Počítačová dynamika tekutin (CFD) - úvod -
|
|
- Eliška Havlová
- před 8 lety
- Počet zobrazení:
Transkript
1 Počítačová dynamika tekutin (CFD) - úvod -
2 Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích a dalších souvisejících jevů v definovaném prostředí. Pro použití CFD je třeba nejprve vytvořit model (virtuální prototyp zkoumaného systému), na který jsou následně aplikovány matematické postupy tak, aby byly ze zadaných okrajových a počátečních podmínek získány vybrané údaje o dějích probíhajících v celé zkoumané oblasti při respektování fyzikálních zákonů.
3 Proč CFD? 3 Popis a návrh systému Návrh je založen na simulaci místo postav a testuj více efektivní a rychlejší způsob CFD poskytuje detailní popis tokového pole Simulace systémů, které jsou problematické pro experiment simulace celků (budovy, lodě, letadla, ) vlivy prostředí (vítr, počasí, ) rizika (požáry, výbuchy, radiace, ) Poznání a výzkum fyziky tekutin Výsledky CFD simulací ověřujeme experimenty (pokud to jde).
4 Proč CFD? 4 Nízké náklady Užití experimentů pro získání základní inženýrských dat pro návrh průmyslového zařízení může být nákladné. Počítačové simulace jsou relativně málo nákladné, výpočetní čas se bude dále snižovat s rostoucím výkonem počítačů. Rychlost CFD výpočtu mohou proběhnou v krátké době. Získané výsledky se mohou okamžitě užít při návrhu nebo úpravě zařízení. Schopnost simulací reálných podmínek Některé poznatky je obtížné (nemožné) získat experimentálně, např. rychlostní profily v celém zařízení, požáry, výbuchy, Pomocí CFD můžeme teoreticky simulovat kterékoliv fyzikální podmínky.
5 Kde se CFD užívá? 5 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
6 Kde se CFD užívá? 6 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
7 Kde se CFD užívá? 7 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
8 Kde se CFD užívá? 8 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
9 Kde se CFD užívá? 9 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika heating, ventilating, air-conditioning
10 Kde se CFD užívá? 10 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
11 Kde se CFD užívá? 11 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
12 Kde se CFD užívá? 12 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
13 Kde se CFD užívá? 13 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
14 Kde se CFD užívá? 14 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
15 Kde se CFD užívá? 15 Letectví Automobilový průmysl Biomedicína Chemické procesy HVAC Hydraulika Lodě Ropa & plyn Energetika Sport Elektronika
16 Základní kroky při řešení Definice cílů. 2. Stanovení modelované oblasti. 3. Vytvoření výpočetní sítě. 4. Výběr správného řešiče. 5. Nastavení numerického modelu. 6. Řešení. 7. Zkonvergování řešení. 8. Prohlížení výsledků. 9. Adaptace výpočetní sítě. 10. Revize modelu.
17 Základní kroky při řešení 17 Definice cílů Jaké chci výsledky a k čemu budou dále používány? Jakou požaduji přesnost? Jak rychle chci výsledky získat? Jaké další kapacity chci použít? User-Defined Functions
18 Základní kroky při řešení 18 Stanovení modelované oblasti výpočetní síť Jaký typ buněk bude použit: quad/hex, tri/tet nebo hybridní síť? Jaká hustota výpočetní sítě je pro jednotlivé oblasti nutná? Bude použitá adaptace výpočetní sítě? Kolik buněk bude pro úlohu potřeba? Je k dispozici dostatek RAM paměti?
19 CFD: složitá výpočetní sítě 19
20 Základní kroky při řešení 20 Výběr správného řešiče Komerční CFD: FLUENT/CFX, Star-CD, CFDRC Specializované programy MixSim míchané aparáty FIDAP nestlačitené proudění, složité geometrie (biomedicína) POLYFLOW viskózní a laminární proudění IcePak chlazení v elektronice AirPak ventilace, klimatizace Podpůdné programy Gridgen, Gambit - tvorba sítě Tecplot, FieldView vizualizace toku
21 Základní kroky při řešení 21 Nastavení modelu Vybrat vhodný fyzikální model. Definovat materiálové vlastnosti: Tekutiny (Fluid), Tuhých částí (Solid), Směsi (Mixture). Nastavit okrajové podmínky na všech hraničních plochách. Provést počáteční inicializaci. Nastavit řešič, podrelaxační podmínky, diskretizační schéma. Monitorovaní průběhu konvergence (residua, plošné integrály, síly).
22 Základní kroky při řešení 22 Řešení: stacionární Výpočet může vyžadovat velký počet iterací, než je dosažena konvergence. Řešení je považováno za zkonvergované, jsou-li změny klíčových hodnot malé. Sledování konvergence zahrnuje: Residua, Bodové hodnoty, Integrální bilance toků (hmotnostním, tepelný, atd.), Integrální síly (odpor, vztlak, atd.). Konvergence může být ovlivněna: Hustotou sítě, Přesností numeriky (diskretizační chyba), Přesností fyzikálního modelu (např., model turbulence).
23 Základní kroky při řešení 23 Řešení: nestacionární Nestacionární řešení je řešeno pomocí mezi-iterací v přechodu do dalšího časového stavu. V každém časovém kroku by mělo být dosaženo konvergence před přechodem do dalšího časového stavu. Výběr vhodné délky časového kroku, která řeší daný problém. Určení hodnoty času T charakterizující daný děj, Výběr časového kroku jako vhodného podílu char. času T např. t = T /100. Přizpůsobení časového kroku, aby bylo dosaženo konvergence během 0-20 iterací. Měnění časového kroku podle intenzity změn, např. v počátečním stadiu.
24 Základní kroky při řešení 24 Zkonvergování řešení Snížení residuí o tři řády predikuje v nejhorším případě kvalitativní konvergenci, hlavní rysy proudění jsou vyvinuty. Mimo tyto případy: V segregovaném řešiči (včetně FLUENT 6.1) musí poklesnout residuum energie na Residua složek (species residual) je vhodné dokonvergovat na k dosažení rovnováhy složek. Monitorování dalších proměnných, sledování rovnováhy, atd.
25 Základní kroky při řešení 25 Prohlížení výsledků Vizualizace může být použita k získání odpovědi na otázky: Jaký je celkový charakter proudění? Existují separace proudu? Kde jsou rázové vlny, smykové vrstvy, atd.? Jsou spočteny klíčové rysy proudění? Jsou vhodné fyzikální modely a okrajové podmínky? Existují lokální konvergenční problémy? Nástroje (reporting tools) lze použít k výpočtu těchto hodnot: Vztlak a odpor Zprůměrněné součinitele přestupu tepla Integrální bilance proměnných.
26 Základní kroky při řešení 26 Adaptace výpočetní sítě Lokální zvýšení hustoty sítě podle potřeby. Adaptace podle: Gradientů proměnných nebo uživatelem definovaných proměnných, Isohodnoty proměnných nebo uživatelem definovaných proměnných, Všechny hodnoty na hranicích Všechny buňky uvnitř regionu, Buňky v objemu (Fluid), Podle hodnoty y + na stěně, Kombinací výše uvedených možností. K adaptaci napomáhá: Vykreslení kontur adaptačních funkcí, Vykreslení buněk vybraných pro adaptaci, Limit adaptace založen na velikosti buňky a počtu buněk.
27 Základní kroky při řešení 27 Adaptace výpočetní sítě 2D rovinná úloha - počáteční síť 2D rovinná úloha - finální síť
28 Základní kroky při řešení 28 Revize modelu Jsou fyzikální modely vhodné? Je proudění turbulentní? Nestacionární? Vliv stlačitelnosti? 3D efekt? Jsou okrajové podmínky správné? Je výpočetní oblast dostatečně velká? Jsou okrajové podmínky vhodné? Jsou okrajové a vstupní hodnoty přiměřené? Je výpočetní síť odpovídající? Může adaptace sítě zlepšit výsledky? Mění se významně charakter proudění s adaptací nebo je na sítí nezávislé? Nepotřebují okrajové podmínky větší hustotu sítě? Je vhodnější jiný typ sítě (quad vs. tri nebo hex vs. tet)?
Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -
Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - M. Jahoda Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty,
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace
CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?
VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU
VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU Autoři: Ing. Petr KOVAŘÍK, Ph.D., Katedra energetických strojů a zařízení, FST, ZÁPADOČESKÁ UNIVERZITA V PLZNI, e-mail: kovarikp@ntc.zcu.cz
Studentská tvůrčí činnost 2009
Studentská tvůrčí činnost 2009 Numerické řešení proudového pole v kompresorové lopatkové mříži Balcarová Lucie Vedoucí práce: Prof. Ing. P. Šafařík, CSc. a Ing. T. Hyhlík, PhD. Numerické řešení proudového
Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami
Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami (Numerical Modelling of Flow of Two Immiscible Fluids Past a NACA 0012 profile) Ing. Tomáš
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický
Počítačová dynamika tekutin užitečný nástroj pro inženýry
Počítačová dynamika tekutin užitečný nástroj pro inženýry M. Jahoda Úvod Počítačová dynamika tekutin (Computational Fluid Dynamics, CFD) je moderní metoda, která se zabývá prouděním tekutin, přenosem tepla
Výpočet stlačitelného proudění metodou konečných objemů
Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.
Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -
Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:
Počítačová dynamika tekutin (CFD) Okrajové podmínky
Počítačová dynamika tekutin (CFD) Okrajové podmínky M. Jahoda Okrajové podmínky 2 Řídí pohyb tekutiny. Jsou požadovány matematickým modelem. Specifikují toky do výpočetní oblasti, např. hmota, hybnost
FLUENT přednášky. Metoda konečných objemů (MKO)
FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních
Stacionární 2D výpočet účinnosti turbínového jeden a půl stupně
Stacionární D výpočet účinnosti turbínového jeden a půl stupně Petr Toms Abstrakt Příspěvek je věnován popisu řešení proudění stacionárního D výpočtu účinnosti jeden a půl vysokotlakého turbínového stupně
Hydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
SVOČ FST Bc. Václav Sláma, Zahradní 861, Strakonice Česká republika
VÝPOČET PROUDĚNÍ V NADBANDÁŽOVÉ UCPÁVCE PRVNÍHO STUPNĚ OBĚŽNÉHO KOLA BUBNOVÉHO ROTORU TURBÍNY SVOČ FST 2011 Bc. Václav Sláma, Zahradní 861, 386 01 Strakonice Česká republika Bc Jan Čulík, Politických vězňů
BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer
BIM & Simulace CFD simulace ve stavebnictví Ing. Petr Fischer Agenda 10:15 11:00 Úvod do problematiky Petr Fischer Technické informace a příklady Jiří Jirát Otázky a odpovědi Používané metody navrhování
CFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí
Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí Program celoživotního vzdělávání: kurz Klimatizace a Větrání 2013/2014 CFD Jan Schwarzer Počítačová
Porovnání výsledků numerické analýzy programem FLUENT s měřením emisí NOx pro granulační kotel K11
Porovnání výsledků numerické analýzy programem FLUENT s měřením emisí NOx pro granulační kotel K11 Pavel STŘASÁK 14 Techsoft Engineering, s.r.o., Praha Josef PRŮŠA 15 Invelt Servis,s.r.o., Praha Popis
Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení
Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Manoch Lukáš Abstrakt: Práce je zaměřena na stanovení vlivu úhlu napojení distální anastomózy femoropoplitálního
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT
Numerická simulace sdílení tepla v kanálu mezikruhového průřezu
Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular
CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE
CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání
Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky -
Popis obsahu balíčku WP13: Aerodynamika motorového prostoru a chlazení WP13: Aerodynamika motorového prostoru a chlazení Vedoucí konsorcia podílející se na pracovním balíčku České vysoké učení technické
POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL
POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL Autor: Dr. Ing. Milan SCHUSTER, ŠKODA VÝZKUM s.r.o., Tylova 1/57, 316 00 Plzeň, e-mail: milan.schuster@skodavyzkum.cz Anotace: V příspěvku
Počítačová dynamika tekutin (CFD) Turbulence
Počítačová dynamika tekutin (CFD) Turbulence M. Jahoda Turbulence 2 Turbulentní proudění vzniká při vysokých Reynoldsových číslech (Re>>1); je způsobováno komplikovanou interakcí mezi viskózními a setrvačnými
NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE
NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, petr.svarc@tul.cz Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, vaclav.dvorak@tul.cz
PROUDĚNÍ REGULAČNÍ MEZISTĚNOU TURBÍNOVÉHO STUPNĚ PŘI ROTACI OBĚŽNÉHO LOPATKOVÁNÍ. Jaroslav Štěch
SOUTĚŽNÍ PŘEHLÍDKA STUDENTSKÝCH A DOKTORSKÝCH PRACÍ FST 2007 PROUDĚNÍ REGULAČNÍ MEZISTĚNOU TURBÍNOVÉHO STUPNĚ PŘI ROTACI OBĚŽNÉHO LOPATKOVÁNÍ Jaroslav Štěch ABSTRAKT Úkolem bylo zjistit numerickou CFD
TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE
TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:
Propojení matematiky, fyziky a počítačů
Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů
Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky
Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz
Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1
Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 NUMERICKÉ ŘEŠENÍ STACIONÁRNÍHO A NESTACIONÁRNÍHO TRANSSONICKÉHO PROUDĚNÍ VE VNĚJŠÍ AERODYNAMICE
Průběh a důsledky havarijního úniku CNG z osobních automobilů
Průběh a důsledky havarijního úniku CNG z osobních automobilů Řešitelé: TÚPO, VŠCHT Trvání: 1. 1. 2017 31. 12. 2019 Poskytovatel: MV ČR - Program bezpečnostního výzkumu České republiky 2015-2020 Celková
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy
Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace
Tomáš Syka Komořanská 3118, Most Česká republika
SOUČINITEL PŘESTUPU TEPLA V MAKETĚ PALIVOVÉ TYČE ZA RŮZNÝH VSTUPNÍH PARAMETRŮ HLADÍÍHO VZDUHU SVOČ FST 2008 Tomáš Syka Komořanská 38, 434 0 Most Česká republika ABSTRAKT Hlavním úkolem této práce bylo
1 POPIS MATEMATICKÉHO MODELU. 1.1 Použitý software FLOW-3D. Vodní nádrže , Brno
1 POPIS MATEMATICKÉHO MODELU 1.1 Použitý software FLOW-3D Pro modelování proudění byl zvolen komerční softwarový balík FLOW-3D. Jedná se o CFD (Computional Fluid Dynamics) nástroj využívající matematické
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,
FLUENT přednášky. Turbulentní proudění
FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento
NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ
NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ VĚTREM V REÁLNÉ ATMOSFÉŘE NUMERICAL MODELING WIND ACTION ON STRUCTURES IN REAL ATMOSPHERE Vladimíra Michalcová 1, Zdeněk Michalec 2, Lenka Lausová 3, Abstract
Rekonstrukce portálního řečiště v rámci chirurgického řešení pokročilého karcinomu pankreatu experiment na velkém zvířeti (biomechanická část)
NTIS Nové technologie pro informační společnost Fakulta aplikovaných věd Západočeská univerzita Rekonstrukce portálního řečiště v rámci chirurgického řešení pokročilého karcinomu pankreatu experiment na
MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10
MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický
Autokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
Pavel Střasák: Co je CFD?
Pavel Střasák: Co je CFD? Článek je zaměřen na představení CFD programů firmy Fluent Inc. Cílem je přiblížit široké veřejnosti, ale i odborníkům tyto nové technologie, ukázat na názorných průmyslových
STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD
19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky
Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
NUMERICKÉ ŘEŠENÍ BUDÍCÍCH SIL NA LOPATKY ROTORU ZA RŮZNÝCH OKRAJOVÝCH PODMÍNEK SVOČ FST 2008 ABSTRAKT Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Úkolem
NÁTOK PLYNŮ DO CHEMICKÝCH REAKTORŮ
NÁTOK PLYNŮ DO CHEMICKÝCH REAKTORŮ Ing. Ondřej Švec Školitel: Prof. Ing. Pavel Ditl DrSc. Abstrakt : V textu se zabýváme řešením problematiky nátoku plynů do chemických reaktorů a jejich distribuce na
Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha
Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
Vliv vířivého proudění na přesnost měření průtoku v komínech
Vliv vířivého proudění na přesnost měření průtoku v komínech J. Geršl, S. Knotek Z. Belligoli, R. Dwight M. Coleman, R. Robinson Hradec Králové, 21.9. 2017 O čem bude přednáška Referenční metoda měření
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Numerická simulace přestupu tepla v segmentu výměníku tepla
Konference ANSYS 2009 Numerická simulace přestupu tepla v segmentu výměníku tepla M. Kůs Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14 Plzeň Abstract: The article
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
Základy tvorby výpočtového modelu
Základy tvorby výpočtového modelu Zpracoval: Jaroslav Beran Pracoviště: Technická univerzita v Liberci katedra textilních a jednoúčelových strojů Tento materiál vznikl jako součást projektu In-TECH 2,
CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky
Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,
Autodesk Simulation CFD 2012. Webinář 02.12.2011, Martin Sás a Petr Fischer
Autodesk Simulation CFD 2012 Webinář 02.12.2011, Martin Sás a Petr Fischer Autodesk Simulation CFD 2012 - úvod Computational Fluid Dynamics (CFD) je simulační nástroj, který matematicky (MKP) modeluje
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
POČÍTAČOVÉ MODELOVÁNÍ POŽÁRNÍ ZKOUŠKY V MOKRSKU COMPUTER - SIMULATION OF A FIRE TEST IN MOKRSKO
Otto DVOŘÁK 1, Jan ANGELIS 2, Tomáš KUNDRATA 3, Hana MATHEISLOVÁ 4, Petra BURSÍKOVÁ 5, Milan JAHODA 6 POČÍTAČOVÉ MODELOVÁNÍ POŽÁRNÍ ZKOUŠKY V MOKRSKU Abstrakt COMPUTER - SIMULATION OF A FIRE TEST IN MOKRSKO
Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace
Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.
Generování sítě konečných prvků
Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností
EXPERIMENTÁLNÍ A NUMERICKÉ MODELOVÁNÍ ÚČINKŮ
EXPERIMENTÁLNÍ A NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ VĚTREM EXPERIMENTAL AND NUMERICAL MODELING WIND ACTION ON STRUCTURES Vladimíra Michalcová 1, Milada Kozubková 2 Abstract Atmospheric boundary
Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.
OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství
OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI
Konference Vytápění Třeboň 2015 19. až 21. května 2015 OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Ing. Petr Komínek 1, doc. Ing. Jiří Hirš, CSc 2 ANOTACE Většina realizovaných
OpenFOAM na VŠCHT: Martin Isoz
OpenFOAM na VŠCHT: CFD a modelování separačních kolon Martin Isoz VŠCHT Praha, Ústav matematiky 2. seminář VŠCHT k OpenFOAM, Praha 13. prosince 2016 Drobná organizační poznámka Informace k semináři je
Modelování proudění vzdušiny v elektroodlučovači ELUIII
Konference ANSYS 2009 Modelování proudění vzdušiny v elektroodlučovači ELUIII Richard Matas, František Wegschmied Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14
Výpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
CFD ANALÝZA CHLAZENÍ MOTORU
CFD ANALÝZA CHLAZENÍ MOTORU Ing. Zdeněk PORUBA, Ph.D., VŠB TU Ostrava, zdenek.poruba@vsb.cz Ing. Jan SZWEDA, Ph.D., VŠB TU Ostrava, jan.szweda@vsb.cz Anotace česky (slovensky) Předložený článek prezentuje
Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.
PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis
Modelování přepadu vody přes pohyblivou klapkovou konstrukci
Konference ANSYS 2011 Modelování přepadu vody přes pohyblivou klapkovou konstrukci V. Jirsák, M. Kantor, P. Sklenář České vysoké učení v Praze, Fakulta stavební, Thákurova 7, 166 29 Praha 6 Abstract: The
CFD modelování molekulární difuze
Konference ANSYS 2009 CFD modelování molekulární difuze Ing. Karel Gregor ČVUT v Praze, Fakulta strojní, karel.gregor@fs.cvut.cz Abstract: This paper presents simulations of molecular diffusion of two
NESTACIONÁRNÍ ŘEŠENÍ OCHLAZOVÁNÍ BRZDOVÉHO KOTOUČE
NESTACIONÁRNÍ ŘEŠENÍ OCHLAZOVÁNÍ BRZDOVÉHO KOTOUČE Autor: Ing. Pavel ŠTURM, ŠKODA VÝZKUM s.r.o., pavel.sturm@skodavyzkum.cz Anotace: Příspěvek se věnuje nestacionárnímu řešení chlazení brzdového kotouče
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
Ceník programu DesignBuilder v5
INŽENÝŘI ARCHITEKTI Ceník programu DesignBuilder v5 Ceny jsou uvedeny v Kč bez DPH Licenci programu DesignBuilder v5 lze zakoupit ve dvou variantách časového trvání licence ( trvalá licence vs. roční )
PROCESY V TECHNICE BUDOV 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Teoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
NUMERICKÁ SIMULACE PROUDĚNÍ DVOUFÁZOVÉ VLHKÉ PÁRY OHYBEM POTRUBÍ Numerical simulation of two phase wet steam flow in pipeline elbow
NUMERICKÁ SIMULACE PROUDĚNÍ DVOUFÁZOVÉ VLHKÉ PÁRY OHYBEM POTRUBÍ Numerical simulation of two phase wet steam flow in pipeline elbow Šťastný Miroslav 1, Střasák Pavel 2 1 Západočeská univerzita v Plzni,
CHEMICKO-INŽENÝRSKÉ VZDĚLÁVÁNÍ VE STRUKTUROVANÉM STUDIU
CHEMICKO-INŽENÝRSKÉ VZDĚLÁVÁNÍ VE STRUKTUROVANÉM STUDIU Milan Jahoda Zdroj Peter Hamersma, Martin Molzahn, Eric Schaer: Recommendations for Chemical Engineering Education in a Bologna Three Cycle Degree
Charakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen
Charakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen Michal Branc, Marián Bojko Anotace Příspěvek se zabývá charakteristikou matematického
Výpočtová studie 2D modelu stroje - Frotor
Objednávka: 2115/0003/07 V Plzni dne: 20.5.2007 Ing. Zdeněk Jůza Západočeská univerzita v Plzni FST KKE Na Čampuli 726 Univerzitní 8 Tlučná Plzeň 330 26 306 14 Technická zpráva Výpočtová studie 2D modelu
CFD MODELOVÁNÍ POŽÁRU V MÍSTNOSTI
CFD MODELOVÁNÍ POŽÁRU V MÍSTNOSTI Autoři Doc. Dr. Ing. Milan JAHODA,VŠCHT Praha, Milan.Jahoda@vscht.cz Mgr. Jan ANGELIS, TÚPO, MV-GŘ HZS ČR, angelisjan@mvcr.cz Ing. Otto DVOŘÁK, Ph.D., TÚPO, MV-GŘ HZS
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 18
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 18 Vladimíra MICHALCOVÁ 1, Zdeněk MICHALEC 2, Tomáš BLEJCHAŘ 3 NUMERICKÁ
NUMERICKÉ SIMULACE ZAŘÍZENÍ PRO ODLUČOVANÍ PEVNÉ FÁZE ZE VZDUŠINY
NUMERICKÉ SIMULACE ZAŘÍZENÍ PRO ODLUČOVANÍ PEVNÉ FÁZE ZE VZDUŠINY Autoři: Ing. Jan SEDLÁČEK, Ph.D., NTC, ZČU V PLZNI, e-mail: sedlacek@ntc.zcu.cz Ing. Richard MATAS, Ph.D., NTC, ZČU V PLZNI, e-mail: mata@ntc.zcu.cz
3D CFD simulace proudění v turbinovém stupni
3D CFD simulace proudění v turbinovém stupni Bc. Petr Toms Vedoucí práce: Ing. Tomáš Hyhlík Ph.D. Abstrakt Tato studie se zabývá vlivem přesahu délky oběžné lopatky vůči rozváděcí na účinnost stupně. Přesahem
9 Charakter proudění v zařízeních
9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění
Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů
Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů Obsah cvičení Přednáška Výpočetní metody identifikace termomechanických procesů - stručný přehled Příklady použití výpočetních metod
Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna
Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných
Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23
Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony
SOLIDWORKS SIMULATION
SOLIDWORKS SIMULATION Nejlepší bezriziková inovace na trhu Pomocí simulace proudění zajistěte dostatečný průřez výstupního potrubí Zkontrolujte rezonanci mezi ventilátorem a motorem Rozmetač sněhu pro
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní
Fire Dynamics Simulator (FDS)
České vysoké učení technické v Praze F A K U L T A S T A V E B N Í Katedra konstrukcí pozemních staveb 124 PSP Plasty a sklo za požáru Cvičení 2 a 3: Model typu pole (CFD) programy Fire Dynamics Simulator
Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15
Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření
Sklářské a bižuterní materiály 2005/06
Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.
Mechanika s Inventorem
CAD Mechanika s Inventorem 1. Úvodní pojednání Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Tomáš MATOVIČ, publikace 1 Obsah přednášky: Cíl projektu 3 Význam mechanických analýz