11. Tabu prohledávání
|
|
- Přemysl Svoboda
- před 8 lety
- Počet zobrazení:
Transkript
1 Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 11. Tabu prohledávání
2 Pokročilé heuristiky jednoduchá heuristika připustit zhoršující tahy pokročilá heuristika asymetrické okolí symetrické okolí stavový prostor, kde nelze zabloudit stavový prostor, který vyžaduje řízení 2
3 Tabu prohledávání pouze nejlepší připustit zhoršují cí tahy pouze nejlepší, včetně nejméně špatného asymetrické okolí symetrické dynamicky řízené okolí optimalizační kritérium Tabu prohledávání modifikovaná heuristická funkce paměť (historie hledání) 3
4 Paměť základ adaptace a učení: jaké prvky (rysy) řešení mají podstatný vliv na kvalitu řešení strukturu řešení špatné strategické rozhodnutí může přinést více informace než dobré náhodné rozhodnutí (Grover, Laguna) 4
5 Příklad: MAX 3SAT Optimalizační kritérium: počet splněných klauzulí Očekávaná hodnota při náhodném ohodnocení: 7/8 všech klauzulí Špatné strategické rozhodnutí: nechť např. y 15 :=0 průměrně splněna jen ¼ klauzulí poučení: lépe držet y 15 na 1 5
6 Cíle řízení rovnoměrný průzkum stavového prostoru konvergence k finálnímu řešení diversifikace příklad: zabránit příliš časnému návratu k výchozímu stavu; s =m(s); m -1 je tabu po daný počet tahů intensifikace příklad: zakázaný tah vede k dosud nejlepšímu řešení; aspirační kritérium vede k překonání tabu 6
7 Diverzifikace m s m -1 s tabu po stanovenou dobu zpět ne prozkoumat 7
8 Příklad: MAX 3SAT Nechť m změnit hodnotu y 5 Pak m m -1 Konkrétní implementace vypadá, jako bychom zakazovali m, nikoli m -1 8
9 Řízení tabu prohledávání řízení okolí heuristické funkce tabu aspirace pokuty odměny typicky: diverzifikace typicky: intenzifikace 9
10 Intenzifikace a diverzifikace obě metody (řízení okolí a modifikace heuristické funkce) mohou sloužit oběma cílům řízení okolí: zpravidla vyloučení stavů, které nechceme prohledávat které jsou příliš podobné známým stavům které nejsou dost podobné známým stavům modifikace heuristické funkce: pokutování příliš podobných / odměňování nepodobných odměňování podobných / pokutování nepodobných 10
11 Práce s pamětí úplný záznam všech tahů není možný často potřebné zakázat tahy s podobnými vlastnostmi vyhledávání musí být rychlé abstrakce tah nebo skupinu tahů popsat pomocí atributů skladovat omezený počet elitních řešení resp. jejich sousedů (explicitní paměť) skladovat historii po omezený počet tahů (implicitní krátkodobá (sekvenční) paměť) skladovat omezené statistiky pro celý průběh (implicitní dlouhodobá (frekvenční) paměť) 11
12 Řízení okolí tah atribut atribut atribut tabu status atributu tabu status atributu tabu status tahu tah přijat do okolí tabu status atributu kvantitativní ohodnocení a práh aspirace atributu (překonání tabu) OR aspirace tahu (překonání tabu) 12
13 Krátkodobá paměť Atributy k zaznamenání: změna hodnoty heuristické funkce o B-A změna hodnoty heuristické funkce z hodnoty A na hodnotu B změna hodnoty j-té konfigurační proměnné změna hodnoty j-té konfigurační proměnné z hodnoty a na hodnotu b změna hodnoty charakteristické funkce o B-A změna hodnoty charakteristické funkce z hodnoty A na hodnotu B 13
14 Tabu status z krátkodobé paměti obecně: zákaz operace, která atribut vrátí zpět zákaz opakování operace (cykly!) po dobu tabu lhůty (tabu tenure) obecně pro každý atribut jiná může být dynamická návrat atributu1 or návrat atributu2 návrat atributu1 and návrat atributu2 návrat atributu1 and návrat atributu2, přičemž v minulosti se obě změny udály současně návrat (změna) hodnoty heuristické funkce návrat (změna) hodnoty charakteristické funkce 14
15 Volba tabu lhůty statická: t=7, t=sqrt(n) dynamická: t=5..9, t=(0,5..2).sqrt(n) strategie změny? 15
16 Aspirační kritéria základní možnost: jestliže všechny tahy jsou tabu, přijmout nejméně tabu tah aspirace tahu: vede k dosud nejlepšímu řešení vede k odlišnému řešení 16
17 Dlouhodobá paměť Statistika: četnosti jednotlivých případů vzhledem ke všem případům (např. počet iterací) k sumárnímu počtu výskytu všech případů k maximálnímu počtu výskytu případu k průměrnému počtu výskytu případu 17
