Hlubší věty o počítání modulo
|
|
- Pavel Tábor
- před 6 lety
- Počet zobrazení:
Transkript
1 Hlubší věty o počítání modulo Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 1/18
2 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = Musí být: 1 První obdélník roven 1 v Z 4 a roven 0 v Z 5 a v Z Druhý obdélník roven 1 v Z 5 a roven 0 v Z 4 a v Z Třetí obdélník roven 1 v Z 21 a roven 0 v Z 4 a v Z 5. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 2/18
3 Příklad (pokrač.) Nulovost obdélníků: x = ? 4 21? 4 5? Jedničkovost obdélníků: x = protože: 1 (5 21) 1 = 1 1 = 1 v Z 4. (gcd(4, 5) = 1 a gcd(4, 21) = 1) 2 (4 21) 1 = 4 1 = 4 v Z 5. (gcd(5, 4) = 1 a gcd(5, 21) = 1) 3 (4 5) 1 = 20 1 = 20 v Z 21. (gcd(21, 4) = 1 a gcd(21, 5) = 1) Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 3/18
4 Příklad (pokrač.) Celkově: x = = = 27 v Z 420 protože a lcm(4, 5, 21) = = 420. Funguje to: 27 = 3 v Z 4 27 = 2 v Z 5 27 = 6 v Z 21 a lcm(a,..., b) značí nejmenší společný násobek celých čísel a,..., b, anglicky least common multiple. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 4/18
5 Čínská věta o zbytcích (Sun Zi: 3. stol. n. l.) Ať m 1, m 2,..., m r jsou navzájem nesoudělná přirozená čísla, m i 2 pro i = 1,..., r. Potom každá soustava rovnic x = a 1 v Z m1 x = a 2 v Z m2. x = a r v Z mr má řešení a toto řešení je určeno jednoznačně v Z M, kde M = m 1 m 2 m r. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 5/18
6 Zobecnění čínské věty Ať m 1 a m 2 jsou libovolná přirozená čísla, m i 2 pro i = 1, 2. Označme d = gcd(m 1, m 2 ). Pak jsou následující dvě podmínky ekvivalentní: 1 Soustava má řešení. 2 Platí d (a 2 a 1 ). x = a 1 v Z m1 x = a 2 v Z m2 Jestliže platí d (a 2 a 1 ), je řešení určeno jednoznačně v Z M, kde M = lcm(m 1, m 2 ). Máme tedy rekursivní algoritmus pro řešení jakékoli soustavy! Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 6/18
7 Příklad Čísla m 1 = 5, m 2 = 7, m 3 = 11, m 4 = 13 jsou navzájem nesoudělná, M = m 1 m 2 m 3 m 4 = Čínská věta o zbytcích: pro čísla 0 Z < je korespondence: Z ([Z] 5, [Z] 7, [Z] 11, [Z] 13 ) bijekce a respektuje sčítání a násobení (po složkách). Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 7/18
8 Příklad (pokrač.) Vynásobte 28 a 47. Protože výsledek Z je < 5 005, postupujeme takto: 1 28 ([28] 5, [28] 7, [28] 11, [28] 13 ) = (3, 0, 6, 2) ([47] 5, [47] 7, [47] 11, [47] 13 ) = (2, 5, 3, 8). 3 Po složkách vynásobíme: (1, 0, 7, 3). 4 Dekódujeme čínskou větou o zbytcích: (1, 0, 7, 3) Rychlost algoritmu, zobecnění (rychlé násobení matic, apod.) viz např. V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge Univ. Press, 2005 Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 8/18
9 Malá Fermatova věta (Pierre de Fermat: ) Ať p je prvočíslo. Jestliže gcd(a, p) = 1, pak platí a p 1 = 1 v Z p Důkaz. Zobrazení x x a je bijekce na invertibilních prvcích Z p. To jsou prvky {1, 2,..., p 1}. Proto {1a, 2a,..., (p 1)a} = {1,..., (p 1)} v Z p Proto a p (p 1) = 1 2 (p 1) v Z p. Tedy a p 1 = 1 v Z p. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 9/18
10 Definice Eulerova funkce ϕ: pro kladné přirozené číslo m je ϕ(m) počet všech čísel z množiny {0, 1,..., m 1}, která jsou s m nesoudělná. Poznámka ϕ(m) je počet invertibilních prvků v Z m. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 10/18
11 Vlastnosti Eulerovy funkce 1 ϕ(1) = 1. 2 Pro prvočíslo p je ϕ(p) = p 1. 3 Pro prvočíslo p je ϕ(p n ) = p n p n 1. 4 Pro nesoudělná a, b je ϕ(ab) = ϕ(a) ϕ(b). Příklad 1960 = Proto ϕ(1960) = ϕ(2 3 ) ϕ(5) ϕ(7 2 ) = ( ) (5 1) (7 2 7) = = 672. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 11/18
