (plochy) okna včetně rámu. Rozměry jsou uvedené v milimetrech. A B C a) B, A, C b) C, A, B c) A, B, C d) B, C, A e) Nelze jednoznačně uspořádat. 2. ROZETA Na obrázku je rozeta kostela sv. Matěje v anglickém Richmondu, která zobrazuje Krista a dvanáct apoštolů. Tvar rozety je souměrný podle několika os. Urči nejmenší a největší ostrý úhel, který spolu tyto osy svírají. Zdroj: a) 15, 90 b) 20, 180 c) 30, 75 d) 15, 75 e) 30, 180
4 3. VÝŠKA HLADINY Na obrázku vidíš nádobu, která se obvykle používá v lékařských ordinacích. Vyber z nabízených možností, který z grafů zachycuje závislost výšky hladiny na čase při konstantní rychlosti přítoku kapaliny. Vodorovná osa: čas Svislá osa: vzdálenost hladiny ode dna nádoby a) b) c) d) e) 4. BOHOVÉ LÉKAŘŮ, LÉKAŘI BOHŮ V řecké mytologii je považován za boha lékařství Asklépios, údajný mystický léčitel ze 13. století před naším letopočtem. Jedna z jeho dcer se stala bohyní čistoty a zdraví. Na obrázku vidíš její sochu vytvořenou kolem roku 200 našeho letopočtu. Dodnes se její sochy či obrazy objevují na místech, jako jsou lázně, lékařské fakulty či lékárny. Její jméno zjistíš vyřešením následující úlohy: Zdroj: goo.gl/dp047t
5 Finálové kolo 9. ročník Stín osmimetrového sloupu na lázeňské kolonádě měřil v pravé poledne 3 m. Jak dlouhý stín v tu chvíli měl člověk o výšce 184 cm, který stál vedle sloupu? a) 69 cm (Hygiea) b) 72 cm (Meditrine) c) 77 cm (Panakeia) d) 85 cm (Epione) e) 90 cm (Mnémosyné) 5. VSTUPNÉ Skupina dvaceti dětí a dvou učitelů se chystá společně navštívit jeden ze známých českých hradů. Základní vstupné je 180 Kč pro dospělé a 100 Kč pro děti. Pokladní ale nabízí několik variant slev. Která je v tomto případně nejvýhodnější? a) Na každých 10 dětí jeden dospělý zdarma. b) Jednotná sleva pro školní skupiny: 15 % na dětském vstupném, 50 % pro dospělé. c) Na každých 5 platících dětí jedno dítě zdarma. d) Skupinová sleva: za každého člena 1% z celkové částky, maximálně však 20 %. e) Na každých 8 dětí jeden dospělý zdarma.
6 6. SRDCE JAKO PUMPA Naše srdce funguje jako čerpadlo, které zajišťuje proudění krve v celém těle. Napadlo vás někdy, kolik krve vlastně naše srdce vypumpuje za celý život? Je to obrovské množství. Pro lepší představu zkus vypočítat, kolik asi velkých cisternových aut by naše srdce jako čerpadlo dokázalo za život naplnit. Potřebné údaje (průměrné): výkon srdce: 5 litrů za minutu délka života: 80 let objem cisterny: litrů Poznámka: výsledné číslo je pouze dolní odhad, udaný výkon srdce je za klidového stavu těla. V případě fyzické námahy stoupne až několikanásobně. a) 7 b) 70 c) 700 d) e) REGENERACE Schopnost obnovy buněk se nazývá regenerace. Možná jste někde četli, že naše tělo se kompletně obnoví každých 7 let. Je to poměrně rozšířená fáma, ale není pravdivá. Většina buněk v našem těle skutečně jednoho dne odumře a je nahrazena novými, ale jednak se to děje u různých buněk různě rychle (např. červené krvinky 3 4 měsíce, bílé krvinky více než rok), a jednak některé buňky (např. v mozku) se neobnovují vůbec. Vyřešením následující úlohy o procentech zjistíš, jaké buňky v lidském těle se obnovují nejrychleji: v průměru každé tři dny. Urči, kolik je 60 % z 50 % ze 40 % ze 30 % z 20 % z 10 % z milionu.
7 a) (játra) b) 7200 (pokožka) c) 1200 (srdce) d) 720 (žaludek) e) nelze určit (sítnice) Finálové kolo 9. ročník 8. HRACÍ KOSTKY Na prvním obrázku vidíš síť hrací kostky. Na druhém obrázku jsou čtyři tyto kostky poskládané k sobě podle pravidla, že dotýkající se stěny mají na sobě stejný počet teček. Urči počet teček na modré stěně. a) 2 b) 3 c) 4 d) 5 e) 6
8 9. V ČEKÁRNĚ V čekárně u lékaře se sešli tři kamarádi: Karel, Petr a Jan. Přišli jeden po druhém a každý měl k návštěvě lékaře jiný důvod. Na základě následujících nápověd rozhodni, která z nabízených odpovědí je celá pravdivá. Karel přišel k lékaři kvůli bolesti zad. Ten, koho bolelo břicho, přišel jako druhý. Petr říkal, že břicho už ho naštěstí dlouho nebolelo. Ten, který přišel jako první, si stěžoval na bolavá záda. a) Petra bolí v krku a Jan přišel jako třetí. b) Karel nepřišel druhý a Jan nepřišel kvůli bolesti břicha. c) Petra nebolí v krku a Jan přišel jako druhý. d) Ten, kdo přišel jako druhý, se nejmenoval Karel ani Petr. e) Jan nepřišel jako třetí a Petra nebolí v krku. 10. ŘEŠENÍ ROVNICE Která z následujících rovnic má právě dvě reálná řešení? a) 2 0 b) 3 0 c) d) 1 0 e) 3 3
9 11. LETOHRÁDEK HVĚZDA Finálové kolo 9. ročník Renesanční stavbu z poloviny 16. století najdeš v Pražské části Liboc. Na satelitním snímku vidíš střechu stavby, jejíž tvar tvoří pozoruhodně přesnou šesticípou hvězdu. Úsečka vyznačená na obrázku červeně ve skutečnosti měří 45 m. Úsečka vyznačená žlutě má délku 27 m. Následující tvrzení se týkají kružnice vepsané a opsané této šesticípé hvězdě. Vyber to, které neplatí. Zdroj: a) Délka kružnice opsané je o dvě třetiny delší než délka kružnice vepsané. b) Délka kružnice vepsané je kratší o m než délka kružnice opsané. c) Délka kružnice vepsané je 0,6 krát kratší než délka kružnice opsané. d) Obsah mezikruží vymezeného zmíněnými kružnicemi je menší než obsah kruhu ohraničeného vepsanou kružnicí. e) Obsah kruhu ohraničeného opsanou kružnicí je větší než čtverečního kilometru.
10 12. TRANSPLANTACE SRDCE Všechny transplantační operace jsou velmi náročné a rizikové, ale u transplantace srdce to platí ještě dvojnásob. Vůbec první úspěšnou transplantaci srdce provedl v roce 1967 Christiaan Barnard. Pacient, pravda, nežil po transplantaci příliš dlouho, ale od té doby medicína velmi pokročila. V pražském IKEMu (Institut klinické a experimentální medicíny) provádí kolem padesáti těchto operací ročně a více než 85 % pacientů žije s novým srdcem déle než 10 let. Jubilejní transplantaci srdce provedli v roce Chybějící letopočet určíš jako hodnotu neznámé x v následujícím diagramu. x 2 4 +( 1) 8 : a) 2007 b) 2008 c) 2010 d) 2014 e) DOJEZDOVÉ ČASY Sanitky jsou opravdu rychlé. Jejich dojezdové časy musí být ze zákona kratší než 20 min., např. středočeská záchranka má dlouhodobý průměrný dojezdový čas 9 min. Představme si modelovou situaci, ve které je tento čas (9 min) přesným časem jízdy sanitního vozu. Urči průměrnou rychlost sanitky, když víš, že tatínek jel posledně do nemocnice svým autem 15 minut a palubní počítač udal jako průměrnou rychlost jízdy hodnotu 53 km/h.
11 Finálové kolo 9. ročník a) 80 km/h b) 82,5 km/h c) 85 km/h d) 88 km/h e) 91,5 km/h 14. KUBISMUS Nový umělecký a architektonický styl, který se začal rozvíjet přibližně před 100 lety, se nazývá kubismus. Jeho jméno je odvozeno od latinského cubus, krychle. Ne snad, že by se tehdy vše skládalo z krychlí, ale základní geometrické tvary se staly podstatnou částí inspirace malířů i architektů. Na snímku je známá Kovařovicova vila na pražském Vyšehradě postavená podle návrhu architekta Josefa Chochola. Inspirováni kubismem, určete, které z následujících tvrzení o krychlích je nepravdivé. a) Krychle s dvojnásobnou délkou hrany má osminásobný objem. b) Krychle se čtyřnásobným povrchem má dvojnásobnou délku hrany. c) Součet délek hran krychle se zdvojnásobí, zdvojnásobím-li délku hrany. d) Krychle s délkou hrany 6 má povrch a objem vyjádřený stejnou hodnotou (až na jednotky, samozřejmě). e) Neexistuje krychle s celočíselnou délkou hrany, která by měla stejnou hodnotu povrchu a součtu délek hran (až na jednotky, samozřejmě).
12 15. RŮSTOVÉ KŘIVKY Pozorně si prohlédni následující grafy. Je na nich zachycena závislost ročního přírůstku tělesné výšky na věku zvlášť pro dívky a chlapce, navíc s historickým vývojem. Rozhodni, které z nabízených tvrzení z těchto grafů vyplývá. Chlapci Dívky
13 Finálové kolo 9. ročník a) Chlapci rostli v minulosti rychleji. b) Tělesný růst chlapců i dívek se mezi 3. a 18. rokem věku neustále zpomaluje. c) Dívky rostou nejrychleji ve věku okolo 11 let věku. d) Dívky rostly v minulosti rychleji. e) Ve věku okolo 13 let věku rostou chlapci rychleji než dívky. 16. CHODNÍK KOLEM ZÁHONU Na obrázku vidíš plánek parkového záhonu tvaru nekonvexního šestiúhelníku. Proměnné a, b udávají délku v metrech, a > b. Záhon bude třeba obehnat chodníkem ze čtvercových dlaždic o rozměrech 0,5 x 0,5 m. Šířka chodníku bude 1 m. Urči počet potřebných dlaždic (spáry mezi dlaždicemi zanedbej). a) b) c) d) e)
14 17. KREVNÍ CESTY Pokud bychom sečetli délku všech cév a žil v lidském těle včetně těch nejmenších, dostaneme pozoruhodně vysoké číslo (v kilometrech). Určíš ho jako hodnotu následujícího složeného zlomku: a) km b) km c) km d) km e) km 18. ČESKÁ STOPA VE SVĚTĚ I Eva Jiřičná Eva Jiřičná (nar. 1939) prožila podstatnou část svého života ve Velké Británii. Tam budí ohlas zejména její návrhy interiérů bytů i obchodů. Na obrázku je schodiště vytvořené pro jeden londýnský byt. V Česku bylo podle jejího návrhu postaveno několik staveb v jejím rodném městě, např. multifunkční kulturní centrum či budova univerzitní knihovny. Zjisti, o jaké město se jedná. Určíš ho tak, že vypočteš třetí odmocninu z rozdílu součtu prvních pěti nejmenších prvočísel a absolutní hodnoty rozdílu dvou libovolných po sobě jdoucích přirozených čísel. a) -2 (Praha) b) 2 (Olomouc) c) 3 (Zlín) d) 4 (Ústí nad Labem) e) 5 (Brno) Zdroj:
15 Finálové kolo 9. ročník 19. ČESKÁ STOPA VE SVĚTĚ II Eva Le Peutrec Architektka Eva Le Peutrec (nar. 1980) navrhuje především výškové budovy. Pokud správně určíš chybějící číslo v následující tabulce, zjistíš, v jaké zemi se tyčí mrakodrapy na obrázku. Zdroj: ,5 0 0,5 2 4,5 8 a) 8,5 (Francie) b) 10,5 (USA) c) 12,5 (Čína) d) 14,5 (Spojené arabské emiráty) e) 16,5 (Singapur)
16 20. ČESKÁ STOPA VE SVĚTĚ III Jan a Ivana Bendovi Manželé Bendovi žijí v Číně, kde bylo podle jejich plánů realizováno již více než... staveb. Na obrázku je hotel Crowne Plaza v čínském městě Suzhou. Číslo chybějící v textu má následující vlastnost: Lze ho zapsat jako součin a b c a, přičemž a, b, c jsou přirozená čísla a právě jedno z čísel a, b, c není prvočíslo. Zdroj: a) 100 b) 200 c) 300 d) 400 e) ČESKÁ STOPA VE SVĚTĚ IV Jan Kaplický Jméno Jana Kaplického ( ) je velmi známé. Jeho budovy stojí především ve Velké Británii, kde prožil velkou část svého života. Na obrázku je nákupní centrum Selfridges, které bylo podle jeho plánů postaveno v roce 1999 ve městě Správnou odpověď zjistíš, pokud určíš počet celých čísel, která můžeme dosadit za proměnnou z do následujícího vztahu, aby nebyla porušena jeho platnost. Zdroj:
17 Finálové kolo 9. ročník a) 0 (Londýn) b) 3 (Manchester) c) 5 (Birmingham) d) 6 (Liverpool) e) nekonečně mnoho (Brighton) 22. VĚŽ Z KOSTEK Mám k dispozici tři modré kostky, jednu bílou a jednu žlutou. Kostky stavím na sebe a skládám z nich věž, všechny musím použít. Podle kterého z následujících pravidel může vzniknout právě deset různých věží? a) Alespoň dvě modré kostky se musí dotýkat. b) Všechny modré kostky musí být u sebe. c) Žlutá kostka se musí dotýkat dvou modrých. d) Bílá kostka je přímo nad žlutou. e) Bílá kostka nesmí být nad žlutou.
18 23. MYSLÍM SI ČÍSLO Myslím si číslo. Pokud v něm prohodím číslice na místech desítek a stovek, dostanu číslo o 270 menší než původní. Které z následujících tvrzení je pravdivé? a) Myšleným číslem je pouze číslo b) Úloha má kromě čísla 2749 právě devět dalších řešení. c) Pokud by bylo myšlené číslo čtyřciferné, má úloha právě deset řešení. d) Pokud by bylo myšlené číslo čtyřciferné, má úloha právě sto řešení. e) Ani jedna z předchozích odpovědí není pravdivá. 24. NENÍ JEHLAN JAKO JEHLAN Kolikrát větší objem má pravidelný čtyřboký jehlan než pravidelný trojboký jehlan, mají-li oba stejně dlouhé podstavné hrany a stejnou výšku? Poznámka: Pro objem jehlanu najdeš v tabulkách pro ZŠ následující vzorec (Sp = obsah podstavy, v = výška jehlanu): V= 1 3 S p v
19 Finálové kolo 9. ročník a) krát b) krát c) krát d) krát e) krát 25. KUŽEL BEZ KUŽELE Vypočti objem tělesa, které vznikne z kužele vykrojením menšího kužele. Podstavy obou kuželů jsou v jedné rovině, splývají také jejich osy souměrnosti. Osovým řezem obou kuželů je rovnoramenný trojúhelník. Větší z těchto trojúhelníků má základnu délky 2a a výšku na tuto základnu délky a. Rozměry menšího trojúhelníku jsou poloviční. Vypočti objem popsaného tělesa. Poznámka: Pro objem rotačního kužele najdeš v tabulkách pro ZŠ následující vzorec (r = poloměr podstavy, v = výška kužele): V = 1 3 πr 2 v a) b) c) d) e) Ani jedna z odpovědí a d není správná.
20 Poděkování Rádi bychom poděkovali všem, kteří pracovali na tvorbě a sestavování úloh pro žáky a kteří se podíleli na organizaci soutěže. Děkujeme tvůrcům úloh: Anně Marek, učitelka matematiky, Praha PhDr. Michaele Kaslové, lektorka KMDM, Pedagogická fakulta, Univerzita Karlova v Praze Mgr. Haně Schmidové, učitelka matematiky, Praha Mgr. Pavlu Sovičovi, učitel matematiky, Praha PhDr. Evě Semerádové, Ph.D., učitelka matematiky, Praha Mgr. Bc. Karlu Zavřelovi, učitel matematiky, fyziky a informatiky, Praha Naše díky patří také Poradnímu výboru Pangea: PhDr. Michaele Kaslové, KMDM, Pedagogická fakulta, Univerzita Karlova v Praze Prof. RNDr. Marii Demlové, Csc., KM, Fakulta elektrotechnická, ČVUT v Praze doc. Mgr. Petru Knoblochovi, Dr., KNM, Matematicko-fyzikální fakulta, Univerzita Karlova v Praze doc. Ing. Ľubomíře Dvořákové, Ph.D., KM, Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze Bc. Marku Kovářovi, MBE, Fakulta strojní, ČVUT v Praze, Národohospodářská fakulta, VŠE, Praha Děkujeme generálnímu partnerovi soutěže: Meridian International School, s.r.o. Veškerá práva jsou vyhrazena. Úlohy náleží soutěži Pangea. Kopírování není dovoleno. "Designed by Freepik"
21 Generální partner Partner Partneři Školní kolo : Finálové kolo :
6. ročník SOUBOR OTÁZEK. -Finále-
6. ročník SOUBOR OTÁZEK -Finále- 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10
SOUBOR OTÁZEK. 5. ročník
SOUBOR OTÁZEK 5. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
Pokud budu chtít obejít válcovou bronzovou kašnu stojící na náměstí v Brně, tak po pěti stejně dlouhých krocích budu ve čtvrtině cesty.
2017 SOUBOR OTÁZEK 4. ročník Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
SOUBOR OTÁZEK. 8. ročník
SOUBOR OTÁZEK 8. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
1. POKLADNA Prodavač sčítal na elektronické pokladně 3 ceny. Pokaždé zmáčkl u ceny jiné jednociferné číslo. Celkový součet vyšel 9 Kč.
2017 SOUBOR OTÁZEK 5. ročník Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
SOUBOR OTÁZEK. 6. ročník
SOUBOR OTÁZEK 6. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
4. ročník SOUBOR OTÁZEK
4. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
6. ročník SOUBOR OTÁZEK
6. ročník SOUBOR OTÁZEK 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
6. ročník SOUBOR OTÁZEK
6. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
4. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
7. ročník SOUBOR OTÁZEK
7. ročník SOUBOR OTÁZEK 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
9. ročník SOUBOR OTÁZEK
9. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
Mezinárodní matematická soutěž Pangea v Evropě Norsko Rakousko Irsko Polsko Litva 3 900
6. ročník SOUBOR OTÁZEK -Finále2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 127 848 10 Belgie 8 250
SOUBOR OTÁZEK. -Finále- 8. ročník
SOUBOR OTÁZEK -Finále- 8. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
6. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
SOUBOR OTÁZEK. 9. ročník
SOUBOR OTÁZEK 9. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
8. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
SOUBOR OTÁZEK. 7. ročník
SOUBOR OTÁZEK 7. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
SOUBOR OTÁZEK. 8.ročník
2015 SOUBOR OTÁZEK 8.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
SOUBOR OTÁZEK. 7.ročník
Finále 2015 SOUBOR OTÁZEK 7.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
8. ročník SOUBOR OTÁZEK
8. ročník SOUBOR OTÁZEK 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10 000 2 Polsko
SOUBOR OTÁZEK. ročník
2015 SOUBOR OTÁZEK 4. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
SOUBOR OTÁZEK. ročník
2015 SOUBOR OTÁZEK 5. ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
9. ročník. SOUBOR OTÁZEK -Finále-
9. ročník SOUBOR OTÁZEK -Finále- 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
9. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
SOUBOR OTÁZEK. -Finále- 9. ročník
SOUBOR OTÁZEK -Finále- 9. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068
SOUBOR OTÁZEK. 7.ročník
2015 SOUBOR OTÁZEK 7.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
Mezinárodní matematická soutěž Pangea v Evropě Norsko Rakousko Irsko Polsko Litva 3 200
5. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
7. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
SOUBOR OTÁZEK. -Finále- 6. ročník
SOUBOR OTÁZEK -Finále- 6. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068
SOUBOR OTÁZEK. 6.ročník
2015 SOUBOR OTÁZEK 6.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
SOUBOR OTÁZEK. 8.ročník
Finále 2015 SOUBOR OTÁZEK 8.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
Mezinárodní matematická soutěž Pangea v Evropě Norsko Rakousko Irsko Polsko Litva 3 900
9. ročník SOUBOR OTÁZEK -Finále2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 127 848 10 Belgie 8 250
SOUBOR OTÁZEK - Finále - 4. ročník
SOUBOR OTÁZEK - Finále - 4. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
8. ročník SOUBOR OTÁZEK
8. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
8. ročník. SOUBOR OTÁZEK -Finále-
8. ročník SOUBOR OTÁZEK -Finále- 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko
Matematika 9. ročník
Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: SVFMFRIH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
1. Opakování učiva 6. ročníku
. Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla
Matematický KLOKAN 2005 kategorie Junior
Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet
7. ročník SOUBOR OTÁZEK. -Finále-
7. ročník SOUBOR OTÁZEK -Finále- 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10
Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
Matematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
8. ročník SOUBOR OTÁZEK. -Finále-
8. ročník SOUBOR OTÁZEK -Finále- 2017 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 137 718 10 Francie 10
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila
STEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),
Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný
CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13
CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu
Příklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3
y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou
TEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
MATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává
Počet registrovaných účastníků. Počet registrovaných účastníků. Název země. Název země. 1 Německo Portugalsko 7 000
4. ročník SOUBOR OTÁZEK -Finále- 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko
CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
Obecné informace: Typy úloh a hodnocení:
Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:
7. ročník SOUBOR OTÁZEK
7. ročník SOUBOR OTÁZEK 2018 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 118 848 10 Belgie 8 250 2 Španělsko
Základní škola Blansko, Erbenova 13 IČO
Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:
CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte
MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň
MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3
Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ
Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení
MATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
MATEMATIKA. základní úroveň obtížnosti DIDAKTICKÝ TEST MAGZD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! Didaktický test obsahuje 20 úloh.
MATEMATIKA základní úroveň obtížnosti MAGZD0C0T0 DIDAKTICKÝ TEST Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
DOVEDNOSTI V MATEMATICE
Hodnocení výsledků vzdělávání žáků 9. tříd ZŠ 2006 MA1ACZZ906DT DOVEDNOSTI V MATEMATICE didaktický test A Testový sešit obsahuje 13 úloh. Na řešení úloh máte 40 minut. Všechny odpovědi pište do záznamového
Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla
list 1 / 9 M časová dotace: 4 hod / týden Matematika 7. ročník (M 9 1 01) provádí početní operace v oboru celých a racionálních čísel; čte a zapíše celé číslo, rozliší číslo kladné a záporné, určí číslo
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
DOVEDNOSTI V MATEMATICE
Hodnocení výsledků vzdělávání žáků 9. tříd ZŠ 2006 MA2ACZZ906DT DOVEDNOSTI V MATEMATICE didaktický test B Testový sešit obsahuje 13 úloh. Na řešení úloh máte 40 minut. Všechny odpovědi pište do záznamového
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při
Předmět: MATEMATIKA Ročník: 6.
Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,
Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na
Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na mnohostěny a rotační tělesa. - Mnohostěny mají stěny, hrany
Přijímačky nanečisto - 2011
Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové
CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Mezinárodní matematická soutěž Pangea v Evropě Litva Rakousko Srbsko Norsko
5. ročník SOUBOR OTÁZEK 2019 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 126 926 10 Portugalsko 7 000 2
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Tatínek zaplatil za rozříznutí
Vyučovací předmět / ročník: Matematika / 4. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
1BMATEMATIKA. 0B9. třída
BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za
II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
Matematický KLOKAN 2006 kategorie Student
atematický KLOKN 2006 kategorie Student (pro 3. a 4. roč. SŠ a septimu a oktávu osmiletých gymnázií) Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě