EXPERIMENTÁLNÍ A POČÍTAČOVÁ ZÁKLADNA VÝVOJE TVÁŘECÍCH TECHNOLOGIÍ
|
|
- Nela Musilová
- před 6 lety
- Počet zobrazení:
Transkript
1 EXPERIMENTÁLNÍ A POČÍTAČOVÁ ZÁKLADNA VÝVOJE TVÁŘECÍCH TECHNOLOGIÍ Zbyšek Nový, Petr Motyčka COMTES FHT s.r.o., Borská 47, Plzeň, ČR Abstract The COMTES FHT s.r.o. (COMplete TEchnological Service Forming, Heat Treatment ) was established in December The forming and heat treatment technologies development and consulting in the branch of materials engineering are in the centre of its activities. The COMTES s.r.o. provides the technological processes and forming tools design, numerical modelling of technological processes, physical modelling of the thermal and deformation cycling on used materials, measuring of input data for numerical modelling, prototypes manufacturing. The extra attention is directed to numerical modelling and thermophysical and thermomechanical input data for the material behaviour simulation in technological process by finite elements method. This lecture acts with stress-strain dependence evaluation from tensile-test records. The knowledge of local relationship among stress, relative strain, temperature and deformation rate is the base precondition of the correctness of the model of technological process. We must realize very important fact the input data for the modelling are of differential type. It must be integrated to obtain the total change of geometry and time dependence of the force. The solution described below uses the numerical modelling by finite elements method. The measurement itself hot tensile test is numerically modelled, the total force and deformation are computed and compared to the measurement. The difference between computed and measured records is reduced by iterative change of input parameters in material s behaviour model. V prosinci 2000 vznikla společnost COMTES FHT s.r.o., která se zabývá vývojem technologií tváření, tepelného zpracování a materiálovým poradenstvím. Název společnosti zkratka výrazu COmplete TEchnological Service Forming, Heat Treatment odráží snahu firmy o kompletní nabídku při řešení technologických problémů, která. zahrnuje především následující služby: měření materiálových vlastností (teplotní závislosti křivek napětí deformace, tepelná roztažnost, tepelné kapacita, tepelná vodivost, hustota, magnetické vlastnosti mag. indukce, permeabilita). numerické modelování procesů tváření a tepelného zpracování fyzikální modelování tepelných a tepelně deformačních cyklů, jejich vývoj pro dosažení požadovaných materiálových vlastností konstrukční návrhy tvářecích nástrojů a přípravků vypracování technologických postupů výroba prototypů, resp. ověřovacích sérií materiálové poradenství Získávání materiálových dat a vytváření materiálových modelů pro využití v numerických programech simulací technologických procesů je významným specifickým rysem firmy. Důraz na řešení materiálové problematiky při vývoji technologií vyúsťuje do dalšího ze speciálních zaměření výzkum řízeného tepelně-mechanického zpracování (TMZ) - 1 -
2 Požadavek Tvar Vlastnosti Řešení Měření materiálových vlastností Volba tvářecího stroje Přibližný návrh tvářecích nástrojů a přípravků Přibližný návrh tepelně deformačního cyklu FEM simulace procesu Fyzikální simulace tepelně deformačního cyklu Optimalizovaný tvar a konstrukce nástrojů Optimalizovaný tepelně deformační cyklus Vypracování technologického postupu Výroba prototypů, ověřování sérií Obr. 1 Schéma řešení vývoje nových technologií tváření a tepelného zpracování
3 v celém rozsahu tvářecích technologií, velké úsilí, je věnováno především využití TMZ v kovárenství. Výzkum tepelně deformačních cyklů aplikovaných při TMZ vyžaduje zázemí pro fyzikální simulace (tepelně deformační simulátor, speciálně upravené laboratorní lisy) a zároveň možnosti numerického modelování. Simulační výpočty slouží k predikci toku materiálu a dosažení správného tvaru, dále k přenosu technologických dat ze zkušebních vzorků na součásti reálného tvaru a za další ke zjišťování namáhání tvářecích nástrojů, přípravků i vlastních strojů. Hlavním cílem aplikace TMZ je dosahování lepších vlastností materiálu (jak povrchových tak objemových) a snížení nákladů na výrobu např. odstraněním operace tepelného zpracování nebo kováním s menšími