12 Eulerova věta (Leonard Euler: ) Jestliže gcd(a, m) = 1, pak platí a ϕ(m) = 1 v Z m Důkaz. Zobrazení x x a je bijekce na invertibilních prvcích Z m. To jsou prvky {b 1, b 2,..., b ϕ(m) }. Proto {b 1 a, b 2 a,..., b ϕ(m) a} = {b 1,..., b ϕ(m) } v Z m Proto a ϕ(m) b 1 b 2 b ϕm = b 1 b 2 b ϕ(m) v Z m. Tedy a ϕ(m) = 1 v Z m. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 12/18
13 Příklad Spočítejte v Z Postup: 1 Spočítáme: 1960 = , takže gcd(1960, 13) = 1. 2 Spočítáme: ϕ(1960) = 672, takže = 1 v Z Spočítáme: = Takže: = = ( ) = = 13 2 = 169 v Z Eulerova věta drasticky snižuje exponent velkých mocnin. Jak ale spočítat např v Z 1960? Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 13/18
14 Příklad (Budeme potřebovat příště) Spočítejte x = v Z , když víme, že = (rozklad na prvočísla). Eulerova věta dává: x = = = v Z 97 x = = = v Z 373 Použijeme čínskou větu o zbytcích a získáme x v Z Výpočet v Z 97? Výpočet v Z 373? Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 14/18
15 Příklad (pokrač.) Binární rozvoj exponentu 89 je (89) 2 = (1, 0, 1, 1, 0, 0, 1). Algoritmus opakovaných čtverců v Z 97 : X 11 = 11 1 S 11 2 = 121 = 24 S 11 4 = 24 2 = 576 = 91 X 11 5 = = = 31 S = 31 2 = 961 = 88 X = = 968 = 95 S = 95 2 = = 4 S = 4 2 = 16 S = 16 2 = 256 = 62 X = = 682 = = 3 v Z 97. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 15/18
16 Příklad (pokrač.) Binární rozvoj exponentu 233 je (233) 2 = (1, 1, 1, 0, 1, 0, 0, 1). Algoritmus opakovaných čtverců v Z 373 : X 11 = 11 1 S 11 2 = 121 X 11 3 = = = 212 S 11 6 = = = 184 X 11 7 = = = 159 S = = = 290 S = = = 175 X = = = 60 S = 60 2 = = 243 S = = = 115 S = = = 170 X = = = = 5 v Z 373. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 16/18
17 Příklad (pokrač.) Čínská věta o zbytcích pro x = 3 = v Z 97 x = 5 = v Z 373 Řešení: x = = = = v Z Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 17/18
18 Shrnutí výpočet a b v Z m 1 Zredukujte (pokud to jde) a v Z m. Označte jej jako x. Platí tedy 0 x < m. Dále počítejte x b v Z m. 2 Zredukujte (pokud to jde) exponent b pomocí Eulerovy věty. K tomu je nutné, aby platilo gcd(b, m) = 1. 3 Počítejte x b v Z m algoritmem opakovaných čtverců. 4 Pokud navíc známe prvočíselný rozklad čísla m, může být vhodné použít čínskou větu o zbytcích. Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 18/18
Hlubší věty o počítání modulo
Hlubší věty o počítání modulo Jiří Velebil: X01DML 3. prosince 2007: Hlubší věty o počítání modulo 1/17 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První
VíceObsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie
Obsah Počítání modulo n a jeho časová složitost 3. a 4. přednáška z kryptografie 1 Počítání modulo n - dokončení Umocňování v Zn 2 Časová složitost výpočtů modulo n Asymptotická notace Základní aritmetické
VíceProtokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy
Protokol RSA Jiří Velebil: X01DML 3. prosince 2010: Protokol RSA 1/18 Protokol RSA Autoři: Ronald Rivest, Adi Shamir a Leonard Adleman. a Publikováno: R. L. Rivest, A. Shamir a L. Adleman, A Method for
VíceCyklické grupy a grupy permutací
Cyklické grupy a grupy permutací Jiří Velebil: A7B01MCS 5. prosince 2011: Cyklické grupy, permutace 1/26 Z minula: grupa je důležitý ADT Dnešní přednáška: hlubší pohled na strukturu konečných grup. Aplikace:
VíceZáklady elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují
VíceCharakteristika tělesa
16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním
VíceZbytky a nezbytky Vazební věznice Orličky Kondr (Brkos 2010) Zbytky a nezbytky / 22
Zbytky a nezbytky aneb stručný úvod do kongruencí Zbyněk Konečný Vazební věznice Orličky 2009 23. 27.2.2009 Kondr (Brkos 2010) Zbytky a nezbytky 23. 27.2.2009 1 / 22 O čem to dnes bude? 1 Úvod 2 Lineární
VíceZáklady elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené
VíceMPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n.
MPI - 7. přednáška vytvořeno: 31. října 2016, 10:18 Co bude v dnešní přednášce Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. Rovnice a b
VíceOkruh Lineární rovnice v Z m Těleso Gaussova eliminace (GEM) Okruh Z m. Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20
Okruh Z m Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20 Minule: 1 Slepování prvků Z modulo m: množina Z m. 2 Operace na Z m : m (sčítání), m (násobení). 3 Speciální prvky: [0] m a [1] m. 4 Vlastnosti
VíceJak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
Více21ˆx 0 mod 112, 21x p 35 mod 112. x p mod 16. x 3 mod 17. α 1 mod 13 α 0 mod 17. β 0 mod 13 β 1 mod 17.
1. 2. test - varianta A Příklad 1.1. Kompletně vyřešte rovnici 21x 35 mod 112. Řešení. Protože gcd(112, 21) 21 má dle Frobeniovy věty rovnice řešení. Řešení nalezneme ve dvou krocích. Nejprve kompletně
VíceÚvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem
Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie
VíceTrocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA
O OŠKLIVÉM LEMÁTKU PAVEL JAHODA Prezentace pro přednášku v rámci ŠKOMAM 2014. Dělitelnost na množině celých čísel 3 dělí 6 Dělitelnost na množině celých čísel 3 dělí 6 protože Dělitelnost na množině celých
VíceČínská věta o zbytcích RSA
Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-10 11:20 Obsah
VíceGenerující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30
Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou
VíceRSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21.
Čínská věta o zbytcích Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MA) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MA čtvrtek 21. října 2010 verze:
VíceRSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01
Čínská věta o zbytcích Mocnění Eulerova funkce Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG ponděĺı
VíceY36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz
Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování
VíceRelace a kongruence modulo
Relace a kongruence modulo Jiří Velebil: A7B01MCS 10. října 2011: Relace a kongruence modulo 1/19 Definice Binární relace R na množině A je podmnožina R A A. Píšeme x R y (čteme: x je v relaci R s y) místo
VícePokročilá kryptologie
Pokročilá kryptologie RSA doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika pro
VícePrincipy indukce a rekursivní algoritmy
Principy indukce a rekursivní algoritmy Jiří Velebil: A7B01MCS 19. září 2011: Indukce 1/20 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
VíceDiskrétní matematika 1. týden
Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé
VíceOdpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
nad obecným tělesem a lineární kombinace Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 1.10.2015: 1/20 nad obecným tělesem Co
VíceLineární algebra nad obecným Z m, lineární kódy
Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad
Více8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.
Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů
VícePrincipy indukce a rekurentní rovnice
Principy indukce a rekurentní rovnice Jiří Velebil: X01DML 22. října 2010: Indukce 1/15 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
VícePrvočísla, dělitelnost
Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAG pondělí 3. listopadu 2013 verze: 2014-11-03 11:28 Obsah přednášky
VíceMatematické algoritmy (11MAG) Jan Přikryl
Prvočísla, dělitelnost Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAG ponděĺı 7. října 2013 verze: 2013-10-22 14:28 Obsah přednášky Prvočísla
Vícegrupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
Více8 Kořeny cyklických kódů, BCH-kódy
24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF
VíceModulární aritmetika, Malá Fermatova věta.
Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-03
VícePolynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30
Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,
VíceHistorie matematiky a informatiky Cvičení 2
Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic
VíceHistorie matematiky a informatiky Cvičení 1
Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co
VíceMatematické algoritmy (11MAG) Jan Přikryl. verze: :29
Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl 2. přednáška 11MAG pondělí 7. října 2013 verze: 2013-10-22 14:29 Obsah 1 Prvočísla 1 1.1 Vlastnosti prvočísel...................................
VíceCyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b)
C Ať C je [n, k] q kód takový, že pro každé u 1,..., u n ) C je také u 2,..., u n, u 1 ) C. Jinými slovy, kódová slova jsou uzavřena na cyklické posuny. Je přirozené takový kód nazvat cyklický. Strukturu
VíceDiskrétní logaritmus
13. a 14. přednáška z kryptografie Alena Gollová 1/38 Obsah 1 Protokoly Diffieho-Hellmanův a ElGamalův Diffieho-Hellmanův a ElGamalův protokol Bezpečnost obou protokolů 2 Baby step-giant step algoritmus
VíceObsah. Protokol RSA. Protokol RSA Bezpečnost protokolu RSA. 5. a 6. přednáška z kryptografie
Obsah RSA šifrování 5. a 6. přednáška z kryptografie 1 RSA šifrování 2 Útoky na protokol RSA Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3 Digitální
VíceRelativní Eulerova funkce
MUNDUS SYMBOLICUS 25 (2017) Relativní Eulerova funkce J. Nečas Abstract. The article deals with the sequence of ratios between values of the Euler function of the natural number n and that number n. Klíčová
VíceSubexponenciální algoritmus pro diskrétní logaritmus
Subexponenciální algoritmus pro diskrétní logaritmus 22. a 23. přednáška z kryptografie Alena Gollová SEDL 1/33 Obsah 1 Využívaná fakta y-hladká čísla 2 3 Alena Gollová SEDL 2/33 y-hladká čísla Subexponenciální
VíceDiskrétní matematika
České Vysoké Učení Technické v Praze Fakulta elektrotechnická Diskrétní matematika Sbírka řešených příkladů Jiří Velebil katedra matematiky APraha, 2007 velebil@math.feld.cvut.cz http://math.feld.cvut.cz/velebil
Více5. a 6. přednáška z kryptografie
RSA šifrování 5. a 6. přednáška z kryptografie Alena Gollová RSA širování 1/33 Obsah 1 RSA šifrování 2 Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3
VíceMFF UK Praha, 22. duben 2008
MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno
Vícez nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další).
0. Tři věty o prvočíslech Martin Mareš Úvodem Při analýze algoritmů se často využívají různá tvrzení o prvočíslech. Většina z nich byla poprvé dokázána v 9. století velikány analytické teorie čísel (Pafnutij
VíceTransformace souřadnic
Transformace souřadnic Odpřednesenou látku naleznete v kapitolách 8.2 a 8.3 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01AG 5.11.2015: Transformace souřadnic 1/17 Minulá přednáška
VíceÚvod. Karel Klouda c KTI, FIT, ČVUT v Praze 18. dubna, letní semestr 2010/2011
MI-MPI, Přednáška č. 11 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 18. dubna, letní semestr 2010/2011 RSA potřiapadesáté šifrování Co potřebuje k zašifrování zprávy x: číslo n, které
Více1. Základní příklady a poznatky o monoidech a grupách
Předmět: Algebra I Semestr: Zimní 2015/2016 Přednášel: J. Žemlička Verze z: 6. ledna 2017 Díky za pomoc s řešeními příkladů: Martin Šerý, Štěpán Hojdar, Petr Houška, Péťa Pelikánová. (A určitě další, ale
VíceVěta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
VíceZáklady algebraických specifikací
Základy algebraických specifikací Jiří Velebil: A7B01MCS 21. listopadu 2011: Základy algebraických specifikací 1/19 Příklad (Připomenutí) Řešení rovnice ax = b, a 0, probíhá stejně v Q, v R, v C, i v jakémkoli
VíceHistorie matematiky a informatiky 2 7. přednáška
Historie matematiky a informatiky 2 7. přednáška Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 5. října 2013 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitoly z teorie
VíceKarel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011
MI-MPI, Přednáška č. 3 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 Množiny s jednou binární operací Neprázdná množina M s binární operací (resp. +
Víceoznačme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
VíceY36BEZ Bezpečnost přenosu a zpracování dat. Úvod 2. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz
Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 2. přednáška Úvod 2 http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a
Vícex 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
VíceAlgoritmy okolo teorie čísel
Úvodem Algoritmy okolo teorie čísel Martin Mareš mj@ucw.cz Tento textík rozebírá několik základních algoritmických problémů souvisících s teorií čísel: Notace. počítání největších společných dělitelů řešení
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceMatematika IV - 3. přednáška Rozklady grup
S Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 s Obsah přednášky Rozklady podle podgrup ô Normální podgrupy s Doporučene zdroje Martin Panák,
Více[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem
VíceMatematika IV - 3. přednáška Rozklady grup
Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 Obsah přednášky Rozklady podle podgrup ô Normální podgrupy Martin Panák, Jan Slovák, Drsná
VíceAlgoritmy okolo teorie čísel
Algoritmy okolo teorie čísel Martin Mareš mj@ucw.cz, 22. 1. 2011 Úvodem Tento textík rozebírá několik základních algoritmických problémů souvisících s teorií čísel: počítání největších společných dělitelů
VíceGRUPY SBÍRKA PŘÍKLADŮ
Masarykova Univerzita v Brně Přírodovědecká fakulta GRUPY SBÍRKA PŘÍKLADŮ bakalářská práce Brno 2005 Vít Musil i Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně s použitím uvedené literatury.
VícePočet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování.
Název předmětu: Matematika pro informatiky Zkratka předmětu: MIE Počet kreditů: 5 Forma studia: kombinovaná Forma zkoušky: kombinovaná (písemná a ústní část) Anotace: Předmět seznamuje se základy dělitelnosti,
Více1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
VíceMatematika 2 pro PEF PaE
Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina
Více4 Počítání modulo polynom
8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li
Více19. a 20. přednáška z kryptografie
19. a 20. přednáška z kryptografie Alena Gollová 1/35 Obsah 1 2 IsPrime jako IsPrime jako s dělením malými prvočísly Alena Gollová 2/35 V předchozí kapitole jsme používali algoritmus IsPrime(n), který
Více2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
VíceNejvětší společný dělitel
1..1 Největší společný dělitel Předpoklady: 01016 Číslo Číslo nsn Platí pravidlo "nsn získáme jako součin obou čísel"? = 1 = Násobící pravidlo platí. 1 = Násobící pravidlo platí. 1 = Násobící pravidlo
VíceVektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
VíceMatematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
VíceAritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší
VíceVZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?
VíceZápadočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY VYBRANÉ KAPITOLY Z ELEMENTÁRNÍ ALGEBRY DIPLOMOVÁ PRÁCE Bc. Jiří KRYČ Učitelství pro 2. stupeň ZŠ, obor
VíceČíselné množiny Vypracovala: Mgr. Iva Hálková
Číselné množiny Vypracovala: Mgr. Iva Hálková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
VíceDeterminanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
VíceALGEBRA I PRO INFORMATIKY. Obsah
ALGEBRA I PRO INFORMATIKY Obsah 1. Předmět(y) zkoumání 1 2. Základy elementární teorie čísel 4 3. Asociativní binární operace 8 4. Grupy, podgrupy a homomorfismy 10 5. Klasifikace cyklických grup 14 6.
VíceAritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 10 Dělení se zbytkem O čem budeme hovořit: Binární operace dělení se zbytkem v N Struktury zbytkových tříd podle modulu Seznámíme
VíceAlgebra 2 Teorie čísel. Michal Bulant
Algebra 2 Teorie čísel Home Page Michal Bulant katedra matematiky, Přírodovědecká fakulta, Masarykova univerzita, Janáčkovo nám. 2a, 662 95 Brno E-mail address: bulant@math.muni.cz Page 1 of 103 Abstrakt.
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VíceKongruence na množině celých čísel
121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
VícePolynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
VíceNechť M je množina. Zobrazení z M M do M se nazývá (binární) operace
Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z
VíceTestování prvočíselnosti
Dokumentace zápočtového programu z Programování II (NPRG031) Testování prvočíselnosti David Pěgřímek http://davpe.net Úvodem V různých oborech (například v kryptografii) je potřeba zjistit, zda je číslo
VíceModulární aritmetika, Malá Fermatova věta.
Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl 4. přednáška 11MAG pondělí 3. listopadu 2014 verze: 2014-11-10 10:42 Obsah 1 Dělitelnost 1 1.1 Největší společný dělitel................................
VíceSvobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly
METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:
Vícez = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
Více18. První rozklad lineární transformace
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 18. První rozklad lineární transformace Úmluva. Vtéto přednášce V je vektorový prostor
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceMatematika IV - 2. přednáška Základy teorie grup
Matematika IV - 2. přednáška Základy teorie grup Michal Bulant Masarykova univerzita Fakulta informatiky 25. 2. 2008 oooooooooooo Obsah přednášky Q Grupy - homomorfismy a součiny Martin Panák, Jan Slovák,
VíceŘetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve
Faktorizace čísel pomocí řetězových zlomků Tento text se zabývá algoritmem CFRAC (continued fractions algorithm) pro rozkládání velkých čísel (typicky součinů dvou velkých prvočísel). Nebudeme se zde zabývat
VíceOdpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.
Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.
VíceJihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı
Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal 12 2.1 Algoritmus RSA.................................
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
VíceSoustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Více2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.
Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R
Více