CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
|
|
- Karla Dvořáková
- před 8 lety
- Počet zobrazení:
Transkript
1 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
2 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově prodávají tři kouzelné hůlky různých délek. K nejmenší z nich byste museli přidat ještě 50 % její délky, aby byla stejně dlouhá jako nejdelší hůlka. Hůlka prostřední délky by se naopak musela o 20 % zkrátit, aby byla stejně dlouhá jako nejmenší hůlka. Nejdelší hůlka je o 48 mm delší než hůlka prostřední délky. 1 Jakou délku má prostřední hůlka? Výsledek vyjádřete v celých mm. VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 2 max. 2 body Jsou dány dva trojúhelníky ABC 1 a ABC 2. Pro výšky v 1, v 2 na společnou stranu AB obou trojúhelníků platí, že v 1 je o 30 mm delší než v 2. Společná strana AB obou trojúhelníků má délku 40 mm. Obsah trojúhelníka ABC 1 je třikrát větší než obsah trojúhelníka ABC 2. 2 Určete délku výšky v 2. (Výsledek zaokrouhlete na celé mm.) 1 bod 2 Maturita z matematiky 09
3 VÝCHOZÍ TEXT K ÚLOZE 3 Jsou dány dva různé body A[7, 2], B[2, 3]. 3 Najděte průsečík P x osy úsečky AB s osou x. max. 2 body VÝCHOZÍ TEXT K ÚLOZE 4 Mezi osadami Kocourkov a Myšinec je 40 km dlouhá asfaltová cesta. Ve stejnou chvíli vyjelo z Kocourkova auto a z Myšince cyklista. Auto jelo průměrnou rychlostí třikrát vyšší než cyklista. Cyklista s autem se setkají po půl hodině jízdy. 4 Jak daleko od Myšince se setkají? VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 5 1 bod V obchodě s herními komponenty se prodává balení koulí na pool (jeden z druhů kulečníkové hry). V kufříku je umístěno 16 koulí vyrobených z fenolové pryskyřice. 9 koulí je v plné barvě (žlutá, červená, fialová, zelená, oranžová, hnědá, modrá, černá a bílá). 7 dalších koulí je ve stejných barvách, ale mají bílý kulový pás. Koule se skládají do kufříku, v němž je nahoře 8 míst a dole rovněž 8 míst pro koule. Do horní části se vždy umísťuje černá a zbylé plnobarevné koule vyjma bílé, která se umísťuje do dolní části spolu se všemi koulemi s bílým pásem. 1 bod 5 O kolik možností se liší odhad, který tvrdí, že existuje miliónů možností, jak koule v kufříku uspořádat? Maturita z matematiky 09 3
4 VÝCHOZÍ TEXT K ÚLOZE 6 Je dán výraz x2 + 4x(x + 1). (x + 1)(5x + 4) max. 3 body 6.1 Určete množinu všech hodnot reálné proměnné x, pro které je výraz definován. 6.2 Zjednodušte výraz. V záznamovém listu uveďte celý postup řešení. VÝCHOZÍ TEXT K ÚLOZE 7 Jsou dány krychle o objemu 64 cm 3 a pravidelný čtyřboký jehlan o stejné výšce a objemu jako krychle. max. 2 body 7 Rozhodněte o každém tvrzení ( ), zda je pravdivé (ANO), či nikoli (NE): 7.1 Povrch krychle je 96 cm Tělesová úhlopříčka krychle je delší než 7 cm. 7.3 Hrana podstavy jehlanu má délku 4 3 cm. 7.4 Hrana podstavy jehlanu je delší než jeho boční hrana. ANO NE VÝCHOZÍ TEXT K ÚLOZE 8 Jsou dány dvě nekonečné aritmetické posloupnosti, jejichž první člen je 3 a jejichž diference se liší o 1. 2 body 8 Která z možností A E určuje, o kolik se liší součty prvního sta jejich po sobě jdoucích členů? A) 1 B) 20 C) 300 D) 4950 E) Maturita z matematiky 09
5 VÝCHOZÍ TEXT K ÚLOZE 9 Je dán výraz (sinx + cosx) 2 1 pro x R. 2 body 9 Která z možností určuje výraz, který je danému výrazu pro všechna x R roven? A) (sinx + cosx 1)(sinx cosx + 1) B) (sinx cosx 1)(sinx + cosx + 1) C) 2sinx cosx D) sin 2 x + 2sinx cosx cos 2 x 1 E) 1 max. 4 body 10 Přiřaďte každé rovnici ( ) množinu, v níž leží všechna řešení této rovnice (A F) x = 5x 10.2 x 2 x x(x + 6) = 9 x x = 0 x 1 x 1 = 0 A) x (4; + ) B) x 2, 4) C) x ( 1; 1 D) x 2, 0) E) x ( ; 2) F) x ( ; 4 KONEC TESTU Maturita z matematiky 09 5
6 II. AUTORSKÉ ŘEŠENÍ VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově prodávají tři kouzelné hůlky různých délek. K nejmenší z nich byste museli přidat ještě 50 % její délky, aby byla stejně dlouhá jako nejdelší hůlka. Hůlka prostřední délky by se naopak musela o 20 % zkrátit, aby byla stejně dlouhá jako nejmenší hůlka. Nejdelší hůlka je o 48 mm delší než hůlka prostřední délky. 1 Jakou délku má prostřední hůlka? Výsledek vyjádřete v celých mm. max. 2 body Označíme délku prostřední hůlky y a délku nejkratší hůlky x. Protože délka nejdelší hůlky je o 50 % delší než délka nejkratší hůlky, má délku 1,5x. Protože délky prostřední hůlky by se musela o 20 % zkrátit (bylo by jí jen 80 %), aby měla stejnou délku jako nejkratší hůlka, platí vztah: I. 0,8y = x Nejdelší hůlku 1,5x délky bychom museli o 48 mm zkrátit, aby měla stejný rozměr jako prostřední hůlka, platí tedy: II. 1,5x 48 = y Řešením soustavy rovnic I. a II. získáme délky nejkratší a prostřední hůlky. I. 0,8y = x II. 1,5x 48 = y Vyjádřenou neznámou y z II. rovnice, dosadíme do rovnice I. 0,8(1,5x 48) = x 1,2x 38,4 = x 0,2x = 38,4 x = 38,4 0,2 x = 192 Dopočteme y a 1,5x. y = 1, = 240 1,5x = 1,5 192 = 288 Hůlky mají rozměry 192 mm, 240 mm a 288 mm. Zkouškou bychom měli ověřit, že platí zadané vztahy, tj ,5 = 240, 240 0,8 = 192 a = 240. Délka prostřední hůlky je 240 mm. Řešení: 240 mm 6 Maturita z matematiky 09
7 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 2 Jsou dány dva trojúhelníky ABC 1 a ABC 2. Pro výšky v 1, v 2 na společnou stranu AB obou trojúhelníků platí, že v 1 je o 30 mm delší než v 2. Společná strana AB obou trojúhelníků má délku 40 mm. Obsah trojúhelníka ABC 1 je třikrát větší než obsah trojúhelníka ABC 2. 2 Určete délku výšky v 2. (Výsledek zaokrouhlete na celé mm.) 1 bod Pro výšky v 1, v 2 trojúhelníků platí: v 1 = v mm. Pro obsahy S 1 a S 2 platí dle zadání: S 1 = 3S 2. Ze vztahu pro výpočet obsahu trojúhelníka pomocí výšky a odpovídající strany sestavíme rovnici. (40 mm) (v mm) = 3 (40 mm) v mm 2 = v 2 80 mm v 2 = 1200 mm2 = 15 mm 80 mm Kratší z výšek měří 15 mm. Řešení: 15 mm VÝCHOZÍ TEXT K ÚLOZE 3 Jsou dány dva různé body A[7, 2], B[2, 3]. 3 Najděte průsečík P x osy úsečky AB s osou x. max. 2 body Maturita z matematiky 09 7
8 Osa úsečky má směr o kolmý ke směru AB úsečky a prochází středem S úsečky. S = [ 7 + 2, ] = [ 9, ] AB = (2 7, 3 2) = ( 5, 1) (1, 5) = o K výpočtu souřadnic P x můžeme použít obecný nebo parametrický zápis rovnice osy. a) obecný zápis rovnice osy Normálový vektor osy o je rovnoběžný se směrem úsečky AB, tedy můžeme rovnou sestavit část obecné rovnice osy o. o: 5x + y + c = 0 Pro určení členu c využijeme bod S c = 0 c = 40 = o: 5x + y + 20 = 0 Souřadnice průsečíků P x získáme tak, že za y-ovou souřadnici v obecném zápisu přímky dosadíme 0 (y-ová souřadnice každého bodu na ose x). 5x = 0 x = 4 Průsečík P x má souřadnice [4, 0]. b) parametrický zápis rovnice osy Vytvoříme nyní parametrický zápis rovnice osy o pomocí jejího směrového vektoru o. o = {[ 9 + t, 5 +5t], t 2 2 R} Souřadnice průsečíků P x získáme tak, že za y-ovou souřadnici v parametrickém zápisu přímky dosadíme 0. 0 = 5 + 5t 5 = 10t t = Hodnotu parametru t dosadíme do x-ové souřadnice v parametrickém zápisu přímky. x = 9 + t x = 9 1 = Průsečík P x má souřadnice [4, 0]. Obrázek může sloužit k ověření poznatku. Řešení: P x [4, 0] 8 Maturita z matematiky 09
9 VÝCHOZÍ TEXT K ÚLOZE 4 Mezi osadami Kocourkov a Myšinec je 40 km dlouhá asfaltová cesta. Ve stejnou chvíli vyjelo z Kocourkova auto a z Myšince cyklista. Auto jelo průměrnou rychlostí třikrát vyšší než cyklista. Cyklista s autem se setkají po půl hodině jízdy. 4 Jak daleko od Myšince se setkají? 1 bod Dráha s mezi osadami má délku 40 km. Rychlost v cyklisty je třikrát nižší než auta, rychlost auta je tedy 3v. V místě setkání mají oba účastníci za sebou stejnou dobu jízdy t = 0,5 h. 3v t + v t = 40 km 4vt = 40 km v = 10 km t v = 10 km 0,5 h = 20 km h 1 Cyklista ujel za 0,5 hodiny dráhu v t, tj. (20 km h 1 ) (0,5 h) = 10 km. Cyklista a auto se setkají 10 km od Myšince. Jiné řešení (úvahou): Jestliže je rychlost auta třikrát vyšší než rychlost cyklisty, ujede auto za stejný časový interval třikrát vyšší dráhu, tj. poměr ujetých drah auta a cyklisty jsou v poměru 3 : 1. Pokud tedy vzdálenost obou osad 40 km rozdělíme v poměru 3 : 1, setkají se auto s cyklistu 30 km od osady Kocourkov a 10 km od osady Myšinec. Řešení: 10 km VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 5 V obchodě s herními komponenty se prodává balení koulí na pool (jeden z druhů kulečníkové hry). V kufříku je umístěno 16 koulí vyrobených z fenolové pryskyřice. 9 koulí je v plné barvě (žlutá, červená, fialová, zelená, oranžová, hnědá, modrá, černá a bílá). 7 dalších koulí je ve stejných barvách, ale mají bílý kulový pás. Koule se skládají do kufříku, v němž je nahoře 8 míst a dole rovněž 8 míst pro koule. Do horní části se vždy umísťuje černá a zbylé plnobarevné koule vyjma bílé, která se umísťuje do dolní části spolu se všemi koulemi s bílým pásem. 1 bod 5 O kolik možností se liší odhad, který tvrdí, že existuje miliónů možností, jak koule v kufříku uspořádat? Maturita z matematiky 09 9
10 V horní části kufříku zaměňujeme umístění 8 koulí, jedná se tedy o permutace z osmi prvků, těch je 8!. V dolní části provádíme totéž. Existuje tedy opět 8! možností. Protože můžeme přemísťovat v obou částech zároveň, platí kombinatorické pravidlo součinu. Celkově tedy jde o 8! 8! možností. To je celkem možností, tedy o možností více, než tvrdil odhad. Řešení: o VÝCHOZÍ TEXT K ÚLOZE 6 Je dán výraz x2 + 4x(x + 1). (x + 1)(5x + 4) max. 3 body 6.1 Určete množinu všech hodnot reálné proměnné x, pro které je výraz definován. Ve jmenovateli musí být výraz různý od nuly. (x + 1)(5x + 4) 0 x 1 x 5 4 x (, 5 4 ) ( 5 4, 1) ( 1, + ) Řešení: x (, 5 4 ) ( 5 4, 1) ( 1, + ) 6.2 Zjednodušte výraz. V záznamovém listu uveďte celý postup řešení. V čitateli je nutné výraz roznásobit, ve jmenovateli nikoliv. Pozor, abychom nekrátili výrazem x + 1, to by bylo nesprávné, výraz v čitateli není součin, ale jedná se o součet! x 2 + 4x(x + 1) x2 + 4x 2 + 4x 5x2 + 4x (x + 1)(5x + 4) (x + 1)(5x + 4) (x + 1)(5x + 4) Nyní vytkneme v čitateli výraz x. Poté již budeme moci krátit, protože v čitateli i ve jmenovateli budou součiny. 5x 2 + 4x x(5x + 4) x (x + 1)(5x + 4) (x + 1)(5x + 4) x + 1 Řešení: x x Maturita z matematiky 09
11 VÝCHOZÍ TEXT K ÚLOZE 7 Jsou dány krychle o objemu 64 cm 3 a pravidelný čtyřboký jehlan o stejné výšce a objemu jako krychle. max. 2 body 7 Rozhodněte o každém tvrzení ( ), zda je pravdivé (ANO), či nikoli (NE): 7.1 Povrch krychle je 96 cm Tělesová úhlopříčka krychle je delší než 7 cm. 7.3 Hrana podstavy jehlanu má délku 4 3 cm. 7.4 Hrana podstavy jehlanu je delší než jeho boční hrana. ANO NE 7.1 Objem V krychle vypočteme dle vzorce V = a 3, kde a je délka hrany krychle. Pro hranu krychle tedy platí: a = 3 V. V našem případě tedy: a = 3 64 cm 3 = 4 cm. Povrch P k krychle vypočteme dle vzorce P k = 6a 2. V našem případě tedy: P k = 6(4 cm) 2 = 96 cm 2. Tvrzení je pravdivé. 7.2 Tělesovou úhlopříčku u krychle můžeme vypočítat z pravoúhlého trojúhelníka, jehož odvěsny tvoří hrana krychle a stěnová úhlopříčka podstavy. Lze ale také využít vztah, který pro tělesovou úhlopříčku krychle platí a který je důsledkem právě tohoto výpočtu. u = a 3 V našem případě tedy: u = (4 cm) 3 6,93 cm < 7 cm. Tvrzení je nepravdivé. 7.3 Pro výpočet strany b jehlanu o výšce v využijeme vzorce pro výpočet objemu krychle a pravidelného čtyřbokého jehlanu a faktu, že dle zadání mají tato tělesa výšku a objem shodné. Platí tedy, že v = a. a 3 = 1 v b 2 a 3 = 1 ab 2 b 2 = 3a 2 b = a V našem případě tedy: b = (4 cm) 3 = 4 3 cm. Tvrzení je pravdivé. 7.4 Pro výpočet boční hrany s jehlanu musíme použít pravoúhlý trojúhelník, v němž známe odvěsnu, kterou tvoří výška a jehlanu. Druhá odvěsna x je polovinou úhlopříčky v podstavě. K jejímu výpočtu použijeme ve čtverci podstavy Pythagorovu větu. s = a 2 + x 2 2x = (4 3 cm) 2 + (4 3 cm) 2 s = (4 cm) 2 + (2 6 cm) 2 s = 16 cm cm 2 = 2 10 cm 6,32 cm < 7 cm Tvrzení je pravdivé. Řešení: ANO, NE, ANO, ANO Maturita z matematiky 09 11
12 VÝCHOZÍ TEXT K ÚLOZE 8 Jsou dány dvě nekonečné aritmetické posloupnosti, jejichž první člen je 3 a jejichž diference se liší o 1. 2 body 8 Která z možností A E určuje, o kolik se liší součty prvního sta jejich po sobě jdoucích členů? A) 1 B) 20 C) 300 D) 4950 E) 6125 K výpočtu použijeme vztahy pro aritmetické posloupnosti. a n = a 1 + (n 1)d, n N s n = [a 1 + a n ] n, n N 2 Pro první posloupnost platí, že: a 1 = 3, a 100 = d s 100 = ( d) 100 = d. 2 Pro druhou posloupnost, u jejíž diference budeme předpokládat, že je o 1 větší než u první posloupnosti, platí, že: a' 1 = 3, a' 100 = (d + 1) s' 100 = [ (d + 1)] 100 = d. 2 Určíme nyní rozdíl stých součtů. s' 100 s 100 = ( d) ( d) = Sté součty se liší o Řešení: D VÝCHOZÍ TEXT K ÚLOZE 9 Je dán výraz (sinx + cosx) 2 1 pro x R. 2 body 9 Která z možností určuje výraz, který je danému výrazu pro všechna x R roven? A) (sinx + cosx 1)(sinx cosx + 1) B) (sinx cosx 1)(sinx + cosx + 1) C) 2sinx cosx D) sin 2 x + 2sinx cosx cos 2 x 1 E) 1 Mocninu ve výrazu roznásobíme. Poté použijeme vztah pro x R: sin 2 x + cos 2 x = 1. (sinx + cosx) 2 1 = sin 2 x + 2sinx cosx + cos 2 x 1 = sin 2 x + cos 2 x + 2sinx cosx 1 = 2sinx cosx Správná je možnost C. Řešení: C 1 12 Maturita z matematiky 09
13 max. 4 body 10 Přiřaďte každé rovnici ( ) množinu, v níž leží všechna řešení této rovnice (A F) x = 5x 10.2 x 2 x x(x + 6) = 9 x x = 0 x 1 x 1 = 0 A) x (4; + ) B) x 2, 4) C) x ( 1; 1 D) x 2, 0) E) x ( ; 2) F) x ( ; x = 5x x 2 5x + 6 = 0 (x 3)(x 2) = 0 x = 3 x = 2 x 2, 4) Řešení: B 10.2 x 2 1 = 0 x 1 x 2 1 = 0 x 1 (x 1)(x + 1) = 0 x 1 x = 1 x 2, 0) x 1 x 1 Řešení: D 10.3 x(x + 6) = 9 x 2 + 6x + 9 = 0 (x + 3)(x + 3) = 0 x = 3 x ( ; 2) Řešení: E 10.4 x 2 5x x = 0 x 0 x 2 5x = 0 x 0 x(x 5) = 0 x 0 x = 5 x (4; + ) Řešení: A KONEC TESTU Maturita z matematiky 09 13
14 14 Maturita z matematiky 09
15 III. KLÍČ 1) Maximální bodové ohodnocení je 20 bodů. Hranice úspěšnosti v testu je 7 bodů. 2) Úlohy 1 6 jsou otevřené. 3) Úlohy 7 10 jsou uzavřené s nabídkou možných odpovědí, kde u každé úlohy resp. podúlohy je právě jedna odpověď správná. Tabulka úspěšnosti Počet bodů Výsledná známka výborně chvalitebně dobře 10 7 dostatečně 6 a méně nedostatečně Úloha Správné řešení Počet bodů mm max. 2 body 2 15 mm 1 bod 3 P x [4, 0] max. 2 body 4 10 km 1 bod 5 o bod x (, 5 4 ) ( 5 4, 1) ( 1, + ) 1 bod 6.2 V čitateli je nutné výraz roznásobit, ve jmenovateli nikoliv. Pozor, abychom nekrátili výrazem x + 1, to by bylo nesprávné, výraz v čitateli není součin, ale jedná se o součet! x 2 + 4x(x + 1) x2 + 4x 2 + 4x 5x2 + 4x (x + 1)(5x + 4) (x + 1)(5x + 4) (x + 1)(5x + 4) Nyní vytkneme v čitateli výraz x. Poté již budeme moci krátit, protože v čitateli i ve jmenovateli budou součiny. 5x 2 + 4x x(5x + 4) x (x + 1)(5x + 4) (x + 1)(5x + 4) x + 1 max. 2 body Řešení: x x max. 2 body 4 podúlohy 2 b. 7.1 ANO 3 podúlohy 1 b. 2 podúlohy 0 b. 7.2 NE 1 podúloha 0 b. 0 podúloh 0 b. 7.3 ANO 7.4 ANO Maturita z matematiky 09 15
16 8 D 2 body 9 C 2 body 10 max. 4 body 4 podúlohy 4 b B 3 podúlohy 3 b. 2 podúlohy 2 b D 1 podúloha 1 b. 0 podúloh 0 b E 10.4 A 16 Maturita z matematiky 09
17 IV. ZÁZNAMOVÝ LIST 1) Maximální bodové ohodnocení je 20 bodů. Hranice úspěšnosti v testu je 7 bodů. 2) Úlohy 1 6 jsou otevřené. Zapište výsledek. V úloze 6.2 uveďte i celý postup řešení. 3) Úlohy 7 10 jsou uzavřené s nabídkou možných odpovědí, kde u každé úlohy resp. podúlohy je právě jedna odpověď správná. Zapište vybranou možnost. Tabulka úspěšnosti Počet bodů Výsledná známka výborně chvalitebně dobře 10 7 dostatečně 6 a méně nedostatečně Úloha Správné řešení Počet bodů 1 max. 2 body 2 1 bod 3 max. 2 body 4 1 bod 5 1 bod bod 6.2 max. 2 body 7 max. 2 body 4 podúlohy 2 b podúlohy 1 b. 2 podúlohy 0 b podúloha 0 b. 0 podúloh 0 b Maturita z matematiky 09 17
18 8 2 body 9 2 body 10 max. 4 body 4 podúlohy 4 b podúlohy 3 b. 2 podúlohy 2 b podúloha 1 b. 0 podúloh 0 b Maturita z matematiky 09
CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT
VíceCVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
VíceCVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
VíceCVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
VíceCVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
VíceCVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 11 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je k dispozici m přepravek na ovoce. Prázdná přepravka
VíceCVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
VíceCVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 17 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Jsou dány funkce f: y = x + A, g: y = x B,
VíceCVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
VíceCVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
VíceCVIČNÝ TEST 55. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 55 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 9 IV. Záznamový list 2 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Jsou dány dva poměry 4 : a : 2 a b : 2 : 4, kde a, b jsou
VíceCVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
VíceCVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
VíceCVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
VíceCVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
VíceCVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,
VíceCVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
VíceCVIČNÝ TEST 53. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 53 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána funkce f: y = x p, x R {3}, kde p je reálný
VíceCVIČNÝ TEST 18. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 18 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Anna zdědila 150 000 Kč a banka jí nabízí uložit
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
VíceCVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
VíceCVIČNÝ TEST 56. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 56 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 7 IV. Záznamový list 9 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Vrchol komína Kocourkovské elektrárny vidí pozorovatel
VíceCVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13
CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu
VíceCVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr
VíceCVIČNÝ TEST 38. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 38 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Pro a b a b zjednodušte výraz ( a b a ) ( b a b ). VÝCHOZÍ TEXT K ÚLOZE Jedním
VíceCVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.
VíceCVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic
VíceCVIČNÝ TEST 42. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 42 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na číselné ose jsou zakresleny obrazy čísel
VíceCVIČNÝ TEST 16. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 16 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Brzký ranní vlak z Prahy do Brna zastavil
VíceCVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
VíceCVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 25 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V lidové výkupně barevných kovů vykoupili
VíceCVIČNÝ TEST 23. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 23 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete nulové body následujících výrazů. 1.1 V(a) = 9 a 27 3 a ; a
VíceCVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 6 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Každý z n žáků jedné třídy z gymnázia v Přelouči se
VíceCVIČNÝ TEST 47. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 47 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 3 IV. Záznamový list 5 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE Sbor chlapců a mužů se pro různé příležitosti
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceCVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
VíceCVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceMATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
Vícec jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.
Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
Více9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
VíceCVIČNÝ TEST 8. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25
CVIČNÝ TEST 8 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25 I. CVIČNÝ TEST m 1 Vzorec F = κ 1 m R 2 vyjadřuje velikost gravitační síly, kterou na sebe
VíceMATEMATIKA MAMZD13C0T04
MATEMATIKA MAMZD13C0T04 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceVZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte
VíceMATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
VíceMATEMATIKA základní úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceGeometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
VíceMATEMATIKA ZÁKLADNÍ ÚROVEŇ
NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
Více2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
VíceMATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického
VíceMATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro
VíceMATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
VíceGymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maimální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ ROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 :. dubna 07 D : 807 P P P : 30 M. M. : 30 : 9,0 M. : 7,9 % : -7,3 M. P : -,5 : 5,0 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
VíceCVIČNÝ TEST 4. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 4 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Písmena A a B vyjadřují každá jednu z číslic 0, 1, 2, 3, 4, 5, 6, 7, 8,
VíceMATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
VíceMATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
Vícea se nazývá aritmetická právě tehdy, když existuje takové číslo d R
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1
VíceMANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T02 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový
VícePřípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
VíceSTEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117
STEREOMETRIE Odchylky přímky a roviny Mgr. Jakub Němec VY_3_INOVACE_M3r0117 ODCHYLKA PŘÍMKY A ROVINY Poslední kapitolou, která se týká problematiky odchylek v prostoru, je odchylka přímky a roviny. V této
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
VíceII. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
VíceMATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový
Více7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
VícePovrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3
y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou
VíceJak by mohl vypadat test z matematiky
Jak by mohl vypadat test z matematiky 1 Zapište zlomkem trojnásobek rozdílu, 2 Vypočtěte: 2.1 0,05: 0,001 0,7 0,3 = 2.2 : = 3 Vypočtěte a výsledek zapište zlomkem v základním tvaru: 36 3 3 16 + 1 6 = 4
Více7.1.3 Vzdálenost bodů
7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z
VíceVZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ
VíceAlgebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
VíceParametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
VíceMaximální bodové Hranice. bílých polí.. žádné body. hodnocení. bodů. chybné řešení. První. je právě jedna. odpovědí. nesprávnou.
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testuu
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
VíceMATEMATIKA MAMZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
VíceANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Více2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole
MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:
Více