přídavky ve srovnání s konvenčními postupy tváření zatepla a následným tepelným zpracováním. Obvyklý způsob řešení technologií tváření a tepelně mechanického zpracování je schematicky znázorněn na obr. 1. Řešení začíná téměř vždy měřením vlastností materiálu v závislosti na předchozí tepelně deformační historii, zjišťují se v závislosti na teplotě křivky napětí deformace, ARA, resp. IRA diagramy, tepelná roztažnost, vodivost a kapacita, hustota atd. Paralelně se provede výběr tvářecího zařízení. Vývoj pokračuje prvním návrhem tvářecích nástrojů a přibližným návrhem tepelně deformačního cyklu, provedeném na základě znalosti rekrystalizačního, transformačního, precipitačního a napěťově deformačního chování materiálu při různých teplotách. Z těchto dvou návrhů je sestaven nástin technologického procesu, který je numericky simulován metodou konečných prvků a současně je tepelně deformační proces fyzicky modelován na vzorcích z daného materiálu na tepelně deformačním simulátoru nebo na speciálně upraveném laboratorním lisu. Fyzikální simulace poskytuje informace o výsledných vlastnostech materiálu optimalizací získáme tepelně deformační podmínky procesu, který vede k požadovaným vlastnostem. Numerická simulace plní několik úkolů. Predikuje tok materiálu v návaznosti na tvar a pohyb nástrojů a na teplotu tvářeného kusu. Dále umožňuje optimalizovat okrajové podmínky tváření (výchozí teplotu tvářeného kusu, počet deformačních úběrů, rychlost pohybu nástrojů, dokovací teplotu atd.) tak aby správný tepelně deformační cyklus byl dodržen v kritických lokalitách součásti. Důležitou roli může numerické modelování sehrávat rovněž při kontrole namáhání komponent tvářecích strojů a nástrojů. A) B) teplota [ C] čas [hod] teplota [ C] % martenzitu HRC 1, σ r1 čas [hod] % bainitu HRC 2, σ r2 % feritu+perlitu HRC 3, σ r3 Obr. 2 Predikce parametrů materiálu při tepelném zpracování pomocí numerického modelování A/ Průběh teploty v různých místech zpracovávaného kusu. B/ Výpočet tvrdosti, fázového složení a zbytkového pnutí
4 Výsledkem modelování a následné optimalizace je finální návrh tvářecích nástrojů (+ přípravků), tyto nástroje musí (vedle dosažení správného finálního tvaru) umožňovat provedení tepelně deformačního cyklu, který byl vyvinut. Znalost tvářecího zařízení, konstrukčního řešení nástrojů a tepelně deformačního cyklu jsou základními atributy pro vypracování technologického postupu, po kterém následuje výroba prototypu a výroba ověřovací série. Další významnou aktivitou firmy je vývoj a optimalizace technologií tepelného zpracování. Firma disponuje laboratorními pecemi pro experimentální testy a opět softwarovými produkty pro predikci technologického procesu pomocí numerického modelování. Využití modelování mívá obvykle dvojí charakter. Buď je řešen pouze průběh teploty v různých místech zpracovávaného kusu v závislosti na vnějších podmínkách, anebo jsou pro jednotlivé lokality součásti (vedle průběhu teploty) rovněž dopočítávány další parametry - fázové složení, tvrdost a zbytkové pnutí. Díky této predikci lze měnit technologické podmínky zpracování tak, aby vyšly hodnoty sledovaných parametrů v požadovaných mezích. Pro menší kusy lze kontrolovat vypočtené parametry modelovým zpracováním v laboratorních pecích, pro velké součásti se provádí speciální měření pomocí termočlánků v pecích u výrobce, resp. pro metalografickou kontrolu se u výrobce modelově zpracovává součást určená k testování k následnému rozřezu a analýzám. Vzhledem k obecně vzrůstajícímu významu numerického modelování technologických procesů lze pozorovat rostoucí potřebu a v řadě případů nedostatek materiálových dat zadávaných do simulačních programů. Z tohoto důvodu si společnost COMTES FHT vytkla zjišťování materiálových dat za jednu z hlavních činností firmy. Práce v oblasti materiálových dat pro počítačové simulace tváření je motivována dosažením co největší shody mezi chováním modelu a skutečného tělesa ve vymezeném souboru sledovaných vlastností. Čím je model obecnější, tím větší je množina aplikací, v nichž nalezneme tuto shodu. Velmi cenným výsledkem modelování má být získání informace o budoucím skutečném výrobním procesu prostřednictvím simulace [1]. Zobecňujícím prvkem, který zprostředkuje shodu mezi modelem a skutečností, jsou matematicky formulované napěťově deformační vztahy kvantitativně určené množinou parametrů. Jedna sada parametrů je společná všem modelovaným případům, při kterých nastanou ve vybraných bodech objektu shodné lokální podmínky popsané veličinami diferenciální povahy ( například poměrná deformace, napětí ). Sčítáním diferenciálních dějů v čase získáme věrohodný model popisující geometricky různé makroskopické děje ( popisované obvykle veličinami integrální povahy například posunutí v délkových jednotkách, síla ). Aplikační simulace i experiment za účelem hledání parametrů jsou založeny na stejném zobecnění ( viz obrázek 3). Naše práce se v rámci výše popsaného procesu modelování zaměřila na hledání jednoho z nejdůležitějších parametrů, jehož přesnost spoluurčuje míru kvantitativní shody mezi simulací a skutečností. Je jím závislost napětí na deformaci, rychlosti deformace a teplotě, označovaná jako přetvárný odpor. Obecně rozšířený software pro simulace tváření izotropních materiálů požaduje zadání přetvárného odporu ve formě skalární funkce σ = σ ( ε,ε,t! ), kde σ je velikost napětí ve směru deformace, ε a ε! jsou poměrná deformace a rychlost deformace v daném směru, T je teplota. Ze statistického hlediska jsou nejspolehlivějším experimentálním zdrojem dat klasické mechanické zkoušky. Jako příklad předvedeme využití tahové zkoušky za studena při nízké rychlosti deformace na válcové zkušební tyči pro vyhodnocení závislosti σ=σ(ε). Za daných podmínek hledáme takovou funkci σ(ε), aby výsledek simulace ve formě funkční závislosti F=F( l) byl shodný se záznamem měření síly v závislosti na deformaci. Z hlediska klasifikace se jedná o nepřímou úlohu parametrickou [1]
5 METAL 2001 hledání parametrů POČÍTAČOVÝ MODEL TVÁŘENÍ geometrie použití modelu experiment model experimentu F test shody odhad parametrů korekce parametrů simulace napěťově deformační vztahy s parametry parametry interakce tření, přestup tepla vnitřní parametry tepelné vlastnosti λ, c p, ρ deformační zpevnění ( ε,ε,t ) σ! simulace korekce podmínek ověření modelu model aplikace F test shody aplikace informace o skutečném procesu Obr. 3 Proces modelování řešení nepřímé parametrické úlohy při hledání parametrů, optimalizační úloha při využívání modelu s ověřenými parametry. Nejjednodušším způsobem zpracování tahové zkoušky je výpočet smluvní deformace a smluvního napětí podle vztahů ε sml = l/l 0 a σ sml = F/S 0, kde l je absolutní deformace, l 0 počáteční délka, F je zátěžná síla a S 0 počáteční průřez zkušební tyče. Pokud funkci σ sml (ε) použijeme jako vnitřní parametr modelu, dopustíme se zanedbání efektu koncentrace napětí a deformace ve středu tyče a výsledek simulace se musí lišit od výsledku měření. Navíc o tvaru závislosti σ(ε) obecně předpokládáme, že je neklesající funkcí deformace plasticita materiálu se vyčerpává přesunem a vzájemnou interakcí krystalových poruch, maximálně zůstává konstantní v případě, že difúzní procesy zotavení materiálu jsou dostatečně rychlé [2]. Ke skutečné závislosti σ(ε) se můžeme dostat postupnou korekcí smluvních hodnot napětí a deformace, pokud porovnáme mezi sebou měřenou a simulovanou sílu F m a F s. Otázkou zůstává, které hodnoty σ(ε) upravit podle rozdílu F m - F s? Řešení spočívá ve využití základní vlastnosti simulace, totiž že model poskytuje informace o chování skutečného tělesa ( tedy také vztah mezi l a ε v libovolném bodě )[1]. Libovolnému bodu tělesa můžeme pro každou hodnotu celkové deformace přiřadit příslušející hodnoty celkové síly, napětí a poměrné deformace F s -σ -ε - l-f m. A to je klíč ke korekci σ. V našem výpočtu jsme rozdělili celkovou deformaci na N kroků a na konci každého kroku porovnali F m a F s. Podle jejich rozdílu jsme upravili σ příslušné společně s F m a F s. stejným hodnotám ε a l. Fm Fs σ = + i+ 1 σ i 1 tj. relativní odchylka síly určila relativní velikost korekce σ. Fm - 5 -
6 F F s odchylka chování modelu F m l ε ε( l) ε korekce parametru l σ Obrázek 4 Vztah mezi odpovídajícími hodnotami F s -σ -ε - l-f m Výsledky série korekcí ilustruje obrázek 5 na poslední straně. σ! vyžaduje provedení série měření při různých teplotách a rychlostech deformace. Výsledky měření je třeba interpolovat do trojrozměrné tabulky; při vlastní simulaci software interpoluje mezi hodnotami ε, ε,! T obsaženými v tabulce podle toho, jaké podmínky nastanou v daném konkrétním bodě tělesa. Směrem naší další práce je zpracovat metodiku vyhodnocování obecnějších závislostí přetvárného odporu s ohledem na vliv nehomogenního a nestacionárního teplotního pole na průběh mechanické zkoušky. Obecnější popis přetvárného odporu ( ε,ε,t ) Literatura [1] KUNEŠ J., Vavroch O., Franta V. Základy modelování. SNTL Praha 1989 [2] KRATOCHVÍL P., LUKÁČ P., SPRUŠIL B. Úvod do fyziky kovů. SNTL Praha 1984 [3] NEČAS J., HLAVÁČEK I., Úvod do matematické teorie pružných a pružně plastických těles, SNTL Praha
7 síla (N) deformace (mm) měření sml.def. výsledná korekce Obrázek 5 Vyhodnocení závislosti σ(ε) - 7 -
COMTES FHT a.s. R&D in metals
COMTES FHT a.s. R&D in metals 2 Komplexnost Idea na bázi základního a aplikovaného výzkumu Produkt nebo technologie s novou přidanou hodnotou Simulace vlastností materiálu a technologického zpracování
VíceVýzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha 7.12.2011 -
53A107 Systematický výzkum vlastností vybraného konstrukčního materiálu (litina, slitiny lehkých kovů) typického pro teplotně exponované díly motoru (hlava, blok, skříně turbodmychadla ) s ohledem na kombinované
VíceVŠB Technical University of Ostrava, Faculty of Mechanical engineering, 17. Listopadu 15, Ostrava Poruba, Czech Republic
SIMULACE PROTLAČOVÁNÍ SLITIN Al NÁSTROJEM ECAP S UPRAVENOU GEOMETRIÍ A POROVNÁNÍ S EXPERIMENTY Abstrakt Jan Kedroň, Stanislav Rusz, Stanislav Tylšar VŠB Technical University of Ostrava, Faculty of Mechanical
VíceNÁVRHÁŘ. charakteristika materiálu. Numerický experiment Integrovaný model Dynamický materiálový model. kontrolovatelné parametry
Metody technologického designu Doc. Ing. Jiří Hrubý, CSc. Inaugurační přednáška NÁVRHÁŘ charakteristika materiálu kontrolovatelné parametry nekontrolovatelné parametry Termomechanická analýza (MKP) SOS
VícePŘÍPRAVEK PRO POKROČILÉ TESTOVÁNÍ PLECHŮ - BAUSCHINGERŮV EFEKT SVOČ FST 2018
PŘÍPRAVEK PRO POKROČILÉ TESTOVÁNÍ PLECHŮ - BAUSCHINGERŮV EFEKT SVOČ FST 2018 Bc. Josef Mištera, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Diplomová práce se zaměřuje
VícePOČÍTAČOVÁ PODPORA TECHNOLOGIE
VUT Brno Fakulta strojního inženýrství ÚST odbor tváření kovů a plastů POČÍTAČOVÁ PODPORA TECHNOLOGIE obor: strojírenská technologie ČINNOSTI V POSTROCESSINGU SIMULAČNÍCH SOFTWARE S UKÁZKAMI Ing. Miloslav
VíceAnalýza technologie lisování šroubů z nové feriticko martenzitické oceli
Analýza technologie lisování šroubů z nové feriticko martenzitické oceli Autoři: F. Grosman Politechnika Slaska Katowice D. Cwiklak Politechnika Slaska Katowice E. Hadasik Politechnika Slaska Katowice
VíceREGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní
REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT Západočeská univerzita v Plzni Fakulta strojní Výzkumné centrum RTI Regionální technologický institut - RTI je výzkumné centrum Fakulty strojní Západočeské univerzity
VíceSimulace toku materiálu při tváření pomocí software PAM-STAMP
Simulace toku materiálu při tváření pomocí software PAM-STAMP Jan Šanovec František Tatíček Jan Kropaček Fakulta strojní, České vysoké učení technické v Praze, Ústav strojírenské technologie, Technická
Více5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
VíceNelineární úlohy při výpočtu konstrukcí s využitím MKP
Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,
VíceTECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI
TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI Učeň M., Filípek J. Ústav techniky a automobilové dopravy, Agronomická fakulta,
VíceWP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním balíčku
Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A][F] WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním
VíceNelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
VíceParametrická studie vlivu vzájemného spojení vrstev vozovky
Konference ANSYS 2009 Parametrická studie vlivu vzájemného spojení vrstev vozovky M. Štěpánek a J. Pěnčík VUT v Brně, Fakulta stavební, Ústav stavební mechaniky Abstract: The testing of a cyclic-load performance
VíceCentrum AdMaS Struktura centra Vývoj pokročilých stavebních materiálů Vývoj pokročilých konstrukcí a technologií
Centrum AdMaS (Advanced Materials, Structures and Technologies) je moderní centrum vědy a komplexní výzkumná instituce v oblasti stavebnictví, která je součástí Fakulty stavební Vysokého učení technického
VíceZáklady tvorby výpočtového modelu
Základy tvorby výpočtového modelu Zpracoval: Jaroslav Beran Pracoviště: Technická univerzita v Liberci katedra textilních a jednoúčelových strojů Tento materiál vznikl jako součást projektu In-TECH 2,
VícePLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI
PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI PLASTIC PROPERTIES OF HIGH STRENGHT STEELS CUTTING BY SPECIAL TECHNOLOGIES Pavel Doubek a Pavel Solfronk a Michaela
VíceFEM ANALYSIS OF HOSE SPRNIG CLAMP DEFORMATION BEHAVIOUR
Education, Research, Innovation FEM ANALYSIS OF HOSE SPRNIG CLAMP DEFORMATION BEHAVIOUR FEM ANALÝZA DEFORMAČNÍHO CHOVÁNÍ HADICOVÉ SPONY Pavel HRONEK 1+2, Ctibor ŠTÁDLER 2, 1 Úvod Bohuslav MAŠEK 2, Zdeněk
VíceZáklady stavby výrobních strojů Tvářecí stroje I
STANOVENÍ SIL A PRÁCE PŘI P I TVÁŘEN ENÍ Většina výpočtů pro stanovení práce a sil pro tváření jsou empirické vzorce, které jsou odvozeny z celé řady experimentálních měření. Faktory, které ovlivňují velikost
VíceAPLIKACE SIMULAČNÍHO PROGRAMU ANSYS PRO VÝUKU MIKROELEKTROTECHNICKÝCH TECHNOLOGIÍ
APLIKACE SIMULAČNÍHO PROGRAMU ANSYS PRO VÝUKU MIKROELEKTROTECHNICKÝCH TECHNOLOGIÍ 1. ÚVOD Ing. Psota Boleslav, Doc. Ing. Ivan Szendiuch, CSc. Ústav mikroelektroniky, FEKT VUT v Brně, Technická 10, 602
VíceVLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.
VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,
VíceProjekty podpořené z programu TAČR
Projekty podpořené z programu TAČR aktuálně řeší tyto projekty ALFA, EPSILON, EPSILON II a Centra kompetence podpořené Technologickou agenturou České republiky Technologická agentura České republiky je
VíceOVMT Mechanické zkoušky
Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor
VíceNOVÉ ZKUŠEBNÍ ZAŘÍZENÍ PRO TRIBOLOGICKOU ZKOUŠKU ZALISOVÁNÍ ZA ROTACE
NOVÉ ZKUŠEBNÍ ZAŘÍZENÍ PRO TRIBOLOGICKOU ZKOUŠKU ZALISOVÁNÍ ZA ROTACE A NEW TESTING MACHINE FOR COMPRESSION-SPIN TEST Bohuslav Mašek, Veronika Fryšová, Václav Koucký Západočeská univerzita v Plzni, Univerzitní
VíceNávod pro cvičení z předmětu Válcování
Návod pro cvičení z předmětu Válcování Plastometrická simulace vybraného procesu válcování Vypracováno v roce 2017 za podpory projektu RPP2017/148 Inovace vybraných cvičení v oblasti objemového tváření
VíceNumerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky
Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz
VíceNAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I
NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností
VíceKroková hodnocení kombinovaného namáhání systémů s tenkými vrstvami. Roman Reindl, Ivo Štěpánek, Radek Poskočil, Jiří Hána
Kroková hodnocení kombinovaného namáhání systémů s tenkými vrstvami Step by Step Analysis of Combination Stress of Systems with Thin Films Roman Reindl, Ivo Štěpánek, Radek Poskočil, Jiří Hána Západočeská
VíceMODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ
Simulace budov a techniky prostředí 2008 5. konference IBPSA-CZ Brno, 6. a 7. 11. 2008 MODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ Ondřej Šikula Ústav technických zařízení budov, Fakulta
VíceKONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
VíceCentrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky -
Popis obsahu balíčku WP13: Aerodynamika motorového prostoru a chlazení WP13: Aerodynamika motorového prostoru a chlazení Vedoucí konsorcia podílející se na pracovním balíčku České vysoké učení technické
VíceNAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)
NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu
VíceObecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
VícePružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
VíceHODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115
HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115 Martin BALCAR a), Václav TURECKÝ a), Libor Sochor a), Pavel FILA a), Ludvík MARTÍNEK a), Jiří BAŽAN b), Stanislav NĚMEČEK c), Dušan KEŠNER c) a)
Více8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]
VíceFyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
VícePřípravek pro měření posuvů a deformací v průběhu svařování a chladnutí se zaměřením na využití pro numerické simulace.
KSP-2012-G-FV-02 Přípravek pro měření posuvů a deformací v průběhu svařování a chladnutí se zaměřením na využití pro numerické simulace (Typ výstupu G) Ing. Jaromír Moravec, Ph.D. V Liberci dne 21. prosince
VíceKontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
VíceŠíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
VícePočítačová dynamika tekutin (CFD) - úvod -
Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích
VíceA mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku
1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram
VíceStruktura a vlastnosti kovů I.
Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)
Více8 SEMESTRÁLNÍ PRÁCE VYHLEDÁVÁNÍ A ZPRACOVÁNÍ INFORMACÍ
8 SEMESTRÁLNÍ PRÁCE VYHLEDÁVÁNÍ A ZPRACOVÁNÍ INFORMACÍ Seznámení s různými vyhledávacími databázemi vědeckých informací na internetu. Postup vyhledávání, rozšiřování a zužování vyhledávaného tématu. Vyhledávání
VíceZPRÁVA Z PRŮMYSLOVÉ PRAXE
ZPRÁVA Z PRŮMYSLOVÉ PRAXE Číslo projektu Název projektu Jméno a adresa firmy Jméno a příjmení, tituly studenta: Modul projektu CZ.1.07/2.4.00/31.0170 Vytváření nových sítí a posílení vzájemné spolupráce
Vícepodzemních a povrchových vodách pro stanovení pohybu a retence infiltrujících srážek a napájení sledovaných vodních zdrojů.
Sledování 18 O na lokalitě Pozďátky Metodika Metodika monitoringu využívá stabilních izotopů kyslíku vody 18 O a 16 O v podzemních a povrchových vodách pro stanovení pohybu a retence infiltrujících srážek
Více12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
VícePowerOPTI Řízení účinnosti tepelného cyklu
PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika
VíceHODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH. Klára Jacková, Ivo Štepánek
HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH Klára Jacková, Ivo Štepánek Západoceská univerzita v Plzni, Univerzitní 22, 306 14 Plzen, CR, ivo.stepanek@volny.cz Abstrakt
VíceHODNOCENÍ HLOUBKOVÝCH PROFILŮ MECHANICKÉHO CHOVÁNÍ POLYMERNÍCH MATERIÁLŮ POMOCÍ NANOINDENTACE
HODNOCENÍ HLOUBKOVÝCH PROFILŮ MECHANICKÉHO CHOVÁNÍ POLYMERNÍCH MATERIÁLŮ POMOCÍ NANOINDENTACE EVALUATION OF DEPTH PROFILE OF MECHANICAL BEHAVIOUR OF POLYMER MATERIALS BY NANOINDENTATION Marek Tengler,
VíceTHE APPLICATION OF MATHEMATICAL MODEL TO CALCULATE THE STABLE CLIMATE BY TERUNA SOFTWARE. Olga Navrátilová, Zdeněk Tesař, Aleš Rubina
THE APPLICATION OF MATHEMATICAL MODEL TO CALCULATE THE STABLE CLIMATE BY TERUNA SOFTWARE Olga Navrátilová, Zdeněk Tesař, Aleš Rubina Vysoké učení technické v Brně, Fakulta stavební, Ústav technických zařízení
VíceTECHNOLOGIE OHREVU PÁNVÍ NA VOD A JEJÍ PRÍNOSY TECHNOLOGY OF HEATING OF VOD LADLES AND ITS BENEFITS. Milan Cieslar a Jirí Dokoupil b
TECHNOLOGIE OHREVU PÁNVÍ NA VOD A JEJÍ PRÍNOSY TECHNOLOGY OF HEATING OF VOD LADLES AND ITS BENEFITS Milan Cieslar a Jirí Dokoupil b a) TRINECKÉ ŽELEZÁRNY, a.s., Prumyslová 1000, 739 70 Trinec Staré Mesto,
VíceStanovení nejistot při výpočtu kontaminace zasaženého území
Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních
VíceZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
VíceVLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU
VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU Autoři: Ing. Petr KOVAŘÍK, Ph.D., Katedra energetických strojů a zařízení, FST, ZÁPADOČESKÁ UNIVERZITA V PLZNI, e-mail: kovarikp@ntc.zcu.cz
VícePlastická deformace a pevnost
Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových
VíceModelování vázaného šíření teplotněvlhkostního
Modelování vázaného šíření teplotněvlhkostního pole v rezonanční desce hudebního nástroje Ing. Pavlína Suchomelová Ing. Jan Tippner, Ph.D. Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav
VícePARAMETRY - LABORATORNÍ ZKOUŠKY TUHOST ZEMIN. Vybrané kapitoly z geotechniky (VKG) VKG: Parametry... tuhost zemin /29
PARAMETRY - LABORATORNÍ ZKOUŠKY TUHOST ZEMIN Vybrané kapitoly z geotechniky (VKG) VKG: Parametry... tuhost zemin 120221 1/29 VKG: Parametry... tuhost zemin 120221 2/29 do 1970 / 1980 moduly z laboratoře
Víceje moderní centrum vědy a komplexní výzkumná instituce v oblasti stavebnictví, která je součástí Fakulty stavební Vysokého učení technického v Brně.
Centrum AdMaS (Advanced Materials, Structures and Technologies) je moderní centrum vědy a komplexní výzkumná instituce v oblasti stavebnictví, která je součástí Fakulty stavební Vysokého učení technického
VíceVI. Nestacionární vedení tepla
VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)
VíceVlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
VíceObsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23
Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony
VíceExperimentální zjišťování charakteristik kompozitových materiálů a dílů
Experimentální zjišťování charakteristik kompozitových materiálů a dílů Dr. Ing. Roman Růžek Výzkumný a zkušební letecký ústav, a.s. Praha 9 Letňany ruzek@vzlu.cz Základní rozdělení zkoušek pro ověření
VíceVYHODNOCENÍ LABORATORNÍCH ZKOUŠEK
VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK Deformace elastomerových ložisek při zatížení Z hodnot naměřených deformací elastomerových ložisek v jednotlivých měřících místech (jednotlivé snímače deformace) byly
VíceVliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení
Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Manoch Lukáš Abstrakt: Práce je zaměřena na stanovení vlivu úhlu napojení distální anastomózy femoropoplitálního
VíceRYCHLÁ A LEVNÁ VÝROBA NÁSTROJŮ PRO TVÁŘENÍ MALÝCH SÉRIÍ PLECHOVÝCH DÍLŮ METODOU HYDROFORMING
RYCHLÁ A LEVNÁ VÝROBA NÁSTROJŮ PRO TVÁŘENÍ MALÝCH SÉRIÍ PLECHOVÝCH DÍLŮ METODOU HYDROFORMING Pavel Šuchmann 1, Michal Duchek 1 Abstract 1 COMTES FHT s.r.o., Plzeň, Česká republika psuchmann@comtesfht.cz,
VíceProudění vzduchu v chladícím kanálu ventilátoru lokomotivy
Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace
VíceVYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ
VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ APPLICATION OF DYNAMIC MODELS OF STEELS IN SIMULATION SOFTWARE FOR MATAL FORMING Milan Forejt a, Zbyněk Pernica b, Dalibor Krásny c Brno
VíceINOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA
VíceVŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem
VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Autor: Michal Šofer Verze 0 Ostrava 2011 Zadání: Proveďte napěťovou analýzu součásti s kruhovým vrubem v místě
VícePorušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost
VíceVYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento
VíceEXPERIMENTÁLNÍ MECHANIKA 1. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 1 2. přednáška Jan Krystek 27. září 2017 ZÁKLADY TEORIE EXPERIMENTU EXPERIMENT soustava cílevědomě řízených činností s určitou posloupností CÍL EXPERIMENTU získání objektivních
VíceOTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
VíceHouževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)
Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická
VíceModelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
VíceAbyste mohli dělat věci jinak, musíte je jinak i vidět Paul Allaire
Abyste mohli dělat věci jinak, musíte je jinak i vidět Paul Allaire Konstrukční inženýrství učíme věci jinak Ústav konstruování Odbor metodiky konstruování Fakulta strojního inženýrství Vysoké učení technické
VíceExperimentální realizace Buquoyovy úlohy
Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o
VíceCentrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek až , Roztoky -
Popis obsahu balíčku WP12VaV Návrh a zkoušky příslušenství pro plnění a vstřikování paliva ve vznětových motorech pro uvažovaná budoucí paliva Vedoucí konsorcia podílející se na pracovním balíčku České
VíceHodnocení korozí odolnosti systémů tenká vrstva substrát v prostředí kompresorů
Hodnocení korozí odolnosti systémů tenká vrstva substrát v prostředí kompresorů Analysis of Corrosion Resistance of Systems Thin Films Substrate in Compressors Environment Jiří Hána, Ivo Štěpánek, Radek
VíceP13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
VíceNáhradní ohybová tuhost nosníku
Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží
VíceKlíčová slova centrifugal compressor; CFD; diffuser; efficiency; impeller; pressure ratio; return channel
Výzkum a vývoj průtočné části radiálních turbokompresorů FI-IM3/195 18.1.2006 21.5.2009 U - Ukončený projekt Cílem projektu je nalézt, pomocí CFD metod, vzájemnou závislost mezi tvarem detailů průtočné
VíceVYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory
VíceChyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
VíceZapojení odporových tenzometrů
Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní
VíceSimulace oteplení typového trakčního odpojovače pro různé provozní stavy
Konference ANSYS 2009 Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Regina Holčáková, Martin Marek VŠB-TUO, FEI, Katedra elektrických strojů a přístrojů Abstract: Paper focuses
VíceFUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ
ODBOR TERMOMECHANIKA TECHNOLOGICKÝCH PROCESŮ FUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ Autor: Ing. Zdeněk Veselý, Ph.D. Doc. Ing. Milan Honner, Ph.D.
VíceMANUÁL PRO VÝPOČET ZBYTKOVÉHO
MANUÁL PRO VÝPOČET ZBYTKOVÉHO PRODLOUŽENÍ VE ŠROUBECH 0 25.05.2016 Doporučení pro výpočet potřebného prodloužení šroubu, aby bylo dosaženo požadovaného předpětí ve šroubech předepínaných hydraulickým napínákem
VícePOŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU Eva Caldová 1), František Wald 1),2) 1) Univerzitní centrum
VíceTechnologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 5. Deformačně-napěťové pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v
VíceObjektově orientovaná implementace škálovatelných algoritmů pro řešení kontaktních úloh
Objektově orientovaná implementace škálovatelných algoritmů pro řešení kontaktních úloh Václav Hapla Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB-Technická univerzita Ostrava
VíceMechanika s Inventorem
Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův
VíceSTUDENTSKÉ PRÁCE 2013/2014
STUDENTSKÉ PRÁCE 2013/2014 Společnost, nabízí studentům následující témata ke zpracování s odbornou konzultací a možností zpracování v anglickém jazyce. Rozsah témat možno upravit na bakalářskou eventuálně
VíceA U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 5 _ Z K O U Š K Y M A T E R I Á L U _ P W P
A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ 1 3 0 5 _ Z K O U Š K Y M A T E R I Á L U _ P W P Název školy: Číslo a název projektu: Číslo a název šablony
VíceOPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,
VícePlánování experimentu
SEMESTRÁLNÍ PRÁCE Plánování experimentu 05/06 Ing. Petr Eliáš 1. NÁVRH NOVÉHO VALIVÉHO LOŽISKA 1.1 Zadání Při návrhu nového valivého ložiska se v prvotní fázi uvažovalo pouze o změně designu věnečku (parametr
VíceTéma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
VíceMODEL TVÁŘECÍHO PROCESU
MODEL TVÁŘECÍHO PROCESU Zkouška tlakem na válcových vzorcích 2 Vyhodnocení tlakové zkoušky Síla F způsobí změnu výšky H a průměru D válce. V každém okamžiku při stlačování je přetvárný odpor definován
Více