Didaktika matematiky I
|
|
- Veronika Novotná
- před 6 lety
- Počet zobrazení:
Transkript
1 Didaktika matematiky I 6. přednáška Multiplikativní operace Zlomky, desetinná čísla Darina Jirotková
2 NÁSOBENÍ
3 násobení - binární operace v každém z číselných oborů N, N, Z, Q, Q+, R, R+ Ve 3. a 4. roč. bývá považováno za stěžejní téma Žák - rozumí smyslu operace - umí odčítat mentálně i písemně - rozumí algoritmu operace
4 žák rozumí smyslu operace - ví, v jaké sémantické nebo strukturální situaci má násobit, - umí vytvořit úlohy, např. na 5. 3 =? Situace s násobením sémantické ukotvení - propedeutika - Opakované sčítání (dvě čísla s různou sémantikou) Auto má 4 kola. Kolik kol 3 auta? Strana čtvercového pozemku je 15 m. Jak dlouhý plot? - Obsah obdélníka (počet) Dvorek dlaždice, kolik dlaždic? - Obsah obdélníka (veličina) - Objem kvádru (kusy, veličina) - Kombinatorické násobení (cesty, oblečení) - Skalár : Prodloužení Změna ceny cena snížena o 40%
5 - Opakované sčítání (dvě čísla s různou sémantikou) Auto má 4 kola. Kolik kol 3 auta? Strana čtvercového pozemku je 15 m. Jak dlouhý plot? Zvedení č. 16, 17,
6
7
8 - Obsah obdélníka (počet) Dvorek dlaždice, kolik dlaždic?
9 - Složeniny např. PedF získala 100 studentoměsíců pro Erasmus - Násobení více čísel vytvořte úlohu na Žák umí násobit mentálně i písemně Kritika i doporučení jako u sčítání 1) Nespěchat. 2) Umožnit žákovi jeho vlastní početní postupy. 3) Žákovi poradit, aby si udělal tabulku sčítalky 4) Předkládat žákovi poutavé úlohy vyžadující mnohé počítání/násobení.
10 Naučit se algoritmus písemného násobení pro žáka znamená, naučit se účinně propojit všechny 4 mentální oblasti, které se na tomto procesu podílejí - rozvoj schopnosti koordinace čtyř kognitivních funkcí UKÁZKA Alternativní postupy Indické násobení - ulehčení cesty na přechodnou dobu,
11 Strukturální modely násobení Násobení je opakované sčítání vazba mezi sčítáním a násobením Příbuznost mezi sčítáním a násobením komutativní, asociativní, neutrální prvek Důsledky můžeme vypouštět závorky (a+b+c, a.b.c) Vazby sčítání odčítání a také násobení dělení: inverzní (opačné) operace, navzájem se eliminují. Např = 8, 8. 3 : 3 = 8 Operace navzájem inverzní (zdvojnásobování půlení) Involuce operace, která je inverzní sama k sobě (v G osová souměrnost, v A násobení -1)
12 Úskalí vzájemné inverznosti Přidej, uber (12 + 5) 5 = 12 (12 5) + 5 = 12 (2 + 5) 5 = 2 (2 5) + 5 = 2 obdobně (7. 3) : 3 a (7 : 3). 3 Inverzní operace k operacím: vynásob nulou umocni na druhou Opakované násobení umocňování
13 Poutavé úlohy vyžadující mnohé počítání - Násobilkové čtverce (obdélníky) s neposedy, - algebrogramy, - poslední čísla mocnin, - Egyptské, římské KALKULAČKY ANO NE?