18 Užití četnosti Binární atributy: výchozí (jsou v původní konfiguraci a nejsou ve výsledné) cílové (nejsou v původní konfiguraci a jsou ve výsledné) Pokuta/odměna založená na četnostech výchozích a cílových atributů 18
19 Příklad: MAX 3SAT Dlouhodobá paměť: četnost splnění každé klauzule Implementována jako počet splnění a počet iterací Málo splněné klauzule mají větší váhu při výpočtu optimalizačního kritéria (diverzifikace) Alternativně: počet splnění a počet splnění jakékoli klauzule 19
20 Tabu Search Optimization of Optical Ring Transport Networks G. D. Morley, W. D. Grover Proc. IEEE Globecom 2001, St. Antonio, Texas, USA 20
21 Problém Dáno množina komunikačních uzlů datové toky mezi nimi možné propustnosti a latence různých implementací kruhové sítě parametry pro výpočet ceny každé implementace Nalézt nejlevnější konfiguraci sítě, která vyhoví komunikačním požadavkům 21
22 Přípravný krok Vygenerovat všechny (rozumné) kruhové sítě specializovaným nástrojem výčtem cyklů v grafu komunikací a výčtem všech implementací každého cyklu množina kandidátních kruhů 22
23 Stavový prostor Stav: množina skutečně použitých kruhů Operace: přidej kruh z množiny kandidátních kruhů odejmi kruh Vlastnosti symetrický tahů odejmi je vždy značně více než tahů přidej 23
24 Optimalizační kritérium Výpočet: daná topologie sítě a komunikační nároky směrování sítě volba síťových prvků cena sítě Počítá se specializovaným nástrojem (dlouho) 24
25 Tabu prohledávání Heuristická funkce pro vložení kruhu: poměr celkové propustnosti a celkové ceny řešení Heuristická funkce pro odejmutí kruhu: poměr propustnosti a ceny odebíraného kruhu Tabu lhůta pro přidání delší než tabu lhůta pro odejmutí (tahů pro přidání je méně) 25
26 Tabu prohledávání Krátkodobá paměť: [číslo kruhu, krok kdy vyprší tabu lhůta] Aspirační kritérium: tah vede k novému nejlepšímu řešení Převod tabu statusu na pokutu (vyřeší situace, kdy všechny tahy jsou tabu) 26
27 Strategické oscilace inicializace kapacita dostačuje destruktivní fáze konstruktivní fáze kapacita nedostačuje Efektivní řešení bude zřejmě takové, kde všechny kruhy budou vytíženy, tj. blízko hranice množiny řešení 27
28 Výpočet inicializace destruktivní fáze výpočet kandidátních kruhů a (přípustného) počátečního řešení kruhy jsou odebírány v pořadí daném hodnotou příslušné heuristické funkce (s tabu pokutami), dokud je konfigurace řešením konstruktivní fáze kruhy jsou přidávány v pořadí daném hodnotou příslušné heuristické funkce (s tabu pokutami), dokud není konfigurace řešením 28
29 Restart inicializace destruktivní fáze konstruktivní fáze detekce stagnace a návratu k opakovanému řešení diverzifikace volba zaručeně odlišného dalšího počátečního řešení 29
30 Dlouhodobá paměť Hash každého navštíveného řešení (!) detekce návratu (srv. pracnost výpočtu optimalizačního kritéria) Frekvence výskytu kruhu v řešení Průměrný podíl přenosu kruhem na celkovém přenosu (vliv kruhu) vliv na pravděpodobnost výběru kruhu v novém řešení pro restart (velký podíl v minulosti snižuje pravděpodobnost, diverzifikace) 30
jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky
Pokročilé heuristiky jednoduchá heuristika asymetrické stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy pokročilá heuristika symetrické stavový prostor, který vyžaduje řízení 1 2 Paměť pouze
8. Simulované ochlazování Simulated Annealing, SA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
7. Heuristické metody
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
Řešení problému vážené splnitelnosti booleovské formule pokročilou iterativní metodou
Řešení problému vážené splnitelnosti booleovské formule pokročilou iterativní metodou 1 SPECIFIKACE ÚLOHY Cílem této úlohy bylo použít vybranou pokročilou iterativní metodou pro řešení problému vážené
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
4. NP-úplné (NPC) a NP-těžké (NPH) problémy
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
13. Lineární programování
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Profilová část maturitní zkoušky 2013/2014
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
Úvod do úloh plánování rozvozu (Vehicle Routing Problems)
Úvod do úloh plánování rozvozu (Vehicle Routing Problems) RNDr. Martin Branda, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní
Seminář z umělé inteligence. Otakar Trunda
Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Ant Colony Optimization 1 / 26
GoBack Ant Colony Optimization 1 / 26 Vznik Chování mraveců Double Bridge Experiment Řešení via ACO Metaheuristika 2 / 26 Vznik Vznik Chování mraveců Double Bridge Experiment Řešení via ACO Metaheuristika
Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace
Metody návrhu algoritmů, příklady IB111 Programování a algoritmizace 2011 Návrhu algoritmů vybrané metody: hladové algoritmy dynamické programování rekurze hrubá síla tato přednáška: především ilustrativní
Optimalizační algoritmy inspirované chováním mravenců
Optimalizační algoritmy inspirované chováním mravenců Motivace a biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů vhodných pro ACO Aplikace Motivace NP-hard problémy
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Algoritmy pro shlukování prostorových dat
Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň
Optimalizační algoritmy inspirované chováním mravenců
Optimalizační algoritmy inspirované chováním mravenců Biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů Aplikace Motivace NP-hard problémy časová náročnost nalezení
Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu
4. 12. 213 MI-PAA úkol č. 4 Antonín Daněk Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu 1 SPECIFIKACE ÚLOHY Cílem tohoto úkolu bylo seznámit se s vybranou pokročilou iterativní
TÉMATICKÝ OKRUH Softwarové inženýrství
TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 24. Otázka : Implementační fáze. Postupy při specifikaci organizace softwarových komponent pomocí UML. Mapování modelů na struktury programovacího
III. MKP vlastní kmitání
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací
3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem
ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte
1 Webový server, instalace PHP a MySQL 13
Úvod 11 1 Webový server, instalace PHP a MySQL 13 Princip funkce webové aplikace 13 PHP 14 Principy tvorby a správy webového serveru a vývojářského počítače 14 Co je nezbytné k instalaci místního vývojářského
Návrh Designu: Radek Mařík
1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1
Základní datové struktury
Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Da D to t v o é v ty t py IB111: Datové typy
Datové typy IB111: Datové typy Data a algoritmizace jaká data potřebuji pro vyřešení problému? jak budu data reprezentovat? jaké operaci s nimi potřebuji provádět? Navržení práce s daty je velice důležité
vyhledávací stromové struktury
vyhledávací algoritmy Brute Force Binary Search Interpolation Search indexové soubory Dense index, Sparse index transformační funkce Perfect Hash, Close Hash Table, Open Hash Table vyhledávací stromové
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.
9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující
Konstruktory a destruktory
Konstruktory a destruktory Nedostatek atributy po vytvoření objektu nejsou automaticky inicializovány hodnota atributů je náhodná vytvoření metody pro inicializaci, kterou musí programátor explicitně zavolat,
Spojová implementace lineárních datových struktur
Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Simulace číslicových obvodů (MI-SIM) zimní semestr 2010/2011
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Simulace číslicových obvodů (MI-SIM) zimní semestr 2010/2011 Jiří Douša, katedra číslicového návrhu (K18103), České vysoké učení technické
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
Dynamicky vázané metody. Pozdní vazba, virtuální metody
Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:
Dynamické datové struktury I.
Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 7 ČASOVÁNÍ A SYNCHRONIZACE TECHNICKÉHO VYBAVENÍ doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Metody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
Úvod do mobilní robotiky AIL028
Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního
Směrování VoIP provozu v datových sítích
Směrování VoIP provozu v datových sítích Ing. Pavel Bezpalec, Ph.D. Katedra telekomunikační techniky FEL, ČVUT v Praze Pavel.Bezpalec@fel.cvut.cz Obecné info o směrování používané směrovací strategie Směrování
Algoritmizace a programování
Algoritmizace a programování Vyhledávání, vkládání, odstraňování Vyhledání hodnoty v nesetříděném poli Vyhledání hodnoty v setříděném poli Odstranění hodnoty z pole Vkládání hodnoty do pole Verze pro akademický
2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013
2. úkol MI-PAA Jan Jůna (junajan) 3.11.2013 Specifikaci úlohy Problém batohu je jedním z nejjednodušších NP-těžkých problémů. V literatuře najdeme množství jeho variant, které mají obecně různé nároky
Otázky ke státní závěrečné zkoušce
Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
PB153 Operační systémy a jejich rozhraní
PB153 Operační systémy a jejich rozhraní Uváznutí 1 Problém uváznutí Existuje množina blokovaných procesů, každý proces vlastní nějaký prostředek (zdroj) a čeká na zdroj držený jiným procesem z této množiny
ČVUT FEL X36PAA - Problémy a algoritmy. 5. úloha - Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu
ČVUT FEL X36PAA - Problémy a algoritmy 5. úloha - Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu Jméno: Marek Handl Datum: 4. 2. 2009 Cvičení: Pondělí 9:00 Zadání Zvolte si heuristiku,
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
"Agent Hledač" (3. přednáška)
"Agent Hledač" (3. přednáška) Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty připomeňme, že "goal-based"
Struktury a vazebné energie iontových klastrů helia
Společný seminář 11. června 2012 Struktury a vazebné energie iontových klastrů helia Autor: Lukáš Červenka Vedoucí práce: Doc. RNDr. René Kalus, Ph.D. Technický úvod Existují ověřené optimalizační algoritmy
Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý
Odečítání pozadí a sledování lidí z nehybné kamery Ondřej Šerý Plán Motivace a popis úlohy Rozdělení úlohy na tři části Detekce pohybu Detekce objektů Sledování objektů Rozbor každé z částí a nástin několika
Základy umělé inteligence
Základy umělé inteligence Hraní her (pro 2 hráče) Základy umělé inteligence - hraní her. Vlasta Radová, ZČU, katedra kybernetiky 1 Hraní her (pro dva hráče) Hraní her je přirozeně spjato s metodami prohledávání
1. Směrovače směrového protokolu směrovací tabulku 1.1 TTL
1. Směrovače Směrovače (routery) jsou síťové prvky zahrnující vrstvy fyzickou, linkovou a síťovou. Jejich hlavním úkolem je směrování paketů jednotlivými sítěmi ležícími na cestě mezi zdrojovou a cílovou
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
Efektivní hledání nejkratších cest v sítích hromadné přepravy osob
DIPLOMOVÁ PRÁCE Efektivní hledání nejkratších cest v sítích hromadné přepravy osob Autor: Vladislav Martínek Vedoucí: RNDr. Michal Žemlička, Ph.D. Motivace Jak se co nejrychleji dostat z bodu A do bodu
Standardní algoritmy vyhledávací.
Standardní algoritmy vyhledávací. Vyhledávací algoritmy v C++ nám umožňují vyhledávat prvky v datových kontejnerech podle různých kritérií. Také se podíváme na vyhledávání metodou půlením intervalu (binární
Objektově orientované technologie Dynamický náhled Sekvenční diagram (Realizace UC) Daniela Szturcová
Objektově orientované technologie Dynamický náhled Sekvenční diagram (Realizace UC) Daniela Szturcová Osnova Modelování interakcí mezi objekty modelování zpráv (mapování zpráv na operace), vytváření a
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
Load Balancer. RNDr. Václav Petříček. Lukáš Hlůže Václav Nidrle Přemysl Volf Stanislav Živný
Load Balancer RNDr. Václav Petříček Lukáš Hlůže Václav Nidrle Přemysl Volf Stanislav Živný 1.4.2005 Co je Load Balancer Nástroj pro zvýšení výkonnosti serverů Virtuální server skrývající farmu skutečných
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Platforma.NET 11.NET Framework 11 Visual Basic.NET Základní principy a syntaxe 13
Obsah Úvod 11 Platforma.NET 11.NET Framework 11 Visual Basic.NET 12 1 Základní principy a syntaxe 13 Typový systém 13 Hodnotové typy 13 Struktury 15 Výčtové typy 15 Referenční typy 15 Konstanty 16 Deklarace
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Datové typy a struktury
atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro
7. Vyhodnocení uživatelského rozhraní
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 BI-TUR 7. Vyhodnocení uživatelského rozhraní EVROPSKÝ SOCIÁLNÍ FOND
Sledování provozu sítě
Sledování provozu sítě...vzhledem k řešení bezpečnostních incidentů... Tomáš Košňar CESNET z.s.p.o. kosnar@cesnet.cz Obsah Základní principy sledování provozu sítí Mechanismy a možnosti sledování provozu
Hledání správné cesty
Semestrální práce z předmětu A6M33AST Závěrečná zpráva Hledání správné cesty Nela Grimová, Lenka Houdková 2015/2016 1. Zadání Naším úkolem bylo vytvoření úlohy Hledání cesty, kterou by bylo možné použít
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Ing. Ondřej Kika, Ph.D. Ing. Radim Matela. Analýza zemětřesení metodou ELF
Ing. Ondřej Kika, Ph.D. Ing. Radim Matela Analýza zemětřesení metodou ELF Obsah Výpočet vlastních frekvencí Výpočet seizmických účinků na konstrukci Výpočet pomocí metody ekvivalentních příčných sil (ELF
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
SK01-KA O1 Analýza potřeb. Shrnutí. tým BCIME
2018-1-SK01-KA203-046318 O1 Analýza potřeb Shrnutí tým BCIME Vyloučení odpovědnosti: Podpora Evropské komise pro vydání této publikace nepředstavuje její souhlas s obsahem, který odráží pouze názory autorů.
Teorie rozhodování (decision theory)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA DOPRAVNÍ SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY Facebook vs. studium Vypracovali: Martina Grivalská Nikola Karkošiaková Barbora Brůhová Obsah 1. Úvod 2. Dotazník 3.
popel, glum & nepil 16/28
Lineární rezoluce další způsob zjemnění rezoluce; místo stromu směřujeme k lineární struktuře důkazu Lineární rezoluční odvození (důkaz) z Ë je posloupnost dvojic ¼ ¼ Ò Ò taková, že Ò ½ a 1. ¼ a všechna
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Static Load Balancing Applied to Time Dependent Mechanical Problems
Static Load Balancing Applied to Time Dependent Mechanical Problems O. Medek 1, J. Kruis 2, Z. Bittnar 2, P. Tvrdík 1 1 Katedra počítačů České vysoké učení technické, Praha 2 Katedra stavební mechaniky
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
Propojování sítí,, aktivní prvky a jejich principy
Propojování sítí,, aktivní prvky a jejich principy Petr Grygárek 1 Důvody propojování/rozdělování sítí zvětšení rozsahu: překonání fyzikálních omezení dosahu technologie lokální sítě propojení původně
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Pravděpodobnostní (Markovské) metody plánování, MDP - obsah
Pravděpodobnostní (Markovské) metody plánování, MDP - obsah Pravděpodobnostní plánování - motivace. Nejistota ve výběr akce Markovské rozhodovací procesy Strategie plán (control policy) Částečně pozorovatelné
Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.
Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických
Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň
Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006
Management sítí OSI management framework SNMP Komerční diagnostické nástroje Opensource diagnostické nástroje
Přednáška č.12 Management sítí OSI management framework SNMP Komerční diagnostické nástroje Opensource diagnostické nástroje Původní LAN o 50 až 100 uživatelů, několik tiskáren, fileserver o relativně
Aplikace. vliv na to, jakou mají strukturu i na to, jak pracné je je vyvinout. Bylo vypozorováno, že aplikace je možné rozdělit do skupin
Aplikace Aplikace se liší tím, k jakému účelu jsou tvořeny. To má vliv na to, jakou mají strukturu i na to, jak pracné je je vyvinout. Bylo vypozorováno, že aplikace je možné rozdělit do skupin s podobnou
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 2 METODY VERIFIKACE SYSTÉMŮ NA ČIPU II doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]
Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů
Dopravní plánování a modelování (11 DOPM )
Department of Applied Mathematics Faculty of Transportation Sciences Czech Technical University in Prague Dopravní plánování a modelování (11 DOPM ) Lekce 7: FSM: Trip assignment Prof. Ing. Ondřej Přibyl,