SW podpora při řešení projektů s aplikací statistických metod
|
|
- Zdeňka Valentová
- před 9 lety
- Počet zobrazení:
Transkript
1 SW podpora při řešení projektů s aplikací statistických metod Jan Král, Josef Křepela Úvod Uplatňování statistických metod vyžaduje počítačovou podporu. V současné době je rozšiřována řada vynikajících specialisovaných statistických softwarů, které umožňují řešit velmi široké spektrum statistických úloh. Jejich dalšímu šíření je však často na překážku vysoká pořizovací cena spojená s nedůvěrou v ekonomické přínosy této investice. Cílem této části řešení je vytvořit soubor šablon umožňujících začít s aplikací metody SPC i tam, kde by tomu jinak bránily vzhledem k rozpočtu firmy příliš vysoké vstupní náklady na implementaci metody SPC (pořízení specializovaného SW nahradit použitím standardního a již dostupného kancelářského SW). Uvedený soubor šablon vytváří ucelený návrh ověřeného postupu činností, vedoucích k úspěšné implementaci i osobám, které nemají detailní znalosti z oblasti SPC. Umožnění zavedení statistického řízení výroby bude mít vzhledem k svému prediktivnímu charakteru pozitivní vliv na zvýšení úrovně řízení organizace, zlepšení jakosti, spokojenosti zákazníků, snížení výskytu neshodných jednotek ve výrobě a v celkovém úhrnu zlepšení image podniku na trhu i zvýšení kvalifikace pracovníků podniku. Popis řešení Jedním z nejrozšířenějších kancelářských programů je Microsoft Excel, který umožňuje podporu celé řadě statistických výpočtů. Tento program je dostupný ve všech podnicích, kancelářích, provozovnách, prakticky všude, kde je třeba využívat některé ze statistických metod. Jeho širšímu využití v této oblasti mnohdy brání pouze nedostatečné znalosti těchto metod a nedostatečné zkušenosti v interpretaci výstupů.
2 Námi prezentované řešení v tomto ohledu vykazuje přiměřenou vstřícnost k uživateli tím, že při dodržení zavedených konvencí vede uživatele k požadovanému cíli. V šablonách jsou zavedeny tyto obecné konvence (jednotlivá pole jsou označena barevně): žlutá pole: do těchto polí se vkládají zadávané hodnoty uživatelem; zelená, bleděmodrá a šedivá pole: v těchto polích se zobrazují výsledky postupných výpočtů (pole se nesmí editovat), v polích zapsané vzorce by byly přepsány a výpočty zmařeny. Zelená pole obsahují konečné výsledky; bílá, případně barevně zvýrazněná (modrá) pole obsahují poznámky;. šedá pole jsou popisná a v odůvodněných případech je lze editovat. Poznámka: Je-li u jakékoliv buňky červeně zvýrazněn pravý horní roh, obsahuje tato buňka komentář, který je možno vyvolat volbou zobrazit komentář po kliknutí pravým klikem na tuto buňku. Pro úvodní analýzu procesu, vyhodnocení předpokladů pro stanovení způsobilosti a výkonnosti procesu a uplatnění statistické regulace byly vypracovány šablony zahrnující pět pracovních listů, které postupně probereme na příkladu regulačního diagramu pro výběrové průměry a výběrové směrodatné odchylky. 1) List Data Záznam napozorovaných dat a výpočet základních výběrových charakteristik podskupin x bar, Me, s, s 2, R. Na listě je možno činit poznámky o případných změnách a zásazích v procesu. Data i poznámky je možno na příkaz vytisknout.
3 Napozorované hodnoty v podskupinách Výběrové charakteristiky podskupin j x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x bar Me s s 2 R 1 19,993 19,995 19,997 19,995 19,999 19, , , , , ,006 20,010 20,010 20,022 20,002 20, , , , , ,958 19,982 19,973 19,985 19,979 19, , , , , ,996 20,006 19,988 20,002 20,001 19, , , , , ,995 19,998 20,002 20,003 19,998 19, , , , , ,009 20,006 20,012 20,007 20,012 20, , , , , ,001 20,006 20,006 19,995 20,006 20, , , , , ,004 20,002 20,006 19,991 20,005 20, , , , , ,986 19,984 20,010 20,001 20,005 19, , , , , ,991 20,011 20,006 19,980 20,009 19, , , , , ,996 19,996 20,001 20,003 19,996 19, , , , , ,002 20,018 20,006 19,987 19,995 20, , , , , ,019 19,981 20,005 19,990 20,007 20, , , , , ,046 20,039 20,028 20,030 20,021 20, , , , , ,996 20,003 20,005 19,997 20,008 20, , , , , ,008 19,985 20,005 19,989 20,002 19, , , , , ,005 20,018 20,007 19,994 20,028 20, , , , , ,010 20,013 19,977 19,999 20,004 20, , , , , ,998 19,995 20,013 19,995 20,012 20, , , , , ,011 20,026 20,017 19,989 20,015 20, , , , , ,019 20,004 20,026 20,004 19,995 20, , , , , ,018 20,013 19,998 20,000 20,011 20, , , , , ,018 20,005 20,024 19,982 20,003 20, , , , , ,000 20,007 20,003 20,001 20,000 20, , , , , ,996 20,004 20,009 20,000 19,999 20, , , , , ,999 20,007 19,993 20,017 19,990 20, , , , , ,000 20,001 20,003 19,998 20,001 20, , , , , ,039 20,006 20,019 20,018 20,035 20, , , , , ,998 20,005 20,007 20,002 20,008 20, , , , , ,013 19,983 19,987 20,021 19,999 20, , , , , ,025 20,035 20,055 20,043 20,046 20, , , , , ,025 20,023 19,985 19,989 20,022 20, , , , , ,999 20,009 19,982 20,000 20,016 20, , , , , ,018 20,020 20,002 20,012 20,024 20, , , , , ,993 20,007 20,007 19,997 19,996 20, , , , , ,015 20,012 20,005 20,019 20,006 20, , , , , ) List Výpočet regulačních diagramů Tento list obsahuje výpočet následujících typů regulačních mezí: Shewhartových, v souladu s ČSN ISO 8258 když základní hodnoty nejsou dány ( přirozené regulační meze). Shewhartových, v souladu s ČSN ISO 8258 když základní hodnoty jsou dány ( technické regulační meze). Rozšířené regulační meze vycházející z celkové směrodatné odchylky s tot. Rozšířené regulační meze vycházející ze směrodatné odchylky výběrových průměrů podskupin s x bar. Rozšířené regulační meze vycházející z rozšíření regulačního pole o v souladu s přístupem firmy Ford a dalších amerických automobilových firem.
4 Hodnoty jednotlivých typů regulačních mezí, jsou zobrazeny v následující přehledné tabulce: Vzorce a výpočet regulačních diagramů při kontrole měřením: A) Základní hodnoty nejsou stanoveny (přirozené regulační meze): Statistika CL UCL LCL x bar x bar bar x bar bar + A 2 * R bar 20,016 x bar bar - A 2 *R bar 19,993 x bar bar x bar bar + A 3 *s bar 20,0165 x bar bar - A 3 * s bar 19,9926 R R bar R bar * D 4 0,043 R bar * D 3 0,000 s s bar s bar * B 4 0,01745 s bar * B 3 0,000 Me Me bar Me bar + A 4 * R bar 20,020 Me bar - A 4 * R bar 19,991 B) Základní hodnoty jsou stanoveny (technické regulační meze): Statistika CL TUCL TLCL x bar X 0 X 0 + A σ 0 20,013 X 0 - A σ 0 19,987 s σ 0 *C 4 σ 0 *B 6 0,020 σ 0 *B 5 0,000 R σ 0 *d 2 σ 0 *D 2 0,049 σ 0 *D 1 0,000 C) Rozšířené regulační meze pro výběrové průměry, s využitím s tot: Statistika CL UCL LCL x bar x bar bar x bar bar + A 3 *s tot *C 4 20,021 x bar bar - A 3 * s tot * C 4 19,988 x bar x bar bar x bar bar + 3*s x bar 20,032 x bar bar - 3*s x bar 19,977 D) Rozšířené regulační meze pro výběrové průměry, s využitím : Statistika CL UCL LCL x bar x bar bar xbarbar+a 3 *sbar+ /2 20,016 xbarbar - A 3 *sbar - /2 19,993