14 DĚLENÍ
15 čtyři další tématické celky: 1) dělení jako operace inverzní k násobení a dělení se zbytkem, 2) dělení a zlomky 3) dělení a desetinná čísla 4) dělitelnost, zejména kritéria dělitelnosti
16 Žák rozumí smyslu operace Dtto jako u ostatních operací - Rozdělování nebo také dělení na části: 14 bonbonů mezi 4 děti, kolik každé? - Přidělování nebo také dělení po částech 14 bonbonů po 4, kolik dětí? 19 dětí do trojstupů, kolik řad? Opakované odčítání Strana obdélníka, podstava hranolu, krácení
17 Žák umí dělit mentálně i písemně Písemný algoritmus nejvíce problémů Odhady Nejbližší menší násobek daného čísla k jistému číslu Dělení se zbytkem problém 4,1 = 4,2? Čemu se to číslo 4 (1) rovná? V matematice: 9 dává při dělení 4 zbytek mod 4, čteme:
18 Ú. V tělocvičně bylo několik žáků. Když se postavili do 3- stupu, zůstal 1 žák nezařazen a stejně když se postavili do 4-stupu, zůstal 1 žák nezařazen. Kolik bylo v tělocvičně žáků? Hledej více řešení. Ú. Myslím si číslo. Když jej vydělím 3 bude zbytek 1. Když jej vydělím 4, též bude zbytek 1. Jaké číslo si myslím? Najdi aspoň tři různá řešení. Poutavé úlohy vyžadující mnohé počítání
19 ZLOMKY
20 Něco pro zahřátí Co se má konat, tomu se musí člověk učit konáním. J. A. Komenský Sestavte slovní úlohu, která se řeší výpočtem 2/3 + 1/4. Úloha 1. Petr snědl 2/3 koláče a potom další 1/4. Kolik dílů koláče snědl? Úloha 2. Petr snědl 2/3 koláče a potom 1/4 zbytku. Jakou část koláče snědl? Úloha 3. Ve třídě jsou 2/3 chlapců a 1/4 děvčat. Kolik je ve třídě žáků?
21 Něco pro zahřátí Cihla váží jedno kilo a půl cihly. Kolik váží cihla? Myslím si číslo, jeho třetina je o 2 menší než polovina. Jaké číslo si myslím? Brutální: Fenka měla v košíku štěňata. Polovina štěňat a půl štěněte vypadlo z košíku. Zůstala tam dvě štěňata. Kolik štěňat měla fenka?
22 Něco pro zahřátí Pan Koblížek má v obchodě nasmažené koblihy. Paní Adamová si ráno koupila polovinu všech koblížků a ještě půlku koblížku, které byly připravené k prodeji. Pak přišel pan Bílek a koupil si také polovinu všech koblížků a ještě půlku koblížku, které na něj zbyly. Třetí zákaznicí byla paní Cibulková, která si také koupila polovinu koblížků a ještě půlku koblížku, které na ni zbyly. Panu Koblížkovi zbyl nakonec ke svačině pouze jeden koblížek. Kolik jich měl původně připravených k prodeji?
23 Něco pro zahřátí
24 Něco pro zahřátí V únoru snížili cenu zimního zboží o třetinu. V dubnu snížili podruhé, opět o třetinu. Kolik korun stála v květnu větrovka, která v lednu stála Kč? Kolik korun stály v lednu rukavice, když jejich cena v květnu byla 60 Kč? Polovina tyče je modrá a třetina zelená. Urči, jak dlouhá je tyč, když víme, že: a) polovina modré části je 50 cm; b) třetina modré části je 50 cm; c) polovina zelené části je 50 cm; d) třetina zelené části je 50 cm; e) nenatřená část tyče je dlouhá 50 cm.
25 Zlomky Zkušenosti: - Modelování zlomku 4/6 - Uspořádání zlomků ½, 1/8, 1/6, 1/9, 1/19, 1/7, 1/18, 1/3, - provázek - Polovina rohlíku Jaké zkušenosti přicházejí ze života?
26 Špatné výsledky našich žáků v TIMSS 2007
27
28
29
30
31 Tematický celek, který je ve všech zemích řazen k didakticky nejnáročnějším oblastem vyučování matematice. PROČ?
32 PROTOŽE - je zanedbáváno budování představy zlomku (zlomek jako koncept) - energie i čas se plýtvá na nácviky algoritmů a pravidel (většina žáků stejně zapomene). - dobrá představa opřená o životní zkušenosti o zlomcích jako polovina nebo dvě třetiny - dále se nerozvíjí
33 Jak se zlomky obvykle učí? Uvede se obvykle jeden model s vysvětlením Jaké zlomky se dobře modelují např. skládáním papíru? Jaké jsou související pojmy? celek, rozdělení celku na stejné části, jedna část, vyznačení, zápis zlomku
34 Koncepty a procesy přítomné v pojmu zlomek, např. 7/8 Celek: prostý celek pizza, tyč, čokoláda, chléb, hromádka lentilek jednoduché. složitý celek dva dorty, tři chleby, čtvrtina čokolády, rozdělení celku na stejné části: činnost, mění se podle toho, na kolik částí a jaký objekt je dělen: na 2, 4, 8,.. částí jednoduché, na 3, 5, 6,.. obtížné. Nutné všechno mnohokrát opakovat. Osmina výsledek dělení, různé pro různé objekty Vyznačení 7 částí zápis zlomku 7/8 je výsledek
35 Proč je učivo o zlomcích obtížné? Chybí dostatek izolovaných modelů a tvorba generického modelu princip genetické paralely - další užitečný pohled na poznávací proces - soulad fylogenetického a ontogenetického vývoje. Ruský vědec P. M. Erdnijev (1978) ji charakterizoval takto: Růst stromu matematických znalostí v hlavě jednoho člověka bude úspěšný jen tehdy, zopakujeme-li do určité míry historii rozvoje matematiky.
36 Co je těžší - učivo o zlomcích nebo o desetinných číslech? Pohled do historie: staří Egypťané (-3500) používali zásadně jen kmenové zlomky, a to více než jedno tisíciletí. Desetinná čísla? (před 429 lety, v r vlámský technik Simon Stevín))
37 Vybudování kvalitní představy zlomku začíná u budování kvalitní představy kmenového zlomku, tj. u budování jeho různých generických modelů.
38 Generické modely zlomku Zlomek jako STAV Počet soubor stejných objektů (lentilky, ) Dělíme na tři stejné hromádky 1 hromádky je 1/3 celku (vazba na dělení, popř. se zbytkem) Kruh (pizza, koláč,..), ciferník Tyč Čokoláda (Jakou čokoládu zvolím, když chci ½ + 1/3?) Veličina (mince, Děda Lesoň)
39 V duchu konstruktivistického přístupu (VOBS) manipulace jazyk všedního dne, řešení úloh precizace jazyka, úlohy v různých kontextech a nakonec zápis kmenového zlomku (4. r.) nekmenového zlomku (5. r.)
40 Zkušenost bez vzdělání platí víc, než vzdělání bez zkušenosti. Quintilianus Konstruktivistický přístup Zkušenost hovorový jazyk matematický jazyk Instruktivní (tradiční) přístup Matematický jazyk mateřský jazyk a zkušenost
41 Koláč (pizza, ciferník)
42 Koláč (pizza, ciferník)
43 Koláč (pizza, ciferník)
44 Koláč (pizza, ciferník)
45 Koláč (pizza, ciferník) - úlohy
46 Egyptské zlomky Např. 2/3 2 bochníky se spravedlivě rozdělí mezi 3 podílníky 2/3 = 1/2 + 1/6 ¾ = 3/5 = 4/5 = 5/21=
47 U nás ve 4. roč.
48 Koláč (pizza, ciferník) - úlohy
49 Počet
50 Počet - úlohy
51 Tyč
52 Tyč - úlohy
53 Tyč - úlohy
54 Čokoláda
55 Čokoláda
56 Čokoláda - úlohy
57 Složitý celek
58 Dělení veličiny
59 Zápis zlomku
60 Generické modely zlomku Zlomek jako IDENTIFIKÁTOR Zlomek jako OPERÁTOR dvě třetiny studentů, osmina másla, polovina platu,..
61 Propedeutika porovnávání, sčítání, odčítání a násobení zlomků Tradičně se nacvičují pravidla JAK SE TO DĚLÁ Náš cíl je vést žáky k objevu JAK TO UDĚLAT Jak přivést žáky k 1/5 + 1/3? 2/5 1/4? Jakou čokoládu vezmeme?
62 Operace se zlomky Zapiš číselnou rovností rozklad každého z tvarů B, C, D, E, F a G. Jako první piš část žlutou a jako druhou část zelenou a jako třetí část modrou. U obdélníku G je ještě čtvrtá část ta je bílá.
63 Operace se zlomky s.32/4 a) Třetina tyče je žlutá a třetina modrá. Zbytek měří 21 cm. Jak dlouhá je tyč? Rada: podívej se výše na úsečku J. b) 1/3 tyče je žlutá, 1/3 je modrá a zbytek měří 42 cm. Jak dlouhá je tyč?
64 Operace se zlomky s.32/4 a) Třetina tyče je žlutá a třetina modrá. Zbytek měří 21 cm. Jak dlouhá je tyč? Rada: podívej se výše na úsečku J. b) 1/3 tyče je žlutá, 1/3 je modrá a zbytek měří 42 cm. Jak dlouhá je tyč?
65 Desetinné číslo
66 Desetinné číslo Zkušenosti: - Peníze - Stupnice - teplota (37,2) - Průměr (známek) Převody jednotek: kilo-den, centi-den, miliměsíc,
67 Procenta 1% = 1/100, tedy n% = n/100 pak např. 1% = 10% Je to dobře? PROPEDEUTIKA Slevy v obchodech to je málo GM Ve 3.A je 28 žáků a 7 z nich dělá nějaký sport. Ve 3.B je 21 žáků a 5 z nich dělá nějaký sport. Ve 3.C je 25 žáků a 6 z nich dělá nějaký sport. Rozhodněte, která třída je nejsportovnější.
MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 6 - HEJNÝ
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 6 - HEJNÝ Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Oblast:
Vzdělávací oblast: a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Období: 1. Číslo a početní operace Používá přirozená čísla k modelování reálných situací Počítá předměty v daném souboru Vytváří
Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta
1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
TEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.
Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.
Dodatek č. 25 ke Školnímu vzdělávacímu programu pro základní vzdělávání Cesta k poznání a vědění k
Dodatek č. 25 ke Školnímu vzdělávacímu programu pro základní vzdělávání Cesta k poznání a vědění k 1. 9. 2016 Dodatek je vytvořený na základě aktuálního RVP ZV, který nabývá platnosti k 1. 9. 2018 na základě
Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE
Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Sčítá a odčítá v oboru 0 6. Numerace v oboru 0 6 Manipulace s předměty, třídění
Matematika Název Ročník Autor
Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná
Předmět: matematika (Hejný) Ročník: 2.
Ročník: 2. Využívání získaných znalostí v praxi slovní úlohy. Žák používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků. Přesné a
Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel
Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE
Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání
Vyučovací předmět: Matematika Ročník: 6.
Vyučovací předmět: Matematika Ročník: 6. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo ZÁŘÍ užívá různé způsoby kvantitativního vyjádření vztahu celek část (zlomkem) PROSINEC využívá
Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky
Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Září Obor přirozených čísel Počítá předměty v daném souboru do 5 Vytváří soubory s daným počtem
ŠVP Školní očekávané výstupy. - vytváří konkrétní soubory (peníze, milimetrový papír, apod.) s daným počtem prvků do 100
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 1. období 3. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M3101 používá přirozená
Matematika. Vlastnosti početních operací s přirozenými čísly. Sčítání a odčítání dvojciferných čísel do 1 000, zpaměti i písemně.
1 Matematika Matematika Učivo Vlastnosti početních operací s přirozenými čísly Sčítání a odčítání dvojciferných čísel do 1 000, 1 000 000 zpaměti i písemně Násobení dvojciferných čísel jednociferným činitelem
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů
- 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně
Základní škola Náchod Plhov: ŠVP Klíče k životu
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 5. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování a aktivizace
Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ ŘÍJEN LISTOPAD PROSINEC
Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání
Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby
Předmět: MATEMATIKA Ročník: 4. Časová dotace: 4 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Provádí písemné početní operace Zaokrouhluje přirozená čísla, provádí odhady a kontroluje
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová
Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání
Matematika - 6. ročník Vzdělávací obsah
Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá
MĚSÍC MATEMATIKA GEOMETRIE
3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek
Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.
Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání
MATEMATIKA - 6.ročník - prof. Hejný
1 -číslo a proměnná výstupy RVP okruh výstupy ŠVP učivo mezipředmětové vztahy opakování z 1. stupně Žák provádí početní operace s celými čísly. Vyhledává a určí nejmenší a největší prvek. Rozlišuje idiomy
Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE
Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a
Matematika. Vlastnosti početních operací s přirozenými čísly
1 Matematika Matematika Učivo ŠVP výstupy Vlastnosti početních operací s přirozenými čísly Sčítání a odčítání dvojciferných čísel do 100 zpaměti i Sčítání a odčítání dvou trojciferných čísel do 1 000 a
Očekávané výstupy z RVP Učivo Přesahy a vazby
Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice
MATEMATIKA. 1. 5. ročník
Charakteristika předmětu MATEMATIKA 1. 5. ročník Obsahové, časové a organizační vymezení Vyučovací předmět matematika má časovou dotaci 4 hodiny týdně v 1. ročníku, 5 hodin týdně ve 2. až 5. ročníku. Časová
Název vícedenní školy: Barrandov I. příměstská. Termín: Hodinová dotace:
Název vícedenní školy: Barrandov I Typ: příměstská Termín: 1. 7. 4. 7. 2017 Hodinová dotace: Garanti: Otevřené skupiny: 24h PhDr. Jana Slezáková, Ph.D. doc. RNDr. Darina Jirotková, Ph.D. MŠ 2 skupiny ZŠ
Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:
Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,
Název vícedenní školy: Barrandov II. příměstská. Termín: Hodinová dotace: PhDr. Jana Slezáková, Ph.D. Mgr. Jana Hanušová, Ph.D.
Název vícedenní školy: Barrandov II Typ: příměstská Termín: 26. 8. 29. 8. 2017 Hodinová dotace: Garanti: Otevřené skupiny: 24h PhDr. Jana Slezáková, Ph.D. Mgr. Jana Hanušová, Ph.D. ZŠ 1. stupeň začátečníci
4. ROČNÍK - ČÍSLO A POČETNÍ OPERACE Očekávané výstupy RVP
4. ROČNÍK - ČÍSLO A POČETNÍ OPERACE Žák využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení výstupy NF Názvy tematických celků popis učiva Typické činnosti pro rozvíjení
Matematika - 4. ročník Vzdělávací obsah
Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání
M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl
6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,
6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1.
6.1 I.stupeň Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací obsah je rozdělen na čtyři tematické okruhy : čísla
Očekávané výstupy z RVP Učivo Přesahy a vazby
Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel: počítání do dvaceti - číslice
6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA
6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA Projednáno pedagogickou radou dne: 26. 8. 2013 Schválila ředitelka
DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ
DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti
Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla
list 1 / 9 M časová dotace: 4 hod / týden Matematika 7. ročník (M 9 1 01) provádí početní operace v oboru celých a racionálních čísel; čte a zapíše celé číslo, rozliší číslo kladné a záporné, určí číslo
7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky
0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná
Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program
Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Stran Stran celkem DUM 1 VY_32_INOVACE_03_01 Matematika 1. M - pololetní opakování písemná práce Word 5 4 2 VY_32_INOVACE_03_02 Matematika
ŠVP Školní očekávané výstupy
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 2. období 4. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M5101 využívá při
ŠVP Učivo. RVP ZV Očekávané výstupy. RVP ZV Kód. ŠVP Školní očekávané výstupy. Obsah RVP ZV
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 2. období 5. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A POČETNÍ OPERACE
Název vícedenní školy: Barrandov II. příměstská. Termín: Hodinová dotace: PhDr. Jana Slezáková, Ph.D. Mgr. Jana Hanušová, Ph.D.
Název vícedenní školy: Barrandov II Typ: příměstská Termín: 26. 8. 29. 8. 2017 Hodinová dotace: Garanti: Otevřené skupiny: 24h PhDr. Jana Slezáková, Ph.D. Mgr. Jana Hanušová, Ph.D. ZŠ 1. stupeň začátečníci
Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)
Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost
Vzdělávací obsah vyučovacího předmětu MATEMATIKA pro 1. stupeň
Vzdělávací obsah vyučovacího předmětu MATEMATIKA pro 1. stupeň 1. ročník M-3-1-01 používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem
Matematika a její aplikace Matematika
Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.
Každé dítě bude mít 4 kuličky. Zkouška: (např. sečtením kuliček každého z dětí) = 20.
10. DĚLENÍ PŘIROZENÝCH ČÍSEL 10. 1. Pamětné dělení Dělení přirozených čísel je definováno jako inverzní operace k operaci násobení. Jestliže pro přirozená čísla a, b, c platí a. b = c pak pro a 0, b 0
Vyučovací předmět / ročník: Matematika / 4. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
Očekávané výstupy z RVP Učivo Přesahy a vazby
Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné
Matematika a její aplikace - 1. ročník
Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání
vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ
Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými
Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Marta Klimecká Týdenní dotace hodin: 5 hodin Ročník: třetí
ČASOVÉ OBDOBÍ Září KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA rozezná, pojmenuje, vymodeluje úsečku a lomenou čáru porovnává velikost útvarů, měří a odhaduje délku úsečky užívá a zapisuje vztah
Člověk a jeho svět. ČJ a literatura
VZDĚLÁVACÍ OBLAST: Vzdělávací obor: Stupeň: Období: Ročník: Očekávané výstupy omp e t e n c e čivo Mezipředmětové vztahy oznámky používá přirozená čísla k modelování reálných situací, počítá předměty v
Předmět: Matematika. Pojem rovina Rovinné útvary a jejich konstrukce Délka úsečky, jednotky délky a jejich převody. Rovnoběžky, různoběžky, kolmice
a její aplikace čte, zapisuje a porovnává přirozená čísla do 1 000, užívá a zapisuje vztah rovnosti a nerovnosti 3. užívá lineární uspořádání, zobrazí čísla na číselné ose 8. zaokrouhluje přirozená čísla,
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení
Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Vzdělávací předmět: Matematika 4 Ročník:
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Vzdělávací předmět: Matematika 4 Ročník: 5. 5 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka
popis učiva Desetinná čísla. Součtové trojúhelníky. Procenta. Indické násobení.
PRIMA - DOTACE: 5 1/2 + 1 1/2, POVINNÝ Výstupy sešit A+B ČÍSLO A PROMĚNNÁ Provádí početní operace s celými čísly, vyhledá a určí nejmenší a největší prvek, rozlišuje idiomy o n větší/menší, n krát větší/menší,
Matematika a její aplikace Matematika
Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.
Mateřská škola a Základní škola při dětské léčebně, Křetín 12
Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.17 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Matematika a její aplikace Klíčová slova: Třída: Anotace: Zlomky,
Název vícedenní školy: Luna III. Termín: Hodinová dotace: Renáta Zemanová
Název vícedenní školy: Luna III Typ: pobytová Termín: 7. 8. 11. 8. 2017 Hodinová dotace: Garanti: 32h Jana Hanušová Renáta Zemanová Otevřené skupiny: ZŠ 1. stupeň začátečníci 3 skupiny ZŠ 1. stupeň pokročilí
volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ
Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup
- 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 7. Výstup - modeluje a zapisuje zlomkem část celku - převádí zlom na des. čísla a naopak - porovnává zlom - zlomek
2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru
ŠVP LMP Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vzdělávací obsah předmětu Matematika je utvořen vzdělávacím obsahem vzdělávacího
Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.
Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná
ROČNÍK 1. ročník Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika a její aplikace Název předmětu Matematika Očekávané výstupy
ROČNÍK 1. ročník Vzdělávací oblast Vzdělávací obor Název předmětu Matematika ČÍSLO A POČETNÍ OPERACE čte a zapisuje, znázorňuje na číselné ose, obor přirozených čísel do 20 OSV1 porovnává, užívá vztah
Vyučovací předmět: Matematika Ročník: 7.
Vyučovací předmět: Matematika Ročník: 7. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo I. čtvrtletí 40 hodin Opakování učiva z 6. ročníku (14) Přesahy a vazby, průřezová témata v oboru
Úvod do matematiky profesora Hejného. VISK Praha
Úvod do matematiky profesora Hejného VISK Praha 6. 1. 2015 Metoda VOBS Schéma? Hejného metoda vyučování matematice Hejného metoda vyučování matematice Východiska Učebnice a autoři, působení Úzké spojení
Výuka může probíhat v kmenových učebnách, část výuky může být přenesena do multimediálních učeben, k interaktivní tabuli, popřípadě do terénu.
7.2 MATEMATIKA A JEJÍ APLIKACE 7.2.1 Matematika (M) Charakteristika předmětu 1. stupně Vyučovací předmět má časovou dotaci v 1. ročníku 4 hodiny týdně + 1 disponibilní hodinu týdně, ve 2. a 3. ročníku
Ukázka zpracování učebních osnov vybraných předmětů. Škola Jaroslava Ježka základní škola pro zrakově postižené
Ukázka zpracování učebních osnov vybraných předmětů Škola Jaroslava Ježka základní škola pro zrakově postižené Škola má deset ročníků, 1.stupeň tvoří 1. až 6., 2.stupeň 7. až 10.ročník. V charakteristice
Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.
Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu
UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika
UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím
Matematika 1. ročník. Aritmetika
Matematika 1. ročník Aritmetika zapíše a čte čísla 0-20 pracuje s řadou čísel určí chybějící číslo v řadě porovná přirozená čísla užívá a zapíše < > = počítá prvky daného konkrétního souboru vytvoří konkrétní
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata,
5.1.2.2 Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, Zná číslice 1 až 20, umí je napsat a
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 5. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace Využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení
Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 7. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí
UČEBNÍ OSNOVY ZÁKLADNÍ ŠKOLA P. BEZRUČE, TŘINEC
UČEBNÍ OSNOVY ZÁKLADNÍ ŠKOLA P. BEZRUČE, TŘINEC Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 132 Matematika a její aplikace Matematika 2. období 4. ročník Učební texty : Alter
Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.
Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito
Témata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
Příloha č. 2 učební osnovy. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE. Vzdělávací obor: MATEMATIKA
Příloha č. 2 učební osnovy Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor: MATEMATIKA Vzdělávací oblast Matematika a její aplikace je realizována v předmětu Trivium (Jazyk a jazyková komunikace
Základy Hejného metody zpracovala Ivana Čiháková Matematika dle metody VOBS.
Základy Hejného metody zpracovala Ivana Čiháková ivana.cihakova@centrum.cz Matematika dle metody VOBS. Úlohy jsou z učebnic matematiky pro 1. 5. ročník vydané nakladatelstvím Fraus v letech 2007-2011 Autoři
MATEMATIKA - 4. ROČNÍK
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA - 4. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Opakování ze
Matematika a její aplikace Matematika 1. období 3. ročník
Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika
Seznam šablon - Matematika
Seznam šablon - Matematika Autor: Mgr. Vlastimila Bártová Vzdělávací oblast: Matematika Tematický celek: Desetinná čísla Ročník: 6 Číslo Označení Název Materiál Využití Očekávané výstupy Klíčové kompetence
MATEMATIKA - 7.ročník - prof. Hejný
1 - číslo a proměnná výstupy RVP okruh výstupy ŠVP učivo mezipředmětové vztahy Žák zapíše číslo rozvinutým zápisem do řádu M-9-1-01 M-9-1-02 desetitisíců. Uspořádá množinu celých i racionálních čísel.
- vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika a její aplikace
5.4.2. MATEMATIKA - 2. stupeň Charakteristika vyučovacího předmětu: - vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika
Matematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)
list 1 / 8 M časová dotace: 4 hod / týden Matematika 6. ročník (M 9 1 01) (M 9 1 02) (M 9 1 03) provádí početní operace v oboru celých a racionálních čísel; čte, zapíše, porovná desetinná čísla a zobrazí
Ma - 1. stupeň 1 / 5
1. ročník číst a zapisovat číslice 1-5 čtení a zápis číslic 1-5 OSV - osobnostní rozvoj - rozvoj schopností poznávání v oboru 1-5 porovnávání množství v oboru do 5 přečíst a zapisovat dle diktátu matematické
Dodatek č. 1 k :
Dodatek č. 1 k 1.9. 2013: Změny upravené tímto dodatkem na str. 40 v textu vyznačeny červenou barvou. OČEKÁVANÉ VÝSTUPY Z RVP ZV DÍLČÍ VÝSTUPY UČIVO TEMATICKÉ OKRUHY PRŮŘEZOVÉHO TÉMATU PŘESAHY, VAZBY,
- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr
Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování
UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika
UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím
Matematika 1. st. Charakteristika předmětu
Matematika 1. st. Charakteristika předmětu Časová dotace předmětu je v prvním ročníku 4 hodiny týdně, ve druhém až pátém po 5 hodinách týdně. Předmět matematika a její aplikace je rozdělen na čtyři tématické