Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
|
|
- Alois Matoušek
- před 8 lety
- Počet zobrazení:
Transkript
1 Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014
2 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období. 2. Koncepce managementu jakosti, charakteristiky a účel. 3. Základní principy managementu jakosti. 4. Normy ISO řady 9000, struktura, účel. 5. Procesní přístup v managementu jakosti charakteristiky a nástroje. 6. Základní požadavky na systémy managementu jakosti podle ČSN EN ISO Řízení dokumentů a záznamů, účel a postupy. 8. Struktura dokumentů v systémech managementu jakosti. 9. Základní činnosti managementu jakosti v nakupování. 10. Základní procesy managementu jakosti při realizaci produktů. 11. Ověřování shody/technická kontrola produktů, účel, druhy a formy organizace. 12. Postupy řízení neshodných produktů, nápravná a preventivní opatření. 13. Základní oblasti managementu infrastruktury, údržba infrastruktury. 14. Pojem a druhy auditů v systémech managementu jakosti. 15. Postupy a cíle interních auditů v systémech managementu jakosti. 16. Přístupy Evropské unie k zabezpečování jakosti a posuzování shody. 17. Modulární pojetí posuzování shody. 18. Role a význam lidského faktoru/personálního řízení v systémech managementu jakosti, efektivní využívání lidských zdrojů v podnikových procesech, osobní kvalita. 19. Požadavky na řízení lidských zdrojů (SŘLZ) v souladu s aktuální verzí norem ISO Výchova a vzdělávání pracovníků k jakosti, výchovné programy, výcvik a vzdělávání jako proces, měření efektivnosti výcviku, certifikace personálu. 21. Motivace v systémech managementu jakosti (definice, formy, předpoklady a příklady účinné motivace). 22. Komunikace v systémech jakosti (definice, formy, příklady a vztah k motivaci).
3 23. Týmová práce zásady, formy a příklady v managementu (Kroužky jakosti, Kaizen, IIP). 24. Tvořivost a inovace v podnikovém řízení. 25. Učící se podnik (definiční vymezení, impulsy a formy), od učící se organizace ke znalostní společnosti. 26. Řízení znalostí v aktuální verzi norem ISO 9000 (data-informace-znalosti), klíčové znalostní procesy. 27. CSR (definiční vymezení, základní oblasti, příklady). 28. CSR, mezinárodní společenská odpovědnost, hodnocení, příklady. 29. Podniková kultura a TQM, specifika podnikové kultury našich podniků. 30. Požadavky na řízení měřicích a monitorovacích zařízení. Teorie pravděpodobnosti a matematická statistika B 1. Náhodný pokus, elementární jev, jev, pravděpodobnost, pravděpodobnostní prostor, operace s jevy, vlastnosti operací s jevy, speciální jevy. 2. Klasická, statistická a geometrická definice pravděpodobnosti: definice, vlastnosti. Kolmogorovovy axiomy teorie pravděpodobnosti. 3. Podmíněná pravděpodobnost, věta o pravděpodobnosti průniku a o pravděpodobnosti sjednocení. Věta o úplné pravděpodobnosti, Bayesův vzorec. 4. Opakované nezávislé a závislé pokusy. Nejpravděpodobnější výsledek. 5. Definice náhodné proměnné. Funkce p(x) a F(x): definice, vlastnosti, vzájemné vztahy. 6. Rozdělení rovnoměrné, binomické, hypergeometrické, Poissonovo. 7. Spojitá náhodná proměnná (definice a její důsledky), definice f(x) a F(x), vlastnosti, vzájemné vztahy, rozdělení rovnoměrné, exponenciální.
4 8. Normální rozdělení, normované normální rozdělení, tabelování distribuční funkce, grafy f(x) a F(x), pravidlo 3 sigma, význam parametrů. 9. Funkce náhodné proměnné a její důležité typy rozdělení: Pearsonovo rozdělení, Fischerovo a Studentovo rozdělení (definice, graf, vlastnosti). 10. Momentová vytvořující funkce (definice, vlastnosti, tvar pro normální rozdělení). 11. Obecné a centrální momenty k-tého řádu, vztahy, přehled používaných momentů (význam, vlastnosti). Modus. 12. Náhodný vektor definice funkcí p, F, f, vlastnosti a vzájemné vztahy. 13. Číselné charakteristiky náhodného vektoru: vektor středních hodnot, variační matice (definice, výpočet, vlastnosti). 14. Základní a výběrový statistický soubor, variační řada, četnost, výběrové a základní charakteristiky. 15. Číselné charakteristiky výběrového souboru střední hodnota, rozptyl, variační koeficient, koeficient šikmosti a špičatosti jejich význam a interpretace. 16. Kvantily: definice, výpočet pro neroztříděný a roztříděný soubor. 17. Třídní rozdělení četností (postup, význam), histogram (použití). 18. Věta o jednom výběru z normálního rozdělení, použití. 19. Věta o dvou výběrech z normálního rozdělení, použití. 20. Teorie odhadu: bodové odhady a intervalové odhady parametrů. 21. Obecný postup testování hypotéz. F-test 22. Dvouvýběrový t-test. 23. Jednovýběrový t-test. 24. Histogram s nerovnoměrným rozdělením. Grubbsův test odlehlých hodnot. 25. Box plot, normální pravděpodobnostní graf. Výhody a nevýhody grafických metod. 26. Regresní analýza princip, předpoklady, základní pojmy Základní věty regresní analýzy Korelační analýza princip, koeficient korelace (vzorec, výpočet, vlastnosti, test). 29. Index korelace, Spearmanův koeficient korelace. 30. Test nezávislosti v kontingenčních tabulkách.
5 Základní metody plánování a zlepšování jakosti C 1. Obsah a význam plánování jakosti. Plány jakosti. 2. Plánování jakosti produktů podle J. M. Jurana. Moderní přístupy k plánování jakosti produktů. 3. Metoda QFD a její použití. Základní a zdokonalená varianta Domu jakosti. Čtyřmaticový přístup. 4. Přezkoumání návrhu, cíle, zásady, obsah. 5. Metoda FMEA a její použití. FMEA návrhu produktu. FMEA procesu. 6. Analýza způsobilosti procesu, postup, řešení nestandardních situací. 7. Indexy způsobilosti procesu a jejich interpretace. Využití indexů způsobilosti k odhadu výskytu neshodných produktů. 8. Analýza způsobilosti výrobního zařízení. 9. Statistické vlastnosti systémů měření. Analýza systému měření pomocí indexů Cg a Cgk. 10. Afinitní diagram. Diagram vzájemných vztahů. 11. Systematický diagram. Diagram PDPC. Maticový diagram. 12. Analýza údajů v matici, postup, metody. 13. Síťový graf, postup zpracování a vyhodnocení. 14. Časové rezervy činností. Ganttův diagram. 15. Zlepšování jakosti. Cyklus PDCA. Metoda Quality Journal. 16. Variabilita procesu a její analýza (definice, příčiny, metody analýzy). Objasnění pojmů statisticky zvládnutý proces a způsobilý proces a jejich souvislosti. 17. Vývojové diagramy. 18. Bodové diagramy. 19. Ishikawův diagram. Základy brainstormingu. 20. Paretova analýza. 21. Základy statistické regulace procesu SPC (cíle, principy). Charakteristika základního nástroje SPC. 22. Konstrukce a analýza regulačního diagramu vč. interpretace nenáhodných seskupení.
6 23. Shewhartovy regulační diagramy (předpoklady pro jejich použití, volba vhodného regulačního diagramu). 24. Fáze SPC. 25. SPC měřením. 26. SPC srovnáváním. 27. Základy statistické přejímky (cíle, principy, základní pojmy, členění). Operativní charakteristika přejímacího plánu. 28. Statistická přejímka srovnáváním. 29. Statistická přejímka měřením. 30. Základní systémy přejímacích plánů (charakteristika, použití).
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Tématické okruhy pro státní závěrečné zkoušky. magisterské studium
Tématické okruhy pro státní závěrečné zkoušky magisterské studium studijní obor "Řízení jakosti" školní rok 2009/2010 Management jakosti A 1. Koncepce managementu jakosti, charakteristiky a účel, normy
Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management jakosti" školní rok 2013/2014 Integrované systémy managementu A 1. Koncepce a principy integrovaných
Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management kvality"
Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management kvality" školní rok 2016/2017 Integrované systémy managementu A 1. Koncepce a principy integrovaných
JAROSLAV NENADÁL / DARJA ~OSKIEVIČOVÁ RUŽENA PETRÍKOVÁ / JIRÍ PLURA JOSEF TOŠENOVSKÝ MODERNI MANAGEMENT JAKOSTI MANAGEMENT PRESS, PRAHA 2008
1 JAROSLAV NENADÁL / DARJA ~OSKIEVIČOVÁ RUŽENA PETRÍKOVÁ / JIRÍ PLURA JOSEF TOŠENOVSKÝ, MODERNI MANAGEMENT JAKOSTI.. P MANAGEMENT PRESS, PRAHA 2008 ...---- Obsah. Úvod 11 1 Proč práve jakost aneb Pochopení
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI Elektronická sbírka příkladů k předmětům zaměřeným na aplikovanou statistiku
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Metodické listy pro kombinované studium předmětu MANAGEMENT JAKOSTI Metodický list č. l
Název tématického celku: Metodické listy pro kombinované studium předmětu MANAGEMENT JAKOSTI Metodický list č. l Základní pojmy a pojetí managementu jakosti a systému jakosti v podniku (SJP) Cíl: Hlavním
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Management kvality, environmentu a bezpečnosti práce
Jaromír Veber a kol. Management kvality, environmentu a bezpečnosti práce Legislativa, systémy, metody, praxe Management Press, Praha 2006 Autorský kolektiv: Ing. Marie Hůlová, CSc. subkapitola 6.6 Ing.
PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.
Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
MANAŽER KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.4/2007
Gradua-CEGOS, s.r.o., Certifikační orgán pro certifikaci osob č. 3005 akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17024 MANAŽER KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter
NORMY A STANDARDY KVALITY 1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter pokud u výrobku, který byl vyroben podle
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Statistické řízení jakosti - regulace procesu měřením a srovnáváním
Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistická regulace výrobního procesu (SPC) SPC = Statistical Process Control preventivní nástroj řízení jakosti, který na základě včasného
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
AUDITOR KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.5/2007
Gradua-CEGOS, s.r.o., Certifikační orgán pro certifikaci osob č. 3005 akreditovaný Českým institutem pro akreditaci, o.p.s. podle ČSN EN ISO/IEC 17024 AUDITOR KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Problematikou logistiky v oblasti řízení jakosti se zabývají normy ISO řady Dotýká se oblastí: Manipulace, uskladnění, označování, balení,
Problematikou logistiky v oblasti řízení jakosti se zabývají normy ISO řady 9000. Dotýká se oblastí: Manipulace, uskladnění, označování, balení, uvedení do provozu a dodání, servis po prodeji... a dále
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Jaroslav Nenadál, 2006 ISBN
Jaroslav Nenadál, 2006 ISBN 80-7261-152-6 OBSAH Úvod 9 Kapitola 1: POJMOSLOVÍ 13 Kapitola 2: PROČ A JAK MANAGEMENT PARTNERSTVÍ S DODAVATELI 19 2.1 Role nákupu v organizacích 21 2.2 Role organizací v dodavatelském
Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem
Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro
Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
1. soustředění (2 hod.)
Metodický list kombinovaného studia předmětu MnJ - MANAGEMENT JAKOSTI Název tématického celku: Systémy jakosti 1. soustředění (2 hod.) Cíl: Cílem tématického celku je objasnit význam systému managementu
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Vybrané praktické aplikace statistické regulace procesu
ČSJ, OSSM Praha, 19. 4. 2012 Vybrané praktické aplikace statistické regulace procesu Prof. Ing. Darja Noskievičová, CSc. Katedra kontroly a řízení jakosti Fakulta metalurgie a materiálového inženýrství
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
Katedra řízení podniku (FES)
Katedra řízení podniku (FES) Řízení kvality 2. Autor: Ing. Ludvík FILIP březen 2015 Shrnutí požadavků na politiku a cíle kvality Požadavky normy ČSN EN ISO 9001:2009 5.3 Politika kvality Vrcholové vedení
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
SYSTÉM ŘÍZENÍ JAKOSTI VE VEŘEJNÉ SPRÁVĚ
Metodický list č. 1 Název tématického celku: Základní pojmy a principy řízení jakosti Cíl: Objasnit a vyložit podstatu řízení jakosti a základní přístupy k jejímu zabezpečování. Vysvětlit podstatu systémů
TEMATICKÝ PLÁN VÝUKY
TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/1 Strojírenství Zaměření: Předmět: Matematika Ročník: 4. Počet hodin týdně: 4 Počet hodin celkem: Tento plán vychází z rámcového vzdělávacího programu pro
METODY, TECHNIKY A NÁSTROJE MANAGEMENTU KVALITY
METODY, TECHNIKY A NÁSTROJE MANAGEMENTU KVALITY metody techniky nástroje systematický přesný a konkrétní prostředek pro (plánovaný) postup postup kroků nebo uskutečnění činnosti, a způsob dosažení cíle
Pelantová Věra Technická univerzita v Liberci. Předmět RJS. TU v Liberci
Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Řízení kvality Pelantová Věra Technická univerzita v Liberci Předmět RJS Technická
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Č.t. Téma školení Cílová skupina Rozsah
Témata školení Č.t. Téma školení Cílová skupina Rozsah I. Všeobecné požadavky I.1. Základní požadavky ISO 9001 - Procesní přístup - Vysvětlení vybraných požadavků ISO 9001 I.2. Základní požadavky ISO/TS
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Osnovy prezenčního studia předmětu RiJ - ŘÍZENÍ JAKOSTI
Osnovy prezenčního studia předmětu Obor: Řízení podniku a podnikové finance Anotace: Předmět Řízení jakosti (RiJ) je nově zaváděnou specializací na VŠFS Praha s cílem zvýšit úroveň znalostí posluchačů
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality STATISTICKÁ REGULACE POMOCÍ VÝBĚROVÝCH PRŮMĚRŮ Z NENORMÁLNĚ ROZDĚLENÝCH DAT Ing. Jan Král, RNDr. Jiří Michálek, CSc., Ing. Josef Křepela Duben, 20 Co je
SYSTÉM ŘÍZENÍ JAKOSTI VE VEŘEJNÉ SPRÁVĚ
Osnovy prezenčního studia předmětu Anotace: Problematika jakosti je ve veřejných službách klíčovou záležitostí Posluchači se seznámí se základními principy řízení jakosti, přístupem k budování systémů
Regulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
6.1. Výcvikový kurz QFD - Quality Function Deployment Přenášení požadavků zákazníků do procesů v organizaci
6.1. Výcvikový kurz QFD - Quality Function Deployment Přenášení požadavků zákazníků do procesů v organizaci cílem kurzu je pomoci porozumět a prakticky využívat metodu přenášení požadavků zákazníků do
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).
1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též
NMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
a způsoby jejího popisu Ing. Michael Rost, Ph.D.
Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Řízení vztahů se zákazníky
Řízení vztahů se zákazníky Řízení vztahů se zákazníky Vychází z představy, že podnik je řízen zákazníkem Používanými nástroji jsou: Call Centra Customer Relationship Management (CRM) Základní vazby v řízení
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Národní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti 1 Konzultační středisko statistických metod při NIS-PJ Využití statistických metod při aplikaci zásad norem ISO souboru 9000 z roku 2000 Ing. Vratislav
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho