Q-diagramy. Jiří Michálek ÚTIA AVČR
|
|
- Naděžda Dagmar Štěpánková
- před 6 lety
- Počet zobrazení:
Transkript
1 Q-diagramy Jiří Michálek ÚTIA AVČR
2 Proč Q-diagramy? Nevýhody Shewhartových diagramů velikost regulačních mezí závisí na rozsahu logické podskupiny nehodí se pro krátké výrobní série normálně rozdělená vstupní data obvykle se pracuje s malým rozsahem podskupiny regulační meze se musí s novými daty přepočítat vstupní data mají být stochasticky nezávislá
3 Proč Q-diagramy? Výhody Q-diagramů konstantní regulační meze bez ohledu na rozsah podskupimy možnost nenormálně rozdělených vstupních dat
4 Základní myšlenka konstrukce Shewhartových diagramů Statistiky W i, i=,2,...,n pro sledování stability procesu, základ pro Shewhartovy meze E(W) ± 3 SD(W), resp. E(.) a SD(.) jsou nahrazeny vhodnými odhady
5 Základní myšlenka konstrukce Q-diagramů W i Q i pomocí vhodné transformace, kde {Q i } jsou téměř nezávislé a rozdělené N(0,) Nechť W i má distribuční funkci G i, spočítejme u i = G i (W i ), Q i = Φ - (u i ), kde Φ(.) je N(0,).
6 Základní myšlenka konstrukce Q-diagramů Pokud distribuce G i (.) závisí na neznámých parametrech, pak je nutno tyto vhodně odhadnout z dat α L, α U...zvolená rizika falešného poplachu, pak regulační meze pro Q-diagram jsou stanoveny jako: UCL(Q i ) = q(α U ) CL(Q i ) = 0 LCL(Q i ) = q(α L )
7 Nejjednodušší případ Normálně (přibližně) rozdělená data s různými rozsahy X, X 2,...X n Xbar, s X 2, X 22,...X 2n2 Xbar 2, s 2 X i, X i2,...x ini Xbar i, s i index i představuje průběžný čas
8 Nejjednodušší případ (pokr.) Spočítáme průběžný celkový průměr Xbar i = n j Xbar j / n j a průběžnou sdruženou směrodatnou odchylku pomocí vzorce s pi = ( (n j -)s 2 j / (n j -)) /2
9 Nejjednodušší případ (pokr.) Odvození Q-statistik závisí na znalosti parametrů µ,, σ normálního rozdělení např. nestranný odhad pro σčasto používaný je s pi / C 4 ( (n j -)) technické regulační meze vs. přirozené regulační meze
10 Nejjednodušší případ (pokr.) Technické meze pro Xbar jsou založeny na: parametry µ, σ jsou dány Q i (Xbar i ) = n i (Xbar i µ 0 )/ σ 0 Přirozené meze pro Xbar jsou založeny na: Q i (Xbar i )=Φ - (t Ni ( M i (Xbar i Xbar i- )/s pi ), N i = n +n n i i, M i =(n i (n +n n i- )/(N i + i)
11 Nejjednodušší případ (pokr.) Technické meze pro s jsou založeny na: parametr σ je dán Q i (s 2 i) = Φ - (χ 2 ni-( (n i -)s 2 i)/σ 2 0) Přirozené meze pro s jsou založeny na: Q i (s 2 i) = Φ - (F ni-,ni- (w i )), kde w i = s 2 i/ s 2 p,i-
12 Q-diagramy pro individuální hodnoty.konstrukce technických regulačních mezích pro parametr polohy je založena na statistice, parametry dány Q i (X i ) = (X i µ 0 )/σ 0 2.Konstrukce přirozených regulačních mezí pro parametr polohy je založena na statistice, parametry odhadovány Q i (X i ) = Φ - (t i- [ (i-)/i(x i Xbar i- )/s i- ], s i je odvozeno od klouzavého rozpětí R i = X i -X i-
13 Q-diagramy pro individuální hodnoty.technické regulační meze pro úroveň variability jsou založeny na statistice Q i (s) = Φ - (χ 2 [R 2 i/2σ 02 ] 2.Přirozené regulační meze pro úroveň variability jsou založeny na statistice Q i (s) = Φ - (F,v [vr i2 /(R 22 +R R i-2 )], kde v = i/2, pouze sudé hodnoty se zobrazují do grafu
14 Parametry µ=2, σ=0,02 jsou známé: Příklad rozsah průměr rozptyl odchylka Q(xbar) chí-kvadrát uniform Q(rozptyl) 5 2,08 0, , ,0246 3,200 0, ,0627 6,990 0, , , ,500 0,3300-0, ,003 0, , ,2598 2,50 0, ,4793 4,995 0, , , ,250 0,4600-0, ,004 0, , ,3464 2,300 0, , ,998 0, , ,2236 3,200 0, , ,990 0, , ,584 7,425 0, ,275 8,993 0, , , ,350 0, , ,003 0, , , ,375 0,96800, ,007 0, , ,9260 5,400 0, , ,000 0, , , ,900 0,0300-2,2262 5,999 0, , ,80 6,700 0,85300, ,024 0, , ,394 5,075 0,3400-0, ,04 0, ,097484, ,925 0, , ,00 0, ,097484, ,875 0, , ,008 0,0088 0, , ,800 0,9978 2,8494 6,982 0, , , ,25 0, , ,02 0,0032 0, , ,800 0, ,7394 9,985 0, , , ,400 0,86896, ,009 0,0006 0, , ,950 0,9380,53902
15 Příklad Q-diagram pro průměr 4 I Chart of Q(xbar) 3 UCL=3 Individual Value _ X= LC L= Observation
16 Příklad - Q-diagram pro rozptyl I Chart of Q(rozptyl) 4 3 UCL=3 Individual Value _ X= LC L= Observation
17 Příklad 2 Data: 30 podskupin po 5 hodnotách v podskupině, parametry neznámé, odhadované z dat x x2 x3 x4 x5 Data nejsou normálně rozdělena 5,00 4,959 4,996 4,979 4,986 4,98 5,09 4,95 5,026 4,972 5,006 4,976 4,999 5,08 5,08 5,0 4,953 4,973 5,000 5,005 5,02 4,990 5,00 5,06 4,988 4,986 5,00 5,006 5,02 4,966 4,985 4,980 4,962 4,99 5,020 4,999 4,966 4,969 4,995 4,974 5,04 5,024 5,044 4,965 5,008 5,02 4,987 5,002 4,992 4,983 4,98 4,968 5,000 5,08 4,998 4,998 4,969 4,984 4,984 4,966 5,006 4,989 4,99 4,97 5,08 5,04 4,999 5,025 4,998 4,959 5,026 4,962 5,004 5,07 5,02 5,058 5,056 5,08 4,92 5,03 5,005 5,02 4,959 5,064 4,974 4,909 4,993 5,024 5,023 5,048 4,994 5,00 4,993 5,08 5,04 4,977 4,90 4,944 4,978 5,008 5,06 5,005 5,025 5,05 5,026 4,976 5,026 4,958 5,043 4,99 4,979 5,68 5,052 4,993 4,999 4,937 4,928 5,059 5,067 4,989 5,003 5,026 5,029 5,078 5,022 5,002 5,00 4,997 5,00 4,99 4,983 4,973 4,940 4,979 5,027 5,059 5,070 5,02 4,97 5,030 5,034 4,966 5,047 5,044 4,98 5,0 4,968 5,028 5,057 5,007
18 Příklad 2 Q-diagram pro průměr I Chart of Q(průměr) 3 UCL=3 2 Individual Value 0 - _ X= LCL= Observ at ion
19 Příklad 2 Q-diagram pro rozptyl I Chart of Q(rozptyl) 3 UCL=3 2 Individual Value 0 - _ X= LCL= Observ ation
20 Příklad 2 Shewhartův diagram původní data Xbar-R Chart of x;...; x5 5,050 UCL=5,0499 Sample Mean 5,025 5,000 4,975 _ X=5,002 4, Sample LC L=4,9544 0,20 UCL=0,75 Sample Range 0,5 0,0 0,05 _ R=0,0828 0,00 LCL= Sample
21 Příklad 2 - Shewhartův diagram po Johnsonově transformaci Xbar-R Chart of y;...; y5 Sample Mean,0 0,5 0,0-0,5 UC L=,324 _ X=0,037 -,0 LC L=-, Sample ,8 UC L=4,79 Sample Range 3,6 2,4,2 _ R=2,232 0,0 LCL= Sample
22 Srovnání diagramů Shewhartův diagram i Q-diagram ukazují na tentýž problém ve variabilitě Shewhartův diagram pro data po transformaci nic takového neukazuje Shewhartovy diagramy jsou snáze pochopitelné pro obsluhu Konstrukce Q-diagramů je složitá, horší interpretace jejich průběhu
23 Q-diagramy pro atributivní znaky Analogie p-diagramu a) parametr p je známý nebo daný u i = B(x i,n i,p), kde n i je rozsah podskupiny, x i je počet zjištěných neshodných jednotek, B(,, ) je binomická distribuční funkce. Pak i =,2,.,n Q i = Φ - (u i ),
24 Příklad 3 Q-diagram pro neshodné Rozsah podskupiny je 63 požadovaná hodnota parametru p = 0, získaná data celkem 50 hodnot Analýza diagramu detekuje změnu v chování procesu u podskupiny 46
25 Příklad 3 Q-diagram pro neshodné 4 I Chart of Q 3 UCL=3 Individual Value _ X= LCL= Observation
26 Příklad 3 p-diagram pro porovnání P Chart of binom 0,25 0,20 UCL=0,234 Proportion 0,5 0,0 _ P=0, 0,05 0,00 LCL= Sample
27 Q-diagramy pro atributivní znaky Analogie p-diagramu b) parametr p odhadovaný z dat položme N i = n j, t i = x j, u i = H(x i,t i,n i,n i- ) a Q i = Φ - (u i ). H(x,n,N,N 2 ) je distribuční funkce hypergeometrického rozdělení, N je počet neshodných, N 2 je počet dobrých i = 2,3,.
28 Q-diagramy pro atributivní znaky Analogie u-diagramu pro neshody a) parametr λ Poissonova rozdělení je daný či známý c i je počet neshod v podskupině o rozsahu n i, u i = P(c i,λn i ) Q - i = Φ (u i ), kde P(, ) je distribuce Poissonova rozdělení
29 Příklad 4 Q-diagram pro neshody Jsou kontrolovány vždy 4 jednotky, parametr λ vůči jednotce má hodnotu,7 získaná data celkem 40 hodnot analýza Q-diagramu dokazuje stabilitu procesu
30 Příklad 4 Q-diagram pro neshody I Chart of Q(Poisson) 3 UCL=3 2 Individual Value 0 - _ X= LCL= Observ ation
31 Příklad 4 c-diagram pro porovnání C Chart of Poisson UCL=4,62 Sample Count _ C=6,8 LCL= Sample
32 Q-diagramy pro atributivní znaky Analogie u-diagramu parametr λ je neznámý a odhadovaný z dat položme u i = B(c i,t i,n i /N i ), Q i = Φ - (u i ) kde c i je počet neshod v podskupině rozsahu n i, t i je kumulativní součet počtu zjištěných neshod N i je kumulativní součet rozsahů podskupin B(,, ) je distribuce binomického rozdělení
33 Závěr Lze konstatovat, že Q-diagramy nepřinášejí příliš nového a jejich aplikace v praxi má smysl snad pouze u krátkých sérií Klasické Shewhartovy diagramy jsou názornější, přístupné v celé řadě softwarů Použitá literatura: Ch.P.Quesenberry SPC Methods for Quality Improvement, John Wiley&Sons, N.Y.997
34 Děkuji za vaši pozornost
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality STATISTICKÁ REGULACE POMOCÍ VÝBĚROVÝCH PRŮMĚRŮ Z NENORMÁLNĚ ROZDĚLENÝCH DAT Ing. Jan Král, RNDr. Jiří Michálek, CSc., Ing. Josef Křepela Duben, 20 Co je
SPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM,
SPC v případě autokorelovaných dat Jiří Michálek, Jan Král OSSM, 2.6.202 Pojem korelace Statistická vazba mezi veličinami Korelace vs. stochastická nezávislost Koeficient korelace = míra lineární vazby
Regulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem
Vícerozměrné regulační diagramy. Josef Křepela, Jiří Michálek OSSM
Vícerozměrné regulační diagramy Josef Křepela, Jiří Michálek OSSM..0 Monitorování a řízení procesu s více proměnnými Obvykle se uvažuje pouze jeden znak jakosti (proměnná, náhodná veličina) na výstupu
Vlastnosti odhadů ukazatelů způsobilosti
Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz
Regulační diagramy CUSUM pro atributivní znaky. Eva Jarošová
Regulační diagramy CUSUM pro atributivní znaky Eva Jarošová Obsah. Klasické diagramy pro atributivní znaky, omezení a nevýhody jejich aplikace 2. Přístup založený na transformaci sledované veličiny 3.
PRINCIPY ZABEZPEČENÍ KVALITY
(c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,
SW podpora při řešení projektů s aplikací statistických metod
SW podpora při řešení projektů s aplikací statistických metod Jan Král, Josef Křepela Úvod Uplatňování statistických metod vyžaduje počítačovou podporu. V současné době je rozšiřována řada vynikajících
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Přehled metod regulace procesů při různých typech chování procesu
Přehled metod regulace procesů při různých typech chování procesu Eva Jarošová, Darja Noskievičová Škoda Auto Vysoká škola, VŠB Ostrava ČSJ 7.9.205 Typy procesů (ČSN ISO 2747) Procesy typu A Výsledné rozdělení
Národní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti 1 METODA KUMULOVANÝCH SOUČTŮ C U S U M metoda: tabulkový (lineární) CUSUM RNDr. Jiří Michálek, CSc., Ing. Antonie Poskočilová 2 Základem SPC jsou Shewhartovy
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Statistické řízení jakosti - regulace procesu měřením a srovnáváním
Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistická regulace výrobního procesu (SPC) SPC = Statistical Process Control preventivní nástroj řízení jakosti, který na základě včasného
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Řízení jakosti 2. Užitná hodnota I. JiříMilitký. Užitná hodnota Regulační diagramy Jakost textilních útvarů
TQ Řízení jakosti JiříMilitký Užitná hodnota Regulační diagramy Jakost textilních útvarů Užitná hodnota I Znaky jakosti jsou vyjádřené tzv. užitnými vlastnostmi, které jsou jednoduše měřitelné (pevnost,
Principy zajištění spolehlivosti. Zdenek Kubíček
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Principy zajištění spolehlivosti Zdenek Kubíček kapitola ve skriptech - 4.1.3 Definice kvality Chemický měřící proces je podle definice analytický postup definované
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI Elektronická sbírka příkladů k předmětům zaměřeným na aplikovanou statistiku
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká
Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy Kateřina Brodecká Vysoce způsobilé procesy s rozvojem technologií a důrazem kladeným na aktivity neustálého zlepšování a zeštíhlování
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára
Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,
Regulační diagramy (Control charts, Shewhart s diagrams)
Regulační diagramy (Control charts, Shewhart s diagrams) diagram spolu s horní nebo/a dolní í, do kterého se zakreslují hodnoty nějakého statistického ukazatele pro řadu výběrů nebo podskupin, obvykle
Diskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
Možnosti statistického řízení (SPC) kusové výroby ve spol. SG strojírna, s.r.o. Martin Melichar
SOUTĚŽNÍ PŘEHLÍDKA STUDENTSKÝCH PRACÍ FST 2007 Možnosti statistického řízení (SPC) kusové výroby ve spol. SG strojírna, s.r.o. Martin Melichar ABSTRAKT V příspěvku je popsán návrh možnosti statistického
Normy ČSN,ČSN ISO a ČSN EN
Normy ČSN,ČSN ISO a ČSN EN z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2013) Ing. Vratislav Horálek, DrSc. předseda TNK 4 při ÚNMZ 1 A Terminologické normy 2 [1] ČSN ISO 3534-1:2010 Statistika
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Poznámky k předmětu Aplikovaná statistika, 5.téma
Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
Regulační diagramy EWMA. Eva Jarošová Škoda Auto Vysoká škola
Regulační diagramy EWMA Eva Jarošová Škoda Auto Vysoká škola ČSJ 19.2.2015 Obsah 1. Podstata a konstrukce diagramu 2. Využití diagramů EWMA 3. Porovnání Shewhartova a EWMA diagramu 4. Volba parametrů 5.
Regulace výrobního procesu v soft. Statistica
Regulace výrobního procesu v soft. Statistica Newsletter Statistica ACADEMY Téma: Regulační diagramy, možnosti softwaru Typ článku: Teorie, návod V tomto článku bychom Vám rádi ukázali další typy analýz,
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
Statistické řízení jakosti. Deming: Klíč k jakosti je v pochopení variability procesu.
Statistické řízení jakosti Deming: Klíč k jakosti je v pochopení variability procesu. SŘJ Statistická regulace výrobního procesu Statistická přejímka jakosti měřením srovnáváním měřením srovnáváním - X
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
5. Odhady parametrů. KGG/STG Zimní semestr
Základní soubor Výběr, výběrový (statistický) soubor Náhodný výběr Princip Odhad neznámých parametrů základního souboru na základz kladě charakteristik výběru. Přecházíme z části na celek, zevšeobec eobecňujeme
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Rozšířené regulační diagramy
Rozšířené regulační diagramy Menu: QCExpert Rozšířené Následující regulační diagramy jsou významným rozšířením možností nabízených Shewhartovými diagramy. Jsou doporučovány jako jejich alternativa nebo
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v
Různé metody manažerství kvality. Práce č.12: Výpočet PPM a způsobilost procesů
- Různé metody manažerství kvality - Práce č.12: Výpočet PPM a způsobilost procesů Datum: 02-12-2018 Martin Bažant Obsah Obsah... 2 1 Úvod... 3 2 Způsobilost procesů... 3 3 Výpočet PPM... 7 3.1 Základní
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Rozdíl rizik zbytečného signálu v regulačním diagramu (I,MR) a (xbar,r)
Rozdíl rizik zbytečného signálu v regulačním diagramu (I,MR) a (xbar,r) Bohumil Maroš 1. Úvod Regulační diagram je nejefektivnější nástroj pro identifikaci stability, resp. nestability procesu. Vhodně
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
ROBUST 2012 Němčičky 9.9. - 14.9. 2012. Metodika komplexního návrhu regulačního diagramu. Ing. Jan Král. ISQ PRAHA s.r.o. kral.jan@isq.
ROBUST 2012 Němčičky 9.9. - 14.9. 2012 Metodika komplexního návrhu regulačního diagramu Ing. Jan Král ISQ PRAHA s.r.o. kral.jan@isq.cz Cíl práce Prezentovaná práce si klade za cíl vytvořit ucelenou systematickou
Pravděpodobnost a statistika
Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení
MSA-Analýza systému měření
MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není