5 Barva písma koresponduje s barvou vynesené regulační meze v následujících regulačních diagramech.
6 3) List Způsobilost Pro ukazatele způsobilosti C p, C pu, C pl a C pk se počítají odhady; konfidenční intervaly pro zvolenou konfidenční úroveň; statistické pokryvné intervaly. Tyto ukazatele vycházejí z krátkodobé variability uvnitř podskupin. Předpokládá se normální rozdělení studovaného znaku jakosti a statisticky zvládnutý proces ( v užším slova smyslu ) v čase se nemění ani střední hodnota, ani variabilita. Např. ve výrazu: se odhaduje jako: Pro ukazatele výkonnosti Pp, PpU, PpL a Ppk se počítají: odhady; konfidenční intervaly pro zvolenou konfidenční úroveň; statistické pokryvné intervaly Tyto ukazatele vycházejí z dlouhodobé variability v procesu, tj. jak variability uvnitř podskupin, tak mezi podskupinami. Předpokládá se normální rozdělení studovaného znaku jakosti a statisticky zvládnutý proces ( v širším slova smyslu ) v čase se nemění variabilita, ale střední hodnota se může měnit známým způsobem a je neodstranitelná. Např. ve výrazu: se s tot odhaduje jako: C p USL LSL = 6σ 1 s = k P s p tot k ( x ij x j ) Z dat v listu Data se přenesou základní statistiky, zadají se USL, LSDL a konfidenční úroveň a provedou se následující výpočty: 1 n n i= 1 j= 1 USL LSL = 6σ = 1 kn tot kn i= 1 ( x x i 2 tot ) 2..
7
8 4) List Normalita Provádí se Kolmogorovův test dobré shody s normálním rozdělením na hladině významnosti a = 0,05; Zakresluje se histogram z napozorovaných hodnot s proloženou křivkou normálního rozdělení. Pro zakreslení histogramu se automaticky vypočítají meze třídních intervalů. Je ale možno zvolit jak šířku třídních intervalů, tak horní mez prvního třídního intervalu.
9 5) List Stabilita Ověřuje se hypotéza, že všechny podskupiny pocházejí ze základních souborů se stejnou střední hodnotou pomocí ANOVA. Ověřuje se hypotéza, že všechny podskupiny pocházejí ze základních souborů se stejným rozptylem pomocí Bartlettova testu. Pomocí uvedených šablon získá uživatel základní orientační informaci, zda napozorovaná data jsou rozdělena normálně a zda lze tedy vyhodnocovat způsobilost, resp. výkonnost běžným způsobem, nebo zda je nutno použít postup pro případ nenormálního rozdělení. V praxi se při nerespektování předpokladu normality dochází k zavádějícím, někdy velmi chybným výsledkům. Rovněž při zamítnutí hypotézy o rovnosti středních hodnot (případně rozptylů) základních souborů, ze kterých jsou odebrány podskupiny může vést při aplikaci Shewhartových regulačních diagramů k výraznému překročení rizika planého poplachu, které je v průměru jednou ze 370 kontrolovaných podskupin. To vede k demotivaci operátorů, kteří musí hledat signalizovanou zvláštní příčinu variability, když žádná neexistuje. Šablona na listu s výpočtem rozšířených regulačních mezí umožňuje volit ty, které nejlépe odpovídají analyzovanému procesu. Na tomto listu lze stanovit i tzv. technické regulační meze (základní hodnoty jsou dány) které odpovídají např. požadavku odběratele na hodnotu P p = P pk. Na tomto listu lze zakreslit i zóny A, B, a C pro snazší analýzu, zda zakreslená data v regulačním diagramu nevykazují
10 nenáhodná seskupení v souladu s ČSN ISO 8258 případně s materiálem amerických firem automobilového průmyslu popisující SPC. Ověření nutnosti systematicky analyzovat sledované znaky jakosti v procesech by mělo vést k implementaci vhodného, profesionálního, softwaru podporujícího implementaci statistických metod, ve výše uvažovaném případě, metod statistické regulace. Literatura: [1] Kotz S., Johnson N. L.: Process Capability Indices. Chapman and Hall 1993 [2] Michálek J.: Procesy s rozšířenými regulačními mezemi. Research Report No ÚTIA AVČR srpen 2000 [3] Michálek J., Křepela J.: Koeficienty způsobilosti a výkonnosti v případě rozšířených regulačních mezí. Research Report No. 2009, ÚTIA AVČR, leden 2001 [4] Michálek J., Křepela J.: Regulační diagramy s rozšířenými regulačními mezemi. Statistické dny v Brně, CQR, červen 2006 [5] ČSN ISO 8258:1994 Shewhartovy regulační diagramy [6] Daimler Chrysler Corporation, Ford Motor Company a General Motors Corporation: Statistická regulace procesů (SPC). přeložil Michálek J., ČSJ Praha 2006 Adresa autorů: Ing. Jan Král, ISQ PRAHA s.r.o., Pechlátova 19, Praha 5. kral.jan@isq.cz Ing. Josef Křepela, České vysoké učení technické v Praze, Fakulta strojní, Ústav strojírenské technologie, Technická 4, Praha 6. Karlovo nám. 13, Praha 2 krepela@atlas.cz Tato práce byla vytvořena za podpory projektu MŠMT 1M CQ
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem
VíceNárodní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních
VíceHODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
VíceÚstav teorie informace a automatizace RESEARCH REPORT. Nestandardní regulační diagramy pro SPC. No. 2311 December 2011
kademie věd České republiky Ústav teorie informace a automatizace cademy of Sciences of the Czech Republic Institute of Information Theory and utomation RESERCH REPORT Josef Křepela, Jiří Michálek: Nestandardní
VíceStatistické řízení jakosti - regulace procesu měřením a srovnáváním
Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistická regulace výrobního procesu (SPC) SPC = Statistical Process Control preventivní nástroj řízení jakosti, který na základě včasného
VíceROBUST 2012 Němčičky 9.9. - 14.9. 2012. Metodika komplexního návrhu regulačního diagramu. Ing. Jan Král. ISQ PRAHA s.r.o. kral.jan@isq.
ROBUST 2012 Němčičky 9.9. - 14.9. 2012 Metodika komplexního návrhu regulačního diagramu Ing. Jan Král ISQ PRAHA s.r.o. kral.jan@isq.cz Cíl práce Prezentovaná práce si klade za cíl vytvořit ucelenou systematickou
VíceTématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management jakosti" školní rok 2013/2014 Integrované systémy managementu A 1. Koncepce a principy integrovaných
VíceNárodní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti 1 METODA KUMULOVANÝCH SOUČTŮ C U S U M metoda: tabulkový (lineární) CUSUM RNDr. Jiří Michálek, CSc., Ing. Antonie Poskočilová 2 Základem SPC jsou Shewhartovy
VíceRegulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
VíceTématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management kvality"
Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management kvality" školní rok 2016/2017 Integrované systémy managementu A 1. Koncepce a principy integrovaných
VíceNárodní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality STATISTICKÁ REGULACE POMOCÍ VÝBĚROVÝCH PRŮMĚRŮ Z NENORMÁLNĚ ROZDĚLENÝCH DAT Ing. Jan Král, RNDr. Jiří Michálek, CSc., Ing. Josef Křepela Duben, 20 Co je
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceQ-diagramy. Jiří Michálek ÚTIA AVČR
Q-diagramy Jiří Michálek ÚTIA AVČR Proč Q-diagramy? Nevýhody Shewhartových diagramů velikost regulačních mezí závisí na rozsahu logické podskupiny nehodí se pro krátké výrobní série normálně rozdělená
VíceSPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM,
SPC v případě autokorelovaných dat Jiří Michálek, Jan Král OSSM, 2.6.202 Pojem korelace Statistická vazba mezi veličinami Korelace vs. stochastická nezávislost Koeficient korelace = míra lineární vazby
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceVYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI Elektronická sbírka příkladů k předmětům zaměřeným na aplikovanou statistiku
VíceNormy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník
VíceStatistické řízení jakosti. Deming: Klíč k jakosti je v pochopení variability procesu.
