Národníinformačnístředisko pro podporu jakosti
|
|
- Jozef Slavík
- před 9 lety
- Počet zobrazení:
Transkript
1 Národníinformačnístředisko pro podporu jakosti
2 OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král
3 Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov Shapiro -Wilk Anderson - Darling Ryan -Joiner grafické metody: Histogram Pravděpodobnostní graf Q - Q graf P - P graf
4 Histogram Histogram sestrojený na základě dostatečného počtu hodnot pocházejících z normálního rozdělení má charakteristický tvar, jehož modelem je Gaussova křivka. Příklad histogramu sestrojeného z 1 hodnot z normálního rozdělení se střední hodnotou µ= a směrodatnou odchylkou σ=3 je na následujícím obrázku.
5 Histogram ,3 19,3,,3 1,3,3 3,3,3 5,3,3 7,3,3 9,3,3 31,3,3 33,3,3 35,3,3 37,3,3 39,3,3 41,3
6 Výběry rozsahu n = 5 ze základního souboru s normálním rozdělením m = a s = 3
7 Výběry rozsahu n = 5 ze základního souboru s normálním rozdělením m = a s = 3
8 Výběry rozsahu n = 1 ze základního souboru s normálním rozdělením m = a s = 3
9 Výběry rozsahu n = ze základního souboru s normálním rozdělením m = a s = 3
10 Zhodnocení Všechny uvedené histogramy představují náhodné výběry z normálního rozdělení se střední hodnotou µ = a směrodatnou odchylkou σ = 3. Vidíme, že čím je větší rozsah výběru n, tím lépe odpovídá výběrové rozdělení, znázorněné histogramem, rozdělení v základním souboru, znázorněnému hustotou pravděpodobnosti. Při běžně používaném rozsahu n=1 nemusí být vizuální posouzení objektivní a tvar histogramu může být navíc ovlivněn volbou mezí intervalu.
11 Testy dobré shody Pomocí testů dobré shody objektivně posoudíme, zda je možno považovat předpoklad normálního rozdělení za splněný. Testovaná hypotéza H : Náhodný výběr pochází ze základního souboru s normálním rozdělením Rozlišují se dva případy: a) Model normálního rozdělení je plně specifikován, tj. jsou dány střední hodnota µ a rozptyl σ. b) Model normálního rozdělení není plně specifikován, střední hodnota a rozptyl se odhadnou z výběrových hodnot. Rozdíl mezi plně a neúplně specifikovaným modelem se projeví na rozdělení testové statistiky a tedy při rozhodování o tom, zda vypočtená hodnota testové statistiky je či není v kritickém oboru. Alternativní hypotéza a) H 1 : náhodný výběr nepochází ze základního souboru s normálním rozdělením s danými parametry µ a σ. b) H 1 : náhodný výběr nepochází ze základního souboru s normálním rozdělením
12 Chí -kvadrát test Náhodný výběr rozsahu n je rozdělen do k intervalů s četnostmi n j (j = 1,,..., k), horní meze intervalů označíme x j. Vypočteme teoretické třídní četnosti za předpokladu, že výběr pochází ze základního souboru s normálním rozdělením N(µ, σ ): Horní meze x j třídních intervalů převedeme na hodnoty normované proměnné u j Není-li model plně specifikován, použijeme místo parametru µ výběrový průměr x a místo parametru σ výběrovou směrodatnou odchylku s ; = x Pro každé j vyhledáme odpovídající hodnoty distribuční funkce normovaného normálního rozdělení φ(u j ); j µ σ,
13 Určíme teoretické relativní a absolutní třídní četnosti π j = φ(u j ) φ(u j-1 ) a n π j ; Intervaly, jejichž teoretická absolutní četnost n π j 5 sloučíme se sousedními intervaly tak, aby byla splněna podmínka n π j >5 Pro redukovaný počet tříd k vypočteme výrazy ( n ) j nπ j Jejich součtem (přes redukovaný počet tříd k ) dostaneme hodnotu testové statistiky nπ j ; χ k ( ) o nj nπ j = j= 1 nπ j
14 Kritický obor pro test normality, na hladině významnosti α, je ( ) χ χ α o ( k c ) > 1 1 o kde χ je (1-α) -kvantil rozdělení c 1 α k c 1 pro n = k -c -1 stupňů volnosti, c je počet odhadovaných parametrů U plně specifikovaného modelu je c =. Ověřujeme-li jen tvar normálního rozdělení (neúplně specifikovaný model) a parametry µ a σ odhadujeme z výběrových hodnot, je c =.
15 PŘÍKLAD 1 V následujícítabulce je demonstrován postup výpočtu testové charakteristiky χ pro náhodný výběr rozsahu n = 1, ve kterém pozorované hodnoty byly roztříděny do k = 8 intervalů. První interval je (- ; 3,94), dalších 6 intervalů má šířku h =, a poslední interval je (4,6; ). Ze 1 hodnot byl určen výběrový průměr x = 3,999 a výběrová směrodatná odchylka s =,. Vzhledem k tomu, že krajní intervaly nesplňují požadavek nπ j 5, sloučíme je se sousedními intervaly. Redukovaný počet tříd je k = 6. Pro počet stupňů volnosti ν = k -3 = 3 a pro hladinu významnosti α =,5 je kritická hodnota χ,95 (3) = 7,815. Jelikož vypočtená hodnota testové charakteristiky χ = 1,477 nespadá do kritického oboru (není větší než kritická hodnota 7,815), nemáme důvod zamítnout hypotézu o tom, že výběr pocházíz normálního rozdělení.
16 Schéma výpočtu testové statistiky chí-kvadrát horní mez třídního intervalu třídní četnosti n j u j Φ(u j ) π j n π j n π j n j (n π j -n j ) n π j 3,9-1,931,7,7,67 3,96 9-1,759,111,74 7,48 1,11 11,787 3,98 -,619,787, , ,6767,665 4, 3,73,51465,678,67837, , , 1,6974,75576,111,11133, ,149 4, 17 1,875,9119, , , ,167 4,6 5,476,97751,661 6,6145 8,8789 8,855 4,8 3,49,944 c = 1,47653
17 Kolmogorovův-Smirnovův test dobré shody H : náhodný výběr rozsahu n pochází ze základního souboru s normálním rozdělením N(µ, σ ) sdistribuční funkcí F(x) (plně specifikovaný model) Uvažujeme-li pozorování uspořádaná podle velikosti x (i), je testovou statistikou Η se zamítá, je-li x x... x n () 1 ( ) ( ) i 1 i Dn = max F( x() i ), F( x() i ) n n Dn D α, i = 1,,, n. Kritické hodnoty D α jsou tabelovány (Tab. 1)
18 Modifikovaný Kolmogorovův-Smirnovův test Nejsou-li parametry normálního rozdělení známy (neúplně specifikovaný model), nahradí se odhady. Při rozhodování se musí použít jiné kritické hodnoty (Tab. ).
19 Tab. 1 Kritické hodnoty D n (α) maximální odchylky empirické distribuční funkce od teoretické
20 Tab. Upravené kritické hodnoty dle Lilieforse Rozsah α Rozsah α výběru n,,1,5,1 výběru n,,1,5,1 4,3,6,376,413 16,176,195,13,7 5,9,319,3,397 17,171,19,7, 6,9,97,3,371 18,167,185,, 7,5,,4,351 19,163,181,197,8 8,39,5,8,333,159,176,19,3 9,7,5,74,317 5,143,159,173,1 1,17,1,,4,131,146,159,185 11,8,31,51,91,115,1,139,16 1,,,,1 1,74,8,89,14 13,193,15,,71,37,41,45,5 14,187,8,6, 9,5,,,35 15,181,1,19,54
21 PŘÍKLAD Bylo provedeno n = 1 měření zatížení vlákna do přetržení: i x i i/n (i-1)/n F(x) F(x)-(i-1)/n F(x)-i/n 1,14,83333,,188,188,37548,,166667,83333,843,11759,176 3,7,5,166667,116,54493,8 4,6,333333,5,5589,589,784 5,7,416667,333333,99,3984, ,7,5,416667,333351,83315, ,8,583333,5,35596,14494,837 8,51,666667,583333,499,95,1757 9,77,75,666667,759,34, ,751,833333,75,7441,7959, ,158,916667,833333,9648,1315, ,17 1,,916667,966679,51,331 prumer,583 max,1315,837 rozptyl,13 sm.odch, Závěr : Vzhledem k tomu, že maximální absolutní diference mezi empirickou distribučnífunkcía teoretickou distribučnífunkcínenívětší než kritická hodnota D n (α), nemáme důvod zamítnout testovanou hypotézu H : výběr pochází ze základního souboru s normálním rozdělením.
22 Grafický test Do pravděpodobnostního papíru zakreslíme průběh empirické distribuční funkce, tj. body [ x (i) ; i/n ] a přímku odpovídající průběhu odhadu distribuční funkce rozdělení N(µ, σ ) Fˆ(x). K odhadu teoretické distribuční funkce zakreslíme meze konfidenčního intervalu, tj. body [ x ; Fˆ(x) ± D n (α) ]. Vzniklé dvě křivky představují konfidenční interval distribuční funkce F(x) s konfidenční úrovní 1-α. Testovaná hypotéza H se zamítá, na hladině významnosti α, jestliže alespoň pro jednu hodnotu x empirická distribuční funkce, znázorněná na grafu body, leží vně zakresleného pásma.
23 Aplikace testu normality, pomocí pravděpodobnostního papíru
24 PŘÍKLAD pokračování: Na obrázku je vedle pravděpodobnostnístupnice y = 1 F(x) ještě stupnice u, odpovídající kvantilům normovaného normálního rozdělení N(, 1). ( Platí tedy 1 φ(u) = y.) Přímku představující odhad distribuční funkce hypotetického normálního rozdělení N( µ =,5 ; σ =,355 ) proložíme body ( x =,5 ; u = ) a ( x + s =,875 ; u = 1 ). Pro n = 1 a α =,5 je D n (α) = D 1 (,5) =, Tedy hranice zakreslené na obrázku jsou (F(x) ±,375) *1. Závěr : Ani jeden bod neleží mimo zakreslené meze, nemáme důvod zamítnout testovanou hypotézu H.
25 Testy normality v MINITABu Kolmogorov Smirnov Anderson Darling testová statistika A (A squared) hodnoty větší než kritické svědčí proti normalitě Ryan Joiner testová statistika R podobný Shapiro-Wilkově testu (viz dále) hodnoty menší než kritické svědčíproti normalitě
26 Použití p-hodnoty Na výstupu každé procedury pro statistický test je kromě hodnoty testové statistiky uvedena tzv. p-hodnota (p-value) Platí-li: p-hodnota < α, zamítneme testovanou hypotézu na hladině významnosti α.
27 Pravděpodobnostní graf v MINITABu osa x naměřené hodnoty x (i) sledované veličiny uspořádané podle velikosti osa y hodnoty empirické distribuční funkce vynášené na nelineární stupnici, vycházející z předpokladu normality y-ová souřadnice bodu odpovídá kvantilu u (i) rozdělení N(,1) červeně proložena regresní přímka Ex { } = µ + σu () i () i Normálnímu rozdělení veličiny X odpovídají vynesené body ležící v blízkosti přímky a nevykazující nápadný nelineární trend. Graf je buď doplněn výsledkem některého z uvedených testů normality nebo 95% pásem spolehlivosti.
28 Testy normality ve Statistice chí-kvadrát Kolmogorov Smirnov Shapiro-Wilk testovástatistika W čím blíže 1, tím více svědčípro normalitu
29 Grafické metody ve Statistice pravděpodobnostní graf osa x naměřené hodnoty x (i) seřazené podle velikosti osa y kvantily u (i) rozdělení N(,1)
30 Q - Q graf osa x - kvantily u (i) rozdělení N(,1) osa y - naměřené hodnoty x (i) seřazené podle velikosti vynesenými body je proložena regresní přímka z rovnice regresní přímky se odhadnou parametry
31 P - P graf osa x hodnoty teoretické distribuční funkce (lineární stupnice) osa y hodnoty empirické distribuční funkce (lineární stupnice) v grafu vyznačena přímka se směrnicí 1
32 Výhoda grafických metod Naznačují, o jaké rozdělení se ve skutečnosti jedná. I v případě, že testy vycházejí nevýznamné, může nelineární trend v grafu prozradit vhodnost jiného než normálního rozdělení. Někdy umožňují lépe posoudit, zda nepřijatelnost hypotézy o normalitě je důsledkem existence několika extrémních pozorování, nebo zda je výběrové rozdělení skutečně jiné než normální.
33 PŘÍKLAD 3 V rámci SPC se v montážním závodě kontroluje vzdálenost aktuální pozice bodu na klikovém hřídeli od základní pozice. Každý den se provedlo 5 měření, k dispozici jsou hodnoty za 5 dní. Před výpočtem indexu způsobilosti je třeba ověřit, zda lze rozdělení hodnot měřené vzdálenosti považovat za normální.
