Různé metody manažerství kvality. Práce č.12: Výpočet PPM a způsobilost procesů

Rozměr: px
Začít zobrazení ze stránky:

Download "Různé metody manažerství kvality. Práce č.12: Výpočet PPM a způsobilost procesů"

Transkript

1 - Různé metody manažerství kvality - Práce č.12: Výpočet PPM a způsobilost procesů Datum: Martin Bažant

2 Obsah Obsah Úvod Způsobilost procesů Výpočet PPM Základní požadavky Výpočet Krátkodobá versus dlouhodobá směrodatná odchylka... 9 Použitá literatura... 11

3 1 Úvod Nejprve bych rád vysvětlil určité souvislosti spojené ze způsobilosti procesu a následně, se budu věnovat výpočtu očekávaného PPM (Part Per Milion) z procesů. Článek navazuje na můj první článek: Spôsobilosť procesu (process capability). 2 Způsobilost procesu Způsobilost procesu: Pro určení způsobilosti procesu, se v praxi se nejvíce používají 2 indexy způsobilosti a to Cp a Cpk: USL LSL C p = 6σ USL x x LSL C pk = min {, 3σ 3σ } Mně osobně zajímám hlavně index Cpk, protože vyjadřuje, kde se průměrná hodnota nachází vzhledem k limitům procesu. Index Cp jenom vyjadřuje, jak dobře se proces vleze do specifikovaných limitů, ale neřeší polohu procesu k limitům (jestli je uprostřed procesu, anebo u horního případně dolního limitu) Na obrázku níže je ukázka 2 výsledků procesů s limitem 40 ± 3. Oba mají Cp = 2,07 (1), ale ten druhý má Cpk= 1,04 a odhadované PPM 3.229, přičemž první proces má Cpk= 2,07 (2) a odhadované PPM procesů jenom 0,05 (3). U prvního procesu je předpoklad, že pří vyrobení 1 milionu kusů by se neměl žádný výrobek nacházet mimo limit (PPM 0,05 znamená, že při výrobě 100 milionů kusů, bude 5 NOK). U druhého procesu je předpoklad, že při výrobě 1 milionu kusů bude výrobků mimo specifikovaný limit. Z kterého procesu chcete dostávat výrobek? Z prvního, kde je předpoklad PPM=0,05 anebo druhého, kde je předpoklad PPM= Já osobně z toho prvního procesu. Proto index Cp zkoumám, až když není dobrý výsledek Cpk. Pozn.: PPM Per Part Million kolik NOK kusů je vyrobeno na 1 milion vyrobených kusů. DPMO Defect Per Million Opportunity kolik NOK defektů na 1 milion příležitosti 3

4 Na následovném obrázku se pokusím vysvětlit co znamená 6σ a 3σ proces. Jedná se o vyjádření kolikrát se vejde ± σ (směrodatná odchylka) do tolerančního pásma. Tabulka níže zobrazuje závislost mezi σ procesu a parametry procesu. Sigma Dobré kusy % NOK kusy % Zmetky (PPM) Cp ± 1 68,26 31, ,333 ± 2 95,44 4, ,666 ± 3 99,73 0, ± 4 99, , ,33 1,333 ± 5 99, , ,57 1,666 ± 6 99, , , Zdroj [1] Six Sigma systematika, počítá s posunutím střední hodnoty o ±1,5σ. Po přepočítaní posunutí procesu, výsledek je následovný: Sigma Dobré kusy % NOK kusy % Zmetky (PPM) Cp ± 1 30,85 69, ,166 ± 2 69,15 30, ,166 ± 3 93,32 6, ,5 ± 4 99,38 0, ,833 ± 5 99,977 0, ,166 ± 6 99, , ,4 1,5 Zdroj [1] 4

5 Teď si rozebereme jeden případ se kterým jsem se setkal. Pracovník, chtěl pro nový proces určit tolerance. Proto náhodně si vybral 50 výrobků z první výroby a následně změřil sledovaný parametr. Výsledek hypotetického procesu je znázorněn níže. Následně se rozhodnul určit limit následovným způsobem: Směrodatná odchylka: σ=1,069 Průměrní hodnota: μ=39,94 Tolerance: μ ± 3σ = 39,94 ± 3*1,069 = 39,94 ± 3,207 USL: 43,147 LSL: 36,733 Pak se rozhodnul dané hodnoty zaokrouhlit: Nominální hodnota: 40 Tolerance: ±3,2 (36,8 / 43,2) Minimální hodnota byla 37,97 a maximální 42,46 teda z jeho pohledu zvolené limity jsou dostatečné (všech 50 výrobků se nachází v tolerančním rozsahu). Ale z pohledu způsobilosti procesu to není ideální na základě statistických parametrů, můžeme očekávat, že z 1 milionu vyrobených kusů bude mimo specifikované limity (anebo jinak 0,28% výrobků se bude nacházet mimo specifikované limity). 5

6 Připomeňme si vzorec pro Cp a Cpk. Pracovník si ne-nechal téměř žádnou rezervu pro budoucnost. Vlastně jenom napasoval aktuální výsledek procesů na základě 50 hodnot, mezi limity. Výsledek daného procesů je: Cp = 1 / Cpk = 0,98 / celkové očekávané PPM = Pracovník měl počítat s minimálně ± 4σ a ideálně ± 6σ Sigma NOK kusy % Zmetky (PPM) Cp ± 3 0, ± 4 0, ,33 1,333 ± 5 0, ,57 1,666 ± 6 0, , Za předpokladu budoucího posunu procesu o ±1,5 σ náš proces bude mít následovní výsledek: Sigma NOK kusy % Zmetky (PPM) Cp ± 3 6, ,5 ± 4 0, ,833 ± 5 0, ,166 ± 6 0, ,4 1,5 Nemůžeme předpokládat, že náš proces se časem nezmění (neposunou se hodnoty). Na výsledek procesu má vplyv mnoho parametrů (např. opotřebení nástrojů, šarže vstupního materiálu, přesnost sestavení komponent, tolerance vstupního materiálů, teplota, vlhkost, operátor ) 6

7 3 Výpočet PPM Někdy se můžete setkat s požadavkem na odhadovaný výpadek z procesu. Jednou z možností je výpočet PPM na základě statistických parametrů procesu (statistický odhad kolik kusů bude mimo specifikované limity při výrobě 1 milionu vyrobených kusů). Případně se můžete setkat i s DPM Defects Per Million units (počet defektů na 1 milion jednotek). 3.1 Základní požadavky Stejně jako výpočet způsobilosti procesu i výpočet PPM má určité požadavky při nedodržení daných požadavků vypočítaný výsledek nemusí odpovídat realitě. 1. Stabilní proces: v praxi se pro danou analýzu používají SPC karty (kontrola, jestli proces splňuje 8 základních testů regulačních diagramů v programu MiniTab je možné vybrat všech 8 anebo jenom některé testy). Pro znázorněni níže je obrázek stabilního a modifikovaného procesu (simulace nestabilního procesu). Na druhém obrázku můžeme vidět proces rozdělen do 3 sekci, pro lepší znázornění rozdílů v hodnotách (posunutí procesu v čase). 2. Normalita procesu (ověření, jestli data pocházejí z normálního rozdělení): tahle podmínka je důležitá pro způsob výpočtu. Pro každé rozdělení může existovat jiný vzorec ve většině knih jsou vzorce jenom pro procesy pocházející z normálního rozdělení. Statistické programy jako např. MiniTab umí pracovat i s procesy s ne-normálního rozdělení anebo provést transformaci hodnot. Pro daný test já používám Probability plot. Pokud je P-Value > 0,05, můžeme předpokládat, že data pocházejí z normálního rozdělení. 7

8 3. Data by měla byt z dlouhodobého sběru long term process LT. Pokud data pocházejí z krátkodobého procesu short term process ST, data jsou míň přesná (menší představa o zkoumaném procesu). Stejné je to i s indexem způsobilosti Cpk. Pro krátkodobou způsobilost se můžeme setkat s požadavkem >1,67 a pro dlouhodobou způsobilost stačí > 1,33. Nastává otázka kdy můžeme považovat data, za data z dlouhodobého procesů? Já osobně jsem to řešil, že jsem vzal data s minimálně 3 měsíční produkce a minimálně 300 hodnot (většinou to byl soubor 400 až 800 hodnot, záleží na typu výroby a sběru dat). 3.2 Výpočet K výpočtu potřebujeme vědět: µ průměrnou hodnotu σ směrodatnou odchylku procesu Pokud nemáme data z dlouhodobého procesu na základě SixSigma metodologie budeme počítat s ±1,5.σST posunutím průměrní hodnoty µ. Předpokládá se, že směrodatná odchylka se nebude měnit (σst=σlt). To znamená: LSL: μ LT = μ ST 1,5σ ST ; σ LT = σ ST [2] USL: μ LT = μ ST + 1,5σ ST ; σ LT = σ ST LSL lower specific limit spodní specifikovaný limit USL upper specifict limit horní specifikovaný limit PPM LT = 10 6 x [Φ. ( LSL μ LT ) + Φ. ( μ LT USL )] [2] σ LT σ LT Φ reprezentuje cumulative distribution function CDF - kumulativní distribuční funkce standardní normální náhodné veličiny. V MS Excelu je to NORMDIST. Syntax: NORM.DIST(hodnota;střed_hodn;sm_odch;1) PPM LSL = NORMDIST( LSL; μ LT ; σ LT ; 1) PPM USL = NORMDIST( USL; μ LT ; σ LT ; 1) [2] Nahoře v odkazu můžete najít Excel pro výpočet PPM. V daném dokumentu naleznete výpočet pro data z delšího sběru dat (Long term), ale i z krátkodobé analýzy (s posunutí průměrní hodnoty o ±1,5.σST). Sešit je zamčen bez hesla (jenom dát ENTER), pro případnou nechtěnou úpravu. 8

9 3.2.1 Krátkodobá versus dlouhodobá směrodatná odchylka Táhle část je jenom pro informaci a vysvětlení určitých souvislostí, případně jako zajímavost pro lidí, co by chtěli tomu hlouběji porozumět anebo by to potřebovali pro náročnějšího zákazníka, který absolvoval Six Sigma školení. V Excelu funkce: SMODCH.VÝBĚR.S anebo STDEVA Vzorce níže budete potřebovat v případě, že nepoužijete statistický software, ale výpočty z Excelu. Výpočet krátkodobé (ST) a dlouhodobé (LT) ze směrodatné odchylky [2]: σ ST = k s c 4 (n) s = 1 k 1 n 1 (X ij X i ) 2 i=1 n j=1 σ LT = s c 4 (kn) s = 1 nk 1 (X ij X i ) 2 Pro index c4 existují tabulky, kde hodnota se odvíjí od počtu hodnot, bohužel většina končí s počtem 25 vzorků (c4(25)=0,9896). Případně je možné danou hodnotu si vypočítat v Excelu podle vzorce níže. Γ(x) je možné v Excelu vypočítat pomoci funkce =EXP(GAMMALN(x)) [2]: c 4 = Γ ( n 2 ) 2 Γ ( n 1. 2 ) n 1 Pozn.: daný výpočet můžete naleznout v přiloženém Excel souborů na začátku článků. Hlavním rozdílem mezi σst a σlt je: Krátkodobá σst počítá s variabilitou v rámci jednotlivých podskupin (zgrupované data) menší variabilita. Hodnoty v rámci 1 výběru výrobků (1 podskupiny hodnot), by se mohli míň odlišovat než se budou odlišovat data z dalšího výběru výrobků (pozdější výroba) Dlouhodobá σlt počítá s celkovou variabilitou všech analyzovaných hodnot mezi sebou. Možná jste si všimli, že v programu MiniTab jsou 2 směrodatné odchylky StDev(Within) a StDev(Overall). A i způsobilost procesů je rozdělená do Cpk (Within), Ppk (Overall). Tak to by mělo byt spojené se způsobem výpočtu směrodatné odchylky. 9

10 StDev(Within) = σst, počítá s variabilitou v rámci podskupin potenciální způsobilost Cpk StDev(Overall) = σlt, počítá s celkovou variabilitou celková způsobilost procesů Ppk 10

11 Použitá literatura [1] VDA 4 Zajišťování kvality před sériovou výrobou, VDA-svazek 4: Six Sigma, Česká společnost pro jakost, Prah 2005, s. 9 [2] Mastering Six Sigma Statistic certification, The Brainmeasures, s. 347,

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality STATISTICKÁ REGULACE POMOCÍ VÝBĚROVÝCH PRŮMĚRŮ Z NENORMÁLNĚ ROZDĚLENÝCH DAT Ing. Jan Král, RNDr. Jiří Michálek, CSc., Ing. Josef Křepela Duben, 20 Co je

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Sigma Metric: yes or no?

Sigma Metric: yes or no? MPRA Munich Personal RePEc Archive Sigma Metric: yes or no? Filip Tošenovský VŠB-TU Ostrava 8. September 2007 Online at http://mpra.ub.uni-muenchen.de/12290/ MPRA Paper No. 12290, posted 22. December 2008

Více

SW podpora při řešení projektů s aplikací statistických metod

SW podpora při řešení projektů s aplikací statistických metod SW podpora při řešení projektů s aplikací statistických metod Jan Král, Josef Křepela Úvod Uplatňování statistických metod vyžaduje počítačovou podporu. V současné době je rozšiřována řada vynikajících

Více

ZÁKLADNÍ NÁSTROJE ŘÍZENÍ JAKOSTI

ZÁKLADNÍ NÁSTROJE ŘÍZENÍ JAKOSTI ZÁKLADNÍ NÁSTROJE ŘÍZENÍ JAKOSTI SPŠ na Proseku 4-1 Ing. A. Styblíková, Ing. L. Procházka - pevně stanovený soubor grafických technik napomáhajících při řešení problémů s kvalitou - jedná se o 7 nástrojů

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Přehled metod regulace procesů při různých typech chování procesu

Přehled metod regulace procesů při různých typech chování procesu Přehled metod regulace procesů při různých typech chování procesu Eva Jarošová, Darja Noskievičová Škoda Auto Vysoká škola, VŠB Ostrava ČSJ 7.9.205 Typy procesů (ČSN ISO 2747) Procesy typu A Výsledné rozdělení

Více

Q-diagramy. Jiří Michálek ÚTIA AVČR

Q-diagramy. Jiří Michálek ÚTIA AVČR Q-diagramy Jiří Michálek ÚTIA AVČR Proč Q-diagramy? Nevýhody Shewhartových diagramů velikost regulačních mezí závisí na rozsahu logické podskupiny nehodí se pro krátké výrobní série normálně rozdělená

Více

SPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM,

SPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM, SPC v případě autokorelovaných dat Jiří Michálek, Jan Král OSSM, 2.6.202 Pojem korelace Statistická vazba mezi veličinami Korelace vs. stochastická nezávislost Koeficient korelace = míra lineární vazby

Více

Taguciho metody. Řízení jakosti

Taguciho metody. Řízení jakosti Taguciho metody Řízení jakosti Genichi Taguchi (*194) Japonský inženýr, který se snažil najít cestu ke zlepšení kvality ve svém podniku vytvořením vlastních postupů. Pomocí tzv. ztrátové funkci vyjádřil

Více

Statistické řízení jakosti - regulace procesu měřením a srovnáváním

Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistická regulace výrobního procesu (SPC) SPC = Statistical Process Control preventivní nástroj řízení jakosti, který na základě včasného

Více

Regulační diagramy (Control charts, Shewhart s diagrams)

Regulační diagramy (Control charts, Shewhart s diagrams) Regulační diagramy (Control charts, Shewhart s diagrams) diagram spolu s horní nebo/a dolní í, do kterého se zakreslují hodnoty nějakého statistického ukazatele pro řadu výběrů nebo podskupin, obvykle

Více

Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu

Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu Jiří Michálek Ukazatele způsobilosti a výkonnosti C p, C pk, P p, P pk byly zavedeny ve snaze popsat stav výrobního procesu,

Více

MSA-Analýza systému měření

MSA-Analýza systému měření MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti 1 METODA KUMULOVANÝCH SOUČTŮ C U S U M metoda: tabulkový (lineární) CUSUM RNDr. Jiří Michálek, CSc., Ing. Antonie Poskočilová 2 Základem SPC jsou Shewhartovy

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Rozdíl rizik zbytečného signálu v regulačním diagramu (I,MR) a (xbar,r)

Rozdíl rizik zbytečného signálu v regulačním diagramu (I,MR) a (xbar,r) Rozdíl rizik zbytečného signálu v regulačním diagramu (I,MR) a (xbar,r) Bohumil Maroš 1. Úvod Regulační diagram je nejefektivnější nástroj pro identifikaci stability, resp. nestability procesu. Vhodně

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

3. Aplikace SPC na proces dělení kovového profilu

3. Aplikace SPC na proces dělení kovového profilu 3. Aplikace SPC na proces dělení kovového profilu Praktická aplikace uvedené metodiky Charakteristika produktu: kovový profil pro sestavení zvedacích sloupků pracovních stolů Charakteristika procesu: dělení

Více

Vlastnosti odhadů ukazatelů způsobilosti

Vlastnosti odhadů ukazatelů způsobilosti Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz

Více

Statistické řízení jakosti. Deming: Klíč k jakosti je v pochopení variability procesu.

Statistické řízení jakosti. Deming: Klíč k jakosti je v pochopení variability procesu. Statistické řízení jakosti Deming: Klíč k jakosti je v pochopení variability procesu. SŘJ Statistická regulace výrobního procesu Statistická přejímka jakosti měřením srovnáváním měřením srovnáváním - X

Více

6.1. Výcvikový kurz QFD - Quality Function Deployment Přenášení požadavků zákazníků do procesů v organizaci

6.1. Výcvikový kurz QFD - Quality Function Deployment Přenášení požadavků zákazníků do procesů v organizaci 6.1. Výcvikový kurz QFD - Quality Function Deployment Přenášení požadavků zákazníků do procesů v organizaci cílem kurzu je pomoci porozumět a prakticky využívat metodu přenášení požadavků zákazníků do

Více

Lean Six Sigma Logistics Využití statistických metod ke zlepšení logistických proces

Lean Six Sigma Logistics Využití statistických metod ke zlepšení logistických proces Lean Six Sigma Logistics Využití statistických metod ke zlepšení logistických proces Eva Jarošová Institut ekonomiky provozu a technických v d Obsah Základní pojmy Oblasti pro využití statistických nástroj

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Normy ČSN,ČSN ISO a ČSN EN

Normy ČSN,ČSN ISO a ČSN EN Normy ČSN,ČSN ISO a ČSN EN z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2013) Ing. Vratislav Horálek, DrSc. předseda TNK 4 při ÚNMZ 1 A Terminologické normy 2 [1] ČSN ISO 3534-1:2010 Statistika

Více

PRINCIPY ZABEZPEČENÍ KVALITY

PRINCIPY ZABEZPEČENÍ KVALITY (c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,

Více

Analýza způsobilosti procesů. Studijní opory

Analýza způsobilosti procesů. Studijní opory Operační program Vzdělávání pro konkurenceschopnost PROJEKT Integrovaný systém modulární počítačové podpory výuky ekonomicko-technického zaměření CZ.1.07/2.2.00/28.0300 Analýza způsobilosti procesů Studijní

Více

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně

Více

STATISTICKÉ ODHADY Odhady populačních charakteristik

STATISTICKÉ ODHADY Odhady populačních charakteristik STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s

Více

Různé metody manažerství kvality. Práce č.11: Analýza měřicího systému (MSA)

Různé metody manažerství kvality. Práce č.11: Analýza měřicího systému (MSA) - Různé metody manažerství kvality - Práce č.11: Analýza měřicího systému (MSA) Datum: 5-6-015 Martin Bažant Obsah Obsah... 1 Úvod... 3 1.1 Měřící systém... 3 Analýza měřícího systému - Measurement system

Více

Možnosti statistického řízení (SPC) kusové výroby ve spol. SG strojírna, s.r.o. Martin Melichar

Možnosti statistického řízení (SPC) kusové výroby ve spol. SG strojírna, s.r.o. Martin Melichar SOUTĚŽNÍ PŘEHLÍDKA STUDENTSKÝCH PRACÍ FST 2007 Možnosti statistického řízení (SPC) kusové výroby ve spol. SG strojírna, s.r.o. Martin Melichar ABSTRAKT V příspěvku je popsán návrh možnosti statistického

Více

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Akademie věd České republiky Ústav teorie informace a automatizace RESEARCH REPORT. Hustoty rozdělení pravděpodobnosti pro odhady ukazatele C pk

Akademie věd České republiky Ústav teorie informace a automatizace RESEARCH REPORT. Hustoty rozdělení pravděpodobnosti pro odhady ukazatele C pk Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Jiří Michálek: Hustoty rozdělení

Více

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI Elektronická sbírka příkladů k předmětům zaměřeným na aplikovanou statistiku

Více

Výkonnost procesů v případě nenormálně rozděleného znaku kvality. Jiří Michálek

Výkonnost procesů v případě nenormálně rozděleného znaku kvality. Jiří Michálek Výkonnost procesů v případě nenormálně rozděleného znaku kvality Jiří Michálek 1 Hodnocení způsobilosti a výkonnosti výrobních procesů je prováděno především u dodavatelů do automobilového průmyslu, kde

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Analýza způsobilosti. procesu. StatSoft

Analýza způsobilosti. procesu. StatSoft StatSoft Analýza způsobilosti procesu Analýza způsobilosti je jedna z nejběžnějších analýz vyžadovaných v oblasti zpracování průmyslových dat. V tomto článku si představíme indexy způsobilosti a podrobně

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2Management

Více

IMPLEMENTING SPC IN INDUSTRIAL PROCESS ZAVÁDĚNÍ SPC VE VÝROBNÍM PROCESU. Dostál P., Černý M. ABSTRACT

IMPLEMENTING SPC IN INDUSTRIAL PROCESS ZAVÁDĚNÍ SPC VE VÝROBNÍM PROCESU. Dostál P., Černý M. ABSTRACT IMPLEMENTING SPC IN INDUSTRIAL PROCESS ZAVÁDĚNÍ SPC VE VÝROBNÍM PROCESU Dostál P., Černý M. Department of Engineering and Automobile Transport, Faculty of Agronomy, Mendel University of Agriculture and

Více

PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady

PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným

Více

Principy zajištění spolehlivosti. Zdenek Kubíček

Principy zajištění spolehlivosti. Zdenek Kubíček ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Principy zajištění spolehlivosti Zdenek Kubíček kapitola ve skriptech - 4.1.3 Definice kvality Chemický měřící proces je podle definice analytický postup definované

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Jednovýběrové testy. Komentované řešení pomocí MS Excel

Jednovýběrové testy. Komentované řešení pomocí MS Excel Jednovýběrové testy Komentované řešení pomocí MS Excel Vstupní data V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C23 (viz. obrázek) Základní statistiky vložíme vzorce

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Stručný úvod do testování statistických hypotéz

Stručný úvod do testování statistických hypotéz Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.

Více

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management jakosti" školní rok 2013/2014 Integrované systémy managementu A 1. Koncepce a principy integrovaných

Více

Lean Six Sigma Green Belt

Lean Six Sigma Green Belt Lean Six Sigma Green Belt Školení ICG LEAN SIX SIGMA GREEN BELT Green Belt školení poskytuje ucelenou znalost metodiky Lean, ale hlavně Six Sigma pro zlepšování výkonnosti firemních procesů (vycházející

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ METROLOGIE A ZKUŠEBNICTVÍ FACULTY OF MECHANICAL ENGINEERING

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ METROLOGIE A ZKUŠEBNICTVÍ FACULTY OF MECHANICAL ENGINEERING VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ METROLOGIE A ZKUŠEBNICTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF METROLOGY AND QUALITY ASSURANCE TESTING

Více

Tošenovský J. Katedra řízení jakosti, Fakulta metalurgie a materiálového inženýrství, VŠB-TU Ostrava, Česká republika

Tošenovský J. Katedra řízení jakosti, Fakulta metalurgie a materiálového inženýrství, VŠB-TU Ostrava, Česká republika VIACROZMERNÝ INDEX SPÔSOBILOSTI A STRATOVÁ FUNKCIA Tošenovský J. Katedra řízení jakosti, Fakulta metalurgie a materiálového inženýrství, VŠB-TU Ostrava, Česká republika A MULTIVARIATE INDEX AND LOSS FUNCTION

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Vybrané praktické aplikace statistické regulace procesu

Vybrané praktické aplikace statistické regulace procesu ČSJ, OSSM Praha, 19. 4. 2012 Vybrané praktické aplikace statistické regulace procesu Prof. Ing. Darja Noskievičová, CSc. Katedra kontroly a řízení jakosti Fakulta metalurgie a materiálového inženýrství

Více

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management kvality"

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor Management kvality Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management kvality" školní rok 2016/2017 Integrované systémy managementu A 1. Koncepce a principy integrovaných

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality 1 STATISTICKÉ PŘEJÍMKY CHYBY PŘI APLIKACI A JEJICH DŮSLEDKY Ing. Vratislav Horálek, DrSc. 2 A. NEPOCHOPENÍ VLASTNÍHO CÍLE STATISTICKÉ PŘEJÍMKY (STP) STP

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

Cvičení ze statistiky - 8. Filip Děchtěrenko

Cvičení ze statistiky - 8. Filip Děchtěrenko Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

VYUŽITÍ REGULAČNÍCH DIAGRAMŮ PRO KONTROLU JAKOSTI

VYUŽITÍ REGULAČNÍCH DIAGRAMŮ PRO KONTROLU JAKOSTI VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV MANAGEMENTU FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF MANAGEMENT VYUŽITÍ REGULAČNÍCH DIAGRAMŮ PRO KONTROLU

Více

Tabulka 1. Výběr z datové tabulky

Tabulka 1. Výběr z datové tabulky 1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná

Více

1.1 Využití tabulkového procesoru jako laboratorního deníku. 1.3 Systém jakosti a počítačová kontrola jakosti

1.1 Využití tabulkového procesoru jako laboratorního deníku. 1.3 Systém jakosti a počítačová kontrola jakosti Semestrální práce Strana 1 Semestrální práce 1.1 Využití tabulkového procesoru jako laboratorního deníku 1.3 Systém jakosti a počítačová kontrola jakosti Ing. Ján Lengyel, CSc. Centrální analytická laboratoř

Více

Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká

Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy Kateřina Brodecká Vysoce způsobilé procesy s rozvojem technologií a důrazem kladeným na aktivity neustálého zlepšování a zeštíhlování

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

Vyhodnocování způsobilosti a výkonnosti výrobního procesu

Vyhodnocování způsobilosti a výkonnosti výrobního procesu Vyhodnocování způsobilosti a výkonnosti výrobního procesu Jiří Michálek CQR 2009 Vyhodnocování způsobilosti a výkonnosti výrobního procesu Jiří Michálek Centrum pro jakost a spolehlivost ve výrobě CQR

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Lean Six Sigma - DMAIC

Lean Six Sigma - DMAIC Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Lean Six Sigma - DMAIC Technická univerzita v Liberci Výrobní systémy 2 Technická

Více

Statistika. Testování hypotéz - statistická indukce Parametrické testy. Roman Biskup

Statistika. Testování hypotéz - statistická indukce Parametrické testy. Roman Biskup Statistika Testování hypotéz - statistická indukce Parametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 1. února 01 Statistika by Birom

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Manuál pro zaokrouhlování

Manuál pro zaokrouhlování Manuál pro zaokrouhlování k předmětu Pravděpodobnost a Statistika (PS) Michal Béreš, Martina Litschmannová 19. března 2019 Obsah 1 Úvod 2 2 Obecné poznámky 2 2.1 Typy zaokrouhlování...........................................

Více

Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test

Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu

Více

Testy statistických hypotéz

Testy statistických hypotéz Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem

Více

STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU

STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU RNDr. Jiří Michálek, CSc. Centrum pro kvalitu a spolehlivost CQR při Ústavu teorie informace a automatizace AVČR e-mail: michalek@utia.cas.cz Ing. Jan Král ISQ

Více

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT Řízení projektů Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT 1 Úvod základní pojmy Projekt souhrn činností, které musí být všechny realizovány, aby byl projekt dokončen Činnost

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více