Statistické řízení jakosti Deming: Klíč k jakosti je v pochopení variability procesu. SŘJ Statistická regulace výrobního procesu Statistická přejímka jakosti měřením srovnáváním měřením srovnáváním - X
VíceRegulační diagramy (Control charts, Shewhart s diagrams)
Regulační diagramy (Control charts, Shewhart s diagrams) diagram spolu s horní nebo/a dolní í, do kterého se zakreslují hodnoty nějakého statistického ukazatele pro řadu výběrů nebo podskupin, obvykle
VíceLineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
VíceNárodní informační středisko pro podporu jakosti
Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef
VícePřehled metod regulace procesů při různých typech chování procesu
Přehled metod regulace procesů při různých typech chování procesu Eva Jarošová, Darja Noskievičová Škoda Auto Vysoká škola, VŠB Ostrava ČSJ 7.9.205 Typy procesů (ČSN ISO 2747) Procesy typu A Výsledné rozdělení
VíceInovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,
VíceVybrané praktické aplikace statistické regulace procesu
ČSJ, OSSM Praha, 19. 4. 2012 Vybrané praktické aplikace statistické regulace procesu Prof. Ing. Darja Noskievičová, CSc. Katedra kontroly a řízení jakosti Fakulta metalurgie a materiálového inženýrství
VíceSTATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU
STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU RNDr. Jiří Michálek, CSc. Centrum pro kvalitu a spolehlivost CQR při Ústavu teorie informace a automatizace AVČR e-mail: michalek@utia.cas.cz Ing. Jan Král ISQ
VíceJak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu
Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu Jiří Michálek Ukazatele způsobilosti a výkonnosti C p, C pk, P p, P pk byly zavedeny ve snaze popsat stav výrobního procesu,
VíceZápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VíceNárodní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality 1 STATISTICKÉ PŘEJÍMKY CHYBY PŘI APLIKACI A JEJICH DŮSLEDKY Ing. Vratislav Horálek, DrSc. 2 A. NEPOCHOPENÍ VLASTNÍHO CÍLE STATISTICKÉ PŘEJÍMKY (STP) STP
VíceNárodní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti STATISTICKÉ METODY V LABORATOŘÍCH Ing. Vratislav Horálek, DrSc. Ing. Jan Král 2 A.Základní a terminologické normy 1 ČSN 01 0115:1996 Mezinárodní slovník
VíceVY_32_INOVACE_PEL-3.EI-18-VYROBNI PROCES. Střední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_PEL-3.EI-18-VYROBNI PROCES Střední odborná škola a Střední odborné učiliště, Dubno Ing. Jiří
VíceUNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
VíceVlastnosti odhadů ukazatelů způsobilosti
Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz
VíceRůzné metody manažerství kvality. Práce č.12: Výpočet PPM a způsobilost procesů
- Různé metody manažerství kvality - Práce č.12: Výpočet PPM a způsobilost procesů Datum: 02-12-2018 Martin Bažant Obsah Obsah... 2 1 Úvod... 3 2 Způsobilost procesů... 3 3 Výpočet PPM... 7 3.1 Základní
VícePRINCIPY ZABEZPEČENÍ KVALITY
(c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,
VíceVyhodnocování způsobilosti a výkonnosti výrobního procesu
Vyhodnocování způsobilosti a výkonnosti výrobního procesu Jiří Michálek CQR 2009 Vyhodnocování způsobilosti a výkonnosti výrobního procesu Jiří Michálek Centrum pro jakost a spolehlivost ve výrobě CQR
VíceMožnosti statistického řízení (SPC) kusové výroby ve spol. SG strojírna, s.r.o. Martin Melichar
SOUTĚŽNÍ PŘEHLÍDKA STUDENTSKÝCH PRACÍ FST 2007 Možnosti statistického řízení (SPC) kusové výroby ve spol. SG strojírna, s.r.o. Martin Melichar ABSTRAKT V příspěvku je popsán návrh možnosti statistického
VíceVŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
VíceAnalýza způsobilosti procesů. Studijní opory
Operační program Vzdělávání pro konkurenceschopnost PROJEKT Integrovaný systém modulární počítačové podpory výuky ekonomicko-technického zaměření CZ.1.07/2.2.00/28.0300 Analýza způsobilosti procesů Studijní
VíceMSA-Analýza systému měření
MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu
VíceVYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové
VíceNárodní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality NOVÁ ŘADA NOREM ČSN ISO 3951 Statistické přejímky měřením (ČSN ISO 3951-1 a ČSN ISO 3951-2) Ing. Vratislav Horálek, DrSc. Leden 2011 1. Normy ČSN ISO řady
VíceProtokol č. 1. Tloušťková struktura. Zadání:
Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále
VíceAnalýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
VíceSTATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
VíceKorelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
VíceSimulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
VíceEkonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká
Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy Kateřina Brodecká Vysoce způsobilé procesy s rozvojem technologií a důrazem kladeným na aktivity neustálého zlepšování a zeštíhlování
VíceLINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
VíceAnalýza způsobilosti. procesu. StatSoft
StatSoft Analýza způsobilosti procesu Analýza způsobilosti je jedna z nejběžnějších analýz vyžadovaných v oblasti zpracování průmyslových dat. V tomto článku si představíme indexy způsobilosti a podrobně
VíceČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 03.120.30 Srpen 2014 Regulační diagramy Část 3: Přejímací regulační diagramy ČSN ISO 7870-3 01 0272 Control charts Part 3: Acceptance control charts Cartes de contrôle Partie
VíceStatistické regulační diagramy
Statistické regulační diagramy Statistickou regulací procesu měření rozumíme jeho udržení ve statisticky zvládnutém stavu. Jen tak se zabezpečí shoda výsledků měření se specifickými požadavky na měření.
VíceČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 03.120.30 2007 Statistická interpretace dat - Část 6: Stanovení statistických tolerančních intervalů ČSN ISO 16269-6 Duben 01 0233 Statistical interpretation of data - Part 6:
VíceNárodní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti Stanovení měr opakovatelnosti a reprodukovatelnosti při kontrole měřením a srovnáváním Ing. Jan Král Úvodní teze Zásah do procesu se děje na základě měření.
VíceTestování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
VíceNárodní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti 1 Konzultační středisko statistických metod při NIS-PJ Využití statistických metod při aplikaci zásad norem ISO souboru 9000 z roku 2000 Ing. Vratislav
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Více31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
VíceTesty statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
VíceZákladní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceČlenění podle 505 o metrologii
Členění podle 505 o metrologii Měřidla slouží k určení hodnoty měřené veličiny. Spolu s nezbytnými měřícími zařízeními se podle zákona č.505/1990 Sb. ve znění č.l 19/2000 Sb. člení na : a. etalony, b.
Více5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
VíceUniverzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
VíceNárodní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti 1 Konzultační středisko statistických metod při NIS-PJ Statistické přejímky při kontrole měřením Ing. Vratislav Horálek DrSc. ČSJ Ing. Josef Křepela ČSJ
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek
VíceVŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
VíceRozdíl rizik zbytečného signálu v regulačním diagramu (I,MR) a (xbar,r)
Rozdíl rizik zbytečného signálu v regulačním diagramu (I,MR) a (xbar,r) Bohumil Maroš 1. Úvod Regulační diagram je nejefektivnější nástroj pro identifikaci stability, resp. nestability procesu. Vhodně
VíceVYUŽITÍ REGULAČNÍCH DIAGRAMŮ PRO KONTROLU JAKOSTI
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV MANAGEMENTU FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF MANAGEMENT VYUŽITÍ REGULAČNÍCH DIAGRAMŮ PRO KONTROLU
VíceStatistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
VíceP13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
VíceNEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE
NEJISTOTA MĚŘENÍ David MILDE, 014 DEFINICE Nejistota měření: nezáporný parametr charakterizující rozptýlení hodnot veličiny přiřazených k měřené veličině na základě použité informace. POZNÁMKA 1 Nejistota
VíceVŠB Technická univerzita Ostrava BIOSTATISTIKA
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:
VíceIntervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
VíceISO 8258 je první ze čtyř norem ISO, které budou věnovány metodám statistické regulace. Zbývající tři, které jsou nyní v přípravě, jsou
ČESKÁ NORMA MDT 658.562.012.7:519.233 Duben 1994 SHEWHARTOVY REGULAČNÍ DIAGRAMY ČSN ISO 8258 01 0271 Shewhart control charts Cartes de contrôle de Shewhart Shewhart-Qualitätsregelkarten Tato norma obsahuje
VíceVyužití tabulkového procesoru MS Excel
Semestrální práce Licenční studium Galileo srpen, 2015 Využití tabulkového procesoru MS Excel Ing Marek Bilko Třinecké železárny, a.s. Stránka 1 z 10 OBSAH 1. ÚVOD... 2 2. DATOVÝ SOUBOR... 2 3. APLIKACE...
VíceSTATISTICA Téma 7. Testy na základě více než 2 výběrů
STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm
VíceČ.t. Téma školení Cílová skupina Rozsah
Témata školení Č.t. Téma školení Cílová skupina Rozsah I. Všeobecné požadavky I.1. Základní požadavky ISO 9001 - Procesní přístup - Vysvětlení vybraných požadavků ISO 9001 I.2. Základní požadavky ISO/TS
VíceVŠB Technická univerzita Ostrava
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: PRAVDĚPODOBNOST A STATISTIKA Domácí úkoly Zadání 21 DATUM ODEVZDÁNÍ
VíceDVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
VíceNárodníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
VíceZelená bariéra. Software Zelená bariéra je výstupem projektu TA ČR č. TD Optimalizace výsadeb dřevin pohlcujících prachové částice
Zelená bariéra Aplikace pro výpočet účinnosti vegetačních bariér podél silničních a dálničních komunikací z hlediska záchytu celkového prachu, suspendovaných částic PM 10 a PM 2.5 a benzo[a]pyrenu Software
VíceNárodní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti 1 Konzultační středisko statistických metod při NIS-PJ Statistické přejímky (3) Ing. Vratislav Horálek DrSc. ČSJ Ing. Josef Křepela ČSJ 19. ledna 2006.
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
VícePředpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ANALÝZA
VíceMATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
VíceJednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
VíceVýukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2Management
VíceStřední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_PEL-3.EI-17-TVORBA TECHNOLOGICKYCH POSTUPU Střední odborná škola a Střední odborné učiliště,
VíceNávrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
VíceNormy ČSN,ČSN ISO a ČSN EN
Normy ČSN,ČSN ISO a ČSN EN z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2013) Ing. Vratislav Horálek, DrSc. předseda TNK 4 při ÚNMZ 1 A Terminologické normy 2 [1] ČSN ISO 3534-1:2010 Statistika
VícePrůzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
VíceSTATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
VícePOPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
VíceSAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
VíceIlustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
Více