34 Příklad 3 - MINITAB Normal Probability Plot Probability,999,99,95,8,5,,5,1,1-8 Average:,44174 StDev: 3,491 N: AtoBDist 4 6 Anderson-Darling Normality Test A-Squared:,891 P-Value:, 8
35 Příklad 3 - Výsledky různých testů normality
36 Příklad 3 - MINITAB Normal Probability Plot for AtoBDist ML Estimates - 95% CI Percent ML Estimates Mean,44174 StDev 3,477 Goodness of Fit AD* 1-1 Data 1
37 Příklad 3 - Statistica Histogram (Spreadsheet1 in Workbook1 1v*15c) AtoBDist = 15**normal(x;,4417; 3,4914) 5 No of obs AtoBDist: SW-W =, , p =,79; N = 15, Mean =,4417, StdDv = 3, , Max = 8,, -1 Min -8 = -7,6; -6 D -4 =,94956, - p < n.s., Lilliefors-p <, AtoBDist
38 Příklad 3 - Statistica 3 Normal Probability Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Expected Normal Value AtoBDist: SW-W =, , p =,79 Observed Value
39 Příklad 3 - Statistica 1 Quantile-Quantile Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Distribution: Normal AtoBDist =,4417+3,488*x,1,5,5,5,75,9, Observed Value Theoretical Quantile
40 Příklad 3 - Statistica 1,4 Probability-Probability Plot of AtoBDist (Spreadsheet1 in Workbook1 1v*15c) Distribution: Normal(,44174, 3,491) 1, Empirical cumulative distribution 1,,8,6,4,, -, -,4 -,,,,4,6,8 1, 1, Theoretical cumulative distribution
41 Příklad 4 Při elektronickém testování ozubených kol se sleduje maximální odchylka profilu od ideálního tvaru.
42 Příklad 4 - MINITAB Normal Probability Plot Probability,999,99,95,8,5,,5,1,1 Average: 77,55 StDev: 14,165 N: x Anderson-Darling Normality Test A-Squared:,455 P-Value:,
43 Příklad 4 Normal Probability Plot for x ML Estimates - 95% CI Percent ML Estimates Mean 77,55 StDev 13,839 Goodness of Fit AD*, Data
44 Příklad 4 - Výsledky různých testů normality
45 Příklad 5 5 vzorků materiálu pro operační přístroje bylo testováno na obsah kovových příměsí.
46 Příklad 5-MINITAB Normal Probability Plot,999,99,95 Probability,8,5,,5,1,1 Average: 1, StDev: 8,57185 N: x 5 35 Anderson-Darling Normality Test A-Squared: 1,76 P-Value:,
47 Příklad 5 - MINITAB Normal Probability Plot for x ML Estimates - 95% CI Percent ML Estimates Mean 1, StDev 8,39867 Goodness of Fit AD* 1, Data
48 Příklad 5 - Výsledky různých testů normality
49 Příloha vzorce 1 Anderson - Darling n 1 A = ( i 1)ln [ Φ+ i ln( 1 Φn + i 1) ] n n i= 1 Φ =Φ( u ) i () i u () i = x () i σˆ x σˆ = 1 n n i= 1 ( x i x) ( ) maximálně věrohodný odhad σ
50 Příloha vzorce Shapiro -Wilk W = ( u ) () i x() i () i () i u ( x x) u () i 1 i 3/ 8 =Φ n + 14 /
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality STATISTICKÁ REGULACE POMOCÍ VÝBĚROVÝCH PRŮMĚRŮ Z NENORMÁLNĚ ROZDĚLENÝCH DAT Ing. Jan Král, RNDr. Jiří Michálek, CSc., Ing. Josef Křepela Duben, 20 Co je
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Základní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Opravená data Úloha (A) + (E) Úloha (C) Úloha (B) Úloha (D) Lineární regrese
- základní ukazatele Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze - základní ukazatele Načtení vstupních dat Vstupní data
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VŠB Technická univerzita Ostrava BIOSTATISTIKA
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Pearsonův korelační koeficient
I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace
České vysoké učení technické v Praze Fakulta elektrotechnická Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace Životnost LED diod Autor: Joel Matějka Praha, 2012 Obsah 1 Úvod
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze
Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Popis vstupních dat Vstupní data pro úlohu (A) se nacházejí v souboru "glukoza.csv".
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Vzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
Testy nezávislosti kardinálních veličin
Testy nezávislosti kardinálních veličin Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Načtení vstupních dat Vstupní data
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství