2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
|
|
- Bohumila Hrušková
- před 9 lety
- Počet zobrazení:
Transkript
1 .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom příslušný k dané čtvercové matici; jak vypočítat vlastní čísla obecných matic a speciálně trojúhelníkových matic; definici hermitovské, ortogonální a unitární matice, jejich vlastnosti týkající se vlastních čísel a vektorů; co jsou to podobnostní transformace a jak souvisejí s vlastními čísly matic. Klíčová slova této kapitoly: vlastní (charakteristické) číslo a vektor matice, charakteristická matice, charakteristický polynom, hermitovská, ortogonální a unitární matice, podobnost matic, podobnostní transformace. Čas potřebný k prostudování učiva kapitoly: 0,75 +,0 hodiny (teorie + řešení příkladů)
2 Nechť je dána čtvercová matice A řádu n a nenulový vektor (sloupcová matice) u typu n,. Platí-li ( ) Au = λu, tzn. vynásobení vektoru u zleva maticí A je ekvivalentní vynásobení vektoru u určitým číslem λ, nazýváme vektor u vlastním (charakteristickým) vektorem matice A a číslo λ příslušným vlastním (charakteristickým) číslem matice A. Charakteristická matice a polynom. Charakteristickou maticí čtvercové matice a a... a n... n A = a a a nazýváme matici an an... ann λ a a... a n a λ a... a λe A = n , an an... λ a nn kde veličina λ je reálná nebo komplexní proměnná. Charakteristická matice je zřejmě funkcí proměnné λ. Polynom det ( λe A ) n -tého řádu v proměnné λ, tj. determinant matice charakteristické k matici A, nazýváme charakteristickým polynomem. Výpočet vlastních čísel. Vlastními čísly matice A jsou kořeny λ, λ,..., λ n charakteristického polynomu ( ) det λe A. Uvedená věta teoreticky řeší problém nalezení vlastních čísel, ale prakticky není situace tak růžová, protože nalezení kořenů polynomu vyššího než třetího stupně je obecně komplikovaný úkol. Vlastní čísla trojúhelníkové matice jsou rovna prvkům v hlavní diagonále (hlavním prvkům).
3 Důkaz. Protože determinant trojúhelníkové matice je roven součinu hlavních prvků, je charakteristický polynom trojúhelníkové matice dán jednoduchým součinem ( λ a )( λ a ) ( λ a ), jehož kořeny jsou zjevně čísla a, a,..., a nn. Cbd.... nn Hermitovské, ortogonální a unitární matice a jejich vlastní čísla a vektory. a) Hermitovskou (hermitovsky symetrickou) maticí nazýváme matici, pro niž = tzn. současnou transpozici matice a její komplexní sdružení). T b) Ortogonální maticí rozumíme matici, pro kterou platí A = A. A T = A, neboli T + A A A (pruh značí komplexní sdružení, horní index + tzv. hermitovské sdružení, c) Unitární maticí rozumíme matici, pro kterou platí T + A = A A. Všechny tři typy matic mají v přírodních vědách velmi významné uplatnění. a) Vlastní čísla hermitovské matice jsou reálná. b) Vlastní čísla reálné symetrické matice jsou reálná. c) Modul (absolutní hodnota) každého vlastního čísla unitární matice je roven jedné. d) Vlastní vektory hermitovské nebo unitární matice příslušné různým vlastním číslům jsou navzájem ortogonální. Vlastní čísla a podobnostní transformace. Čtvercové matice A, B téhož řádu nazýváme podobnými, existuje-li taková matice P, že platí B= P AP. Uvedený přechod od matice A k matici B nazýváme podobnostní transformací. Podobné matice mají stejný charakteristický mnohočlen, stejná vlastní čísla a stejnou stopu. a) Nechť A je hermitovská matice. Pak existuje unitární matice U taková, že matice U AU je diagonální (a reálná). b) Nechť A je reálná symetrická matice. Pak existuje reálná ortogonální matice P taková, že matice P AP je diagonální (a samozřejmě také reálná). V posledních dvou větách je skryta základní idea numerických výpočtů vlastních čísel. Matice se vhodnou podobnostní transformací převede na trojúhelníkový (nebo dokonce diagonální) tvar, pro který, jak již víme, platí, že vlastní čísla jsou totožná s hlavními prvky. Protože podobnostní transformace nemění vlastní čísla, jsou nalezená čísla také vlastními čísly původní matice.
4 Shrnutí kapitoly: Problém vlastních čísel a vlastních vektorů hraje v moderních partiích přírodních věd nezastupitelnou roli. K jeho pochopení je nutno nadefinovat základní pojmy. Vlastní číslo λ a příslušný vlastní vektor (sloupcová matice) u jsou definovány rovnicí Au = λu. Charakteristickou maticí čtvercové matice A nazýváme matici λe A, kde veličina λ je reálná nebo komplexní proměnná. Charakteristickým polynomem nazýváme determinant matice charakteristické k matici A, tj. det ( λe A ). Problém nalezení vlastních čísel matice teoreticky řeší tato věta: Vlastními čísly matice A jsou kořeny charakteristického polynomu det ( λe A ). Prakticky je ale hledání kořenů polynomů vyšších stupňů obecně náročným problémem. Pouze u trojúhelníkových matic platí jednoduchý výsledek, že jejich vlastní čísla jsou přímo rovna hlavním prvkům. Často používají tzv. hermitovské, ortogonální a unitární matice. Jejich vlastní čísla a vektory mají zajímavé vlastnosti. Numerické metody výpočtu vlastních čísel jsou založeny na tzv. podobnostních transformacích, tj. na transformacích tvaru B= P AP. Platí totiž, že podobnostní transformace vlastní čísla nemění. Stačí proto vhodnou podobnostní transformací přejít od dané matice k matici trojúhelníkové, u které vlastní čísla určíme přímo. Otázky: Definujte vlastní (charakteristická) čísla a vektory čtvercové matice. Definujte charakteristickou matici a charakteristický polynom příslušné k dané čtvercové matici. Jak souvisejí vlastní čísla a charakteristický polynom dané čtvercové matice? Jak vypočteme vlastní čísla trojúhelníkové (nebo diagonální) matice? Podejte důkaz! Jak je definována hermitovská, ortogonální a unitární matice? Co je to hermitovské sdružení? Co platí pro vlastní čísla hermitovské, reálné symetrické a unitární matice? A co platí pro Vlastní vektory hermitovské nebo unitární matice, příslušné různým vlastním číslům? Co je to podobnostní transformace a které matice nazýváme podobnými? Co platí pro charakteristický mnohočlen a vlastní čísla podobných matic? Jaká je základní idea numerických algoritmů pro výpočet vlastních čísel?
5 Řešený příklad. Nalezněte vlastní čísla a vektory matice 5 3 A. Řešení. Vlastní čísla nalezneme jako kořeny charakteristického polynomu, tzn. jako řešení det λe A = 0 : rovnice ( ) λ λ ( )( ) ( ) = λ+ λ = λ + λ = Řešením této kvadratické rovnice jsou čísla λ =, λ = 4. Vlastní vektor u, příslušný vlastnímu číslu λ =, je podle definice vektor, vyhovující maticové rovnici Au= λ u, kterou snadno upravíme na tvar ( λ ) E A u = 0. Jedná se o maticově zapsanou homogenní (tj. bez pravé strany) soustavu dvou lineárních rovnic o dvou neznámých, jejíž maticí je charakteristická matice k matici A s dosazenou hodnotou λ za proměnnou λ. Tuto soustavu snadno vyřešíme. Protože matice soustavy je singulární (determinant je roven nule), očekáváme nekonečně mnoho řešení: E A u = = = 0 = 0 u u 0 0 u. ( λ ) Volíme např. u = k, kde k je reálný (nebo i komplexní) parametr, pak z první rovnice soustavy u = k. Vlastním vektorem u, příslušným vlastnímu číslu λ =, je tedy libovolný nenulový vektor tvaru k u = = k k, k 0. Obdobně nalezneme vlastní vektory u, příslušné vlastnímu číslu λ = 4: ( λ ) E A u = = = 0 = 0 4 u 6 u 0 0 u. Volbou např. u = k obdržíme z první rovnice soustavy u = 3k. Vlastním vektorem u, příslušným vlastnímu číslu λ = 4, je tedy libovolný nenulový vektor tvaru u 3k 3 = = k k, k 0. Vlastní vektory jsou tedy určeny až na libovolný nenulový multiplikativní činitel k, což plyne z definice vlastních vektorů a platí zcela obecně.
6 Příklad : Nalezněte vlastní čísla a vektory matice: 4 a) A ; b) B Řešení příkladů: a) λ =, λ = 3, k u =, u = k, k 0 ; b) λ = 5, λ =, k u =, u = k, k 0. 6 Další zdroje:. POLÁK, J. Přehled středoškolské matematiky. 6. vyd. Praha: Prometheus, POLÁK, J. Středoškolská matematika v úlohách I.. vyd. Praha: Prometheus, POLÁK, J. Středoškolská matematika v úlohách II.. vyd. Praha: Prometheus, REKTORYS, K. a spol. Přehled užité matematiky. 6. přepr. vyd. Praha: Prometheus, 995. ZÁVĚR: [Tady klepněte a pište]
2. ZÁKLADY MATICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY
2. ZÁKLADY MAICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY V této kapitole se dozvíte: jak je definována reálná nebo komplexní matice a co rozumíme jejím typem; co jsou to prvky matice, co vyjadřují jejich indexy
Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,
Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova
Podobnostní transformace
Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
2. Schurova věta. Petr Tichý. 3. října 2012
2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci
Soustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE
3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE V této kapitole se dozvíte: jak popsat kružnici a kruh v rovině; jak určit vzájemnou polohu bodu nebo a kružnice, resp. bodu a kruhu; jakými metodami určit vzájemnou
1.4. VEKTOROVÝ SOUČIN
.4. VEKTOROVÝ SOUČIN V této kapitole se dozvíte: definici vektorového (také vnějšího) součinu, jeho vlastnosti a geometrický význam; co rozumíme pravotočivou ortonormální nebo ortogonální bází; definici
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Vlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky
Vlastní čísla a vlastní vektory
Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální
2.6. Vlastní čísla a vlastní vektory matice
26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC
25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy
36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou
1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový
2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro
Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:
2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC
22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Symetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
P 1 = P 1 1 = P 1, P 1 2 =
1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
3.6. ANALYTICKÁ GEOMETRIE PARABOLY
3.6. ANALYTICKÁ GEOMETRIE PARABOLY V této kapitole se dozvíte: jak je geometricky definována kuželosečka zvaná parabola; co je to ohnisko, řídící přímka, vrchol, osa, parametr paraboly; tvar vrcholové
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
(u, v) u. v. cos φ =
LA 3. cvičení Ortogonalita, Gramm-Schmitův ortonormalizační proces Lukáš Pospíšil, Martin Hasal,2 Ortogonální systém vektorů Poznámka: Motivace - připomeňme si Kosinovu větu v obecném tvaru kde φ je úhel
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Lineární algebra : Vlastní čísla, vektory a diagonalizace
Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
Soustavy lineárních rovnic a determinanty
Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE
4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak jsou definovány goniometrické rovnice a nerovnice; jak se řeší základní typy goniometrických rovnic a nerovnic. Klíčová slova této
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Soustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
2.3. DETERMINANTY MATIC
2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní
SVD rozklad a pseudoinverse
SVD rozklad a pseudoinverse Odpřednesenou látku naleznete v kapitole 12 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 19.12.2016: SVD rozklad a pseudoinverse 1/21 Cíle
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,
Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární
Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer
Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky
Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,
Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Soustavy lineárních rovnic-numerické řešení. October 2, 2008
Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Základy matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
12. Determinanty. 12. Determinanty p. 1/25
12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant
1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23