Laboratorní disekce drah laterálního aspektu mozkové hemisféry
|
|
- Ján Rohla
- před 6 lety
- Počet zobrazení:
Transkript
1 PŮVODNÍ PRÁCE Laboratorní disekce drah laterálního aspektu mozkové hemisféry Fiber Dissection Technique of the Tracts of the Lateral Aspects of the Hemisphere Souhrn Cíl: Cílem práce je objasnění průběhu jednotlivých drah laterálního aspektu mozkové hemisféry, dokumentace jejich polohy vůči sobě i ostatním strukturám mozku. Předkládáme postup laboratorní disekce subkortikálních oblastí. Materiál a metodika: Technikou dle Josefa Klinglera spočívající ve zmrazení formalínem fixovaného mozku jsme připravili a následně provedli laboratorní mikrodisekci šesti hemisfér. Výsledky jsme dokumentovali formou mikro- a makrofotografií, průběh jednotlivých drah jsme korelovali s výsledky traktografie u zdravého dobrovolníka. Výsledky: Disekční technikou jsme dokumentovali anatomii inzuly, laterálních lentikulostriatických perforátorů, fasciculus longitudinalis superior a inferior, fronto-occipitalis, uncinatus, claustrokortikálních spojů v capsula externa, commissura anterior a capsula interna. Všechny tyto dráhy vyjma fasciculus longitudinalis inferior, který je obtížně separovatelný od geniculocalcarinního traktu, jsou disekční technikou zřetelně a ilustrativně identifikovatelné. Závěr: Uvedená disekční technika je praktický výukový nástroj, umožní nám pochopení komplexity funkčních spojů mozku, jejichž studium je vhodné pro všechny začínající neurochirurgy. Abstract Aim: The aim of our study was to elucidate the individual fiber tracts courses of the lateral aspect of the hemisphere and documentation of their position relative to each other and also relative to other brain structures. We present a simple manual for the technique of dissection of the subcortical areas. Materials and methods: Using the Joseph Klingler s technique consisting of freezing the formalin-fixed brain, we prepared and consequently performed the laboratory microdissection on six hemispheres. We documented the results with microand macrophotographs and correlated the course of the individual tracts with the results of DTI-tractography in a healthy volunteer. Results: Using the dissection technique, we documented the anatomy of the insula, lateral lenticulostriate perforating arteries, superior and inferior longitudinal fascicle, occipitofrontal, uncinate, claustrocortical connections in the external capsule, anterior commissure and internal capsule. All of these tracts, excluding the inferior longitudinal fascicle, which is hardly separable from the geniculocalcarine tract, are clearly and illustrativelly identifiable by the fiber dissection technique. Conclusion: The described dissection technique represents a practical educational tool; it enables neurosurgeon to understand the complexity of brain functional connections and should be accessible to all neurosurgery residents. R. Bartoš 1, A. Hejčl 1, A. Zolal 1, A. Malucelli 1, M. Sameš 1, P. Petrovický 2 1 Neurochirurgická klinika UJEP a Krajská zdravotní, a.s. Masarykova nemocnice v Ústí nad Labem, o.z., a Neuroanatomická laboratoř UJEP v Ústí nad Labem 2 Anatomický ústav 1. LF UK v Praze MUDr. Robert Bartoš, Ph.D. Neurochirurgická klinika UJEP a Krajská zdravotní, a.s. Masarykova nemocnice v Ústí nad Labem, o.z. Sociální péče 12A Ústí nad Labem-Bukov mnbartos@mnul.cz Přijato k recenzi: Přijato do tisku: Klíčová slova anatomie kortex mozkové dráhy laboratorní disekce drah traktografie Key words anatomy cortex white matter tracts fiber dissection technique tractography Práce byla podpořena grantem IGA MZ ČR NS / Cesk Slov Ne urol N 2012; 75/ 108(1): 30 37
2 Obr. 1a. Gyrifikace inzuly po odstranění operkula. asg, amg, psg gyrus insulae brevis anterior, medius et posterior; alg, plg gyrus insulae longus anterior et posterior; 1 sulcus periinsularis anterior, 2 sulcus periinsularis inferior a, pars horizontalis b, pars verticalis; 3 sulcus periinsularis superior; 4 sulcus centralis insulae, gt gyrus transversus, ag gyrus accessorius, spcg subprecentrální gyrus. Obr. 1b. Jednotlivý odstup laterálních lentikulostriatických perforátorů (Llsp), early temporal branch z M1 (etb), drobná větvička z M1 do frontorbitální kůry (šipka). Úvod Znalost anatomie je spolu se správnou indikací, pečlivou mikrotechnikou, intraoperativním monitoringem a po operační péčí jedním ze zásadních předpokladů úspěšné neurochirurgické operativy. Před operací můžeme polohu důležitých mozkových drah určit pomocí traktografie (DTI, Diffusion Tensor Imaging) a toto vyšetření implementovat do neuronavigace. Některé dráhy mohou být intraoperativně lokalizovány pomocí elektrické subkortikální stimulace a integritu motorické a senzitivní dráhy lze sledovat pomocí evokovaných potenciálů. Znalost 3D anatomie drah bílé hmoty však umocní představu neurochirurga a může vést k jeho větší jistotě během operace. V tomto článku popisujeme preparaci drah pomocí mikrodisekční techniky. K vlastní laboratorní práci nás inspiroval profesor Uğur Türe (Istanbul, Turecko) a doktor Niklaus Krayenbühl (Zürich, Švýcarsko) během laboratorního disekčního kurzu v létě 2010 a následné stáže v neuroanatomické laboratoři Yeditepe University v Istanbulu. Tito neuro chirurgové pod přímým vlivem zakladatele mikroneurochirurgie, profesora M.G. Yaşargila kladou absolutní důraz na znalost anatomie mozku. Naši laboratorní práci jsme se rozhodli doplnit traktografickým zobrazením drah a popisem jejich anatomicko-funkčního významu a publikovat formou přehledového článku. Obr. 2a. Pohled na fasciculus longitudinalis superior (fls) se zapojením jeho vláken do operkulární kůry. ph frontoparietální segment (pars horizontalis); fa frontotemporální segment (fasciculus arcuatus); pv temporoparietální segment (pars verticalis); šipka označuje odstup vláken do lobulus parietalis inferior. Obr. 2b. DTI rekonstrukce fasciculus longitudinalis superior. Cesk Slov Ne urol N 2012; 75/ 108(1):
3 Obr. 3a. Dorzální claustrum (cl) (posterosuperiorní) navazující na svoji neokortikální projekci cestou capsula externa (ce), ventrální claustrum (anteroinferiorní) ostrůvkovitě zavzaté do fasciculus uncinatus (fu) a fasciculus fronto-occipitalis. Projekce putamen je označena šedou čárou. Obr. 3b. Laterální lentikulostriatické perforátory podbíhající fasciculus uncinatus a probíhají skrze odstraněné putamen, nad fasciculus uncinatus se přikládá dorzolaterálně probíhající fasciculus fronto-occipitalis (fof). Obr. 3c. Pohled shora na commissura anterior a substancia perforata anterior (spa), dobře patrná je kortikální projekce fasciculus uncinatus. Obr. 3d. DTI rekonstrukce fasciculus uncinatus (žlutá) a fasciculus fronto-occipitalis inferior (červená). Materiál a metodika Provedli jsme disekci šesti mozkových hemisfér pacientů, u kterých primární příčinou smrti nebylo mozkové onemocnění. Pro disekci drah mozku jsme mozek připravovali dle práce profesora Josefa Klinglera ( ), který zavedl tuto techniku na anatomickém pracovišti v Basileji [1]. Po odběru byl mozek zavěšen za arteria basilaris do uzavřené nádoby s 10% formalínem, fixace trvala 1 2 měsíce. Poté jsme mozek řezem v oblasti corpus callosum rozdělili na obě hemisféry a za použití laboratorního mikroskopu Wild (Wolf, Leica, Německo) odstranili piu mater, arachnoideu a cévy na konvexitě obou hemisfér. Pak jsme mozek důkladně opláchli tekoucí vodou a na dva týdny zmrazili na teplotu 10 až 15 C. Před disekcí byl mozek opět rozmrazen vložením do vlažné vody na 24 hod a následně osušen. Samotná preparace byla prováděna dřevěnými lopatkami pod zvětšením laboratorního mikroskopu, ostré řezy byly prováděny skalpelem a preparace jemných svazků vláken kovovým disektorem. Postup preparace prezentujeme v následujícím oddíle článku a dokumentujeme vybranými fotografiemi. Anatomii jednotlivých drah srovnáváme s jejich traktografickými rekonstrukcemi. DTI skeny pro tuto anatomickou studii byly provedeny u zdravého dobrovolníka pomocí 1,5T skeneru (Avanto, Siemens, Erlangen, Germany). Použita byla spin-echo echo-planární DTI sekvence s následujícími parametry: 1 b = 0 s/mm 2 obraz a 20 směrově vážených obrazů b = s/mm 2, TR/TE 8 000/94 ms, matrix , FOV mm, izotropický voxel mm, počet sliců 55, 2 repetice. Jako anatomický podklad byla použita T1 sekvence (TR/TE 1 900/3,37, matrix , voxel mm). Dráhy byly rekonstruovány pomocí software StealthViz (Medtronic, USA) standardním algorit- 32 Cesk Slov Ne urol N 2012; 75/ 108(1): 30 37
4 Obr. 4a. Disekce zaměřující se na ventrální část tzv. Flechsig-Meyerovu kličku (Ml) zrakové dráhy a vlastní radiatio optica (or) po odstranění části fasciculus uncinatus (fu) a celého fasciculus fronto-occipitalis, capsula interna (ci) je v oblasti svého vstupu do mozkového kmene transverzálně proťata, nad řezem jsou zachována její vlákna za putamen. Obr. 4b. Pohled šikmo shora nám krom výše uvedených struktur ozřejmuje také tratctus opticus (to) mediálně od commissura anterior (ac), ostatní popisky odpovídají předchozím obrázkům. mem FACT (Fiber Assignment by Continuous Tracking). Výsledky 1. Inzula a odstup laterálních lentikulostriatálních perforátorů Preparaci začínáme v dolní části gyrus frontalis inferior, identifikujeme pars orbitalis, triangularis a opercularis, pokračujeme v dolní části precentrálního, postcentrálního gyru a supramarginálního gyru až ke konci ramus posterior Sylvijské rýhy (fissura lateralis cerebri). Poté obdobně preparujeme horní část gyrus temporalis superior, gyrus angularis a supramarginalis. Limitovaným odříznutím či náročnější postupnou preparací arkuátních vláken v celém rozsahu operkula směrem k přednímu, hornímu a dolnímu perinzulárnímu sulku ozřejmujeme inzulární lalok. Tento má tvar obrácené pyramidy a sestává se z gyri insulares breves (anterior, medius a posterior) a gyri insulares longi (anterior a posterior). Krátké a dlouhé inzulární gyri odděluje sulcus centralis insulae, který směřuje k sulcus centralis Rolandi. Gyrus insulae brevis medius a přilehlé sulci vykazují největší variabilitu [2]. Kromě uvedených gyrů můžeme nekonstantně pozorovat v přední části i gyrus insulae accesorius a transversus, který navazuje na orbitofrontální kůru. K ozřejmení sulcus periinsularis superior a inferior musíme resekovat gyrus subcentralis, resp. planum temporale. (obr. 1a). Bifurkace arteria cerebri media se nachází ve většině případů v oblasti limen insulae, mediálněji se můžeme soustředit na odstup laterálních lentikulostriatických perforátorů (obr. 1b). Ty odstupují z kmene M1 buď jednotlivě, či formou společného dále se větvícího trunku, distálně může jejich odstup zasahovat až do oblasti proximálních částí M2, mohou také odstupovat z časné frontální či temporální větve [3]. 2. Fasciculus longitudinalis superior Po odstranění zbytků krátkých a středních asociačních arkuátních vláken se v úrovni periinzulárních sulků dostáváme na úroveň fasciculus longitudinalis superior. Nalézá se v hloubce mm od povrchu mozkové hemisféry, jeho lateromediální průměr je okolo 20 mm [4]. Sestává ze tří částí, pars horizontalis (frontoparietalis), pars verticalis (temporoparietalis) a fasciculus arcuatus (frontotemporalis). Fasciculus arcuatus je nejhlouběji, nacházíme jej nejblíže zadní části inzuly, laterálně a za ním pozorujeme svazek vláken parietálních částí směřujících do lobulus parietalis inferior (obr. 2a). 3. Fasciculus fronto-occipitalis, fasciculus uncinatus, capsula externa, claustrum, putamen, globus pallidus, laterální lentikulostriatické perforátory v putamen, commissura anterior, Flechsig-Meyerova klička Po odstranění kůry inzulárních gyrů pozorujeme capsula extrema, kterou tvoří arkuátní vlákna vlastní inzuly a její spoje s přilehlým operkulem. Po jemném odstranění těchto vláken ozřejmujeme poměrně diskrétní dorzální claustrum (jeho pars compacta), které je v kontinuitě s vlákny capsula externa s rozsáhlou kortikální projekcí (obr. 3a). Po ostrém odstranění vláken vertikální části fasciculus longitudinalis superior pozorujeme ventrodorzálně směřující vlákna fasciculus fronto-occipitalis. Ty se napojují na superomediální část mohutného svazku spojujícího frontobazální oblasti s temporálním lalokem fasciculus uncinatus. Nad těmito svazky již pozorujeme tmavší a porézní hmotu putamen, ve kterém probíhají směrem k vnitřní kapsule laterální lentikulostriatické perforátory proximálně podbíhající fasciculus uncinatus (obr. 3b). Pokud postupujeme hmotou bazálních ganglií mediálněji, odstraníme světlejší a více kompaktní globus pallidus a pozorujeme anteromediálně směřující commissura anterior (obr. 3c). Substantia innominata je uložena pod úrovní přední commissury, nachází se v ní nucleus basalis Meynerti hlavní cholinergní zdroj mozkové kůry. Mediálně substantia innominata pokračuje k bazi septální oblasti, obsahující nucleus accumbens, a zasahuje až k laterálnímu hypothalamu. Při pečlivé preparaci drah pod temporální částí fasciculus uncinatus a fasciculus fronto-occipitalis před temporálním rohem postranní komory a laterálně od ní můžeme odlišit vlákna Flechsig-Meyerovy Cesk Slov Ne urol N 2012; 75/ 108(1):
5 kličky, tvořící ventrální část zrakové dráhy (obr. 4a, b). Obr. 5a. Disekce zobrazující průběh pyramidové dráhy přímo z motorické oblasti pro ruku, patrné jej její povrchové uložení pod horním periinzulárním sulkem. Šipky fasciculus longitudinalis superior (hnědá), fasciculus fronto-occipitalis inferior (zelená), fasciculus uncinatus (modrá), commissura anterior (červená), pyramidová dráha z primární motorické kůry (PMK) po odstranění claustra, putamen, pallidum externum a internum (žlutá šipka). Obr. 5b. Disekce ozřejmující vztah bazálních ganglií a drah ke komorovému systému, resekce fasciculus uncinatus, ozřejmení thalamu se vstupem optického traktu, laterálně od okcipitálního rohu postranní komory stratum saggitale obsahující optickou radiaci a fasciculus longitudinalis inferior. Frontální roh postranní komory (fh), nucleus caudatus (ca), capsula interna (ci), commissura anterior (ac), thalamus (th), stratum saggitale (ss), atrium komory (a), amygdala (am), cornu Ammonis (ca), tractus opticus (to) a stria terminalis (st). 4. Capsula interna, nucleus caudatus, thalamus, tractus opticus, radiatio optica, fasciculus longitudinalis inferior, postranní komora Po odstranění hmoty bazálních ganglií můžeme pozorovat přední raménko capsula interna, prostoupené ostrůvky šedé hmoty (ponticuli striatici) spojující putamen s caput nuclei caudati. Za předním raménkem posteriorněji jsou genu a zadní raménko capsulae internae. Kraniálněji odstraníme větší rozsah capsula externa a horizontální část fasciculus longitudinalis superior a můžeme sledovat část motorické dráhy přímo z precentrálního gyru. Je dobré si povšimnout jejího poměrně povrchového uložení při horním okraji putamen, v úrovni horního periinzulárního sulku, kde může být přímo ohrožena při operacích v inzulární oblasti (obr. 5a) [5]. Ostrým řezem můžeme na horním okraji nucleus caudatus přetnout vnitřní kapsulu a sledovat dozadu ubíhající corpus a caudu nuclei caudati. Horní okraj caudata navazuje na ependym postranní komory; tu ozřejmíme i v oblasti atria komory, jehož laterální stěna je překryta svazkem stratum sagittale, tvořeným zrakovou dráhou a laterálněji fasciculus longitudinalis inferior, spojující extrastriatální kortex okcipitálního laloku s temporálními oblastmi. Ještě níže otevíráme temporální roh postranní komory, jehož horní a laterální stěnu kryje ventrální část optické radiace a opět fasciculus longitudinalis inferior. Po odstranění genu a posteriorní části capsula interna a části radiatio optica se nám odkrývá thalamus. Pokud vnitřní kapsulu sledujeme a odstraníme až k pontu, otevírá se nám pohled na tractus opticus, směřující anteromediálně pod commissura anterior k chiazmatu. Dolní část vnitřní kapsuly a tractus opticus v této oblasti již zásobuje arteria choroidea anterior (obr. 5b). Před koncem temporálního rohu postranní komory nacházíme amygdalu, pozorujeme i na ni navazující a thalamus obkružující stria terminalis. Vytětím nucleus caudatus se dostáváme do postranní komory, pozorujeme vena thalamostriata a odstraněním plexus choroideus ozřejmujeme fornix, směřující bazálně do corpora mamillaria. Posteriorně můžeme na krátkou vzdále- 34 Cesk Slov Ne urol N 2012; 75/ 108(1): 30 37
6 Obr. 6. DTI zobrazení disekovaných drah. Modře tractus corticospinalis, červeně fasciculus fronto-occipitalis inferior, žlutě fasciculus uncinatus, zeleně fasciculus longitudinalis superior, fialově fornix. nost sledovat tractus mamillothalamicus. Přehled DTI rekonstrukcí hlavních disekovaných drah podává obr. 6. Diskuze Dráhy dělíme na asociační spojující jednotlivé části hemisféry, komisurální spojující identické oblasti obou hemisfér, a projekční spojující oddíly nervového systému v kraniokaudálním, resp. opačném směru. Asociační dráhy dále dělíme na krátká a středně dlouhá arkuátní vlákna (fasciculi arcuati), spojující sousední, resp. okolní gyri v rámci jednotlivých i sousedících laloků mozku. Dlouhá asociační vlákna se seskupují do svazků a spojují vzdálenější oblasti různých mozkových laloků. Mezi největší svazky patří fasciculus longitudinalis superior (či jeho část fasciculus arcuatus), fasciculus longitudinalis inferior, fasciculus fronto-occipitalis superior a inferior, fasciculus uncinatus a cingulum. Hlavní komisurální drahou jsou corpus callosum a commissura anterior. K projekčním drahám náleží capsula interna, claustrokortikální spoje a geniculocalcarinní trakt [6,7]. V diskuzi se zaměříme na některé zajímavé fyziologické aspekty mít rozdílně vyjádřené formy, jak prokázali Lichtheim [8] a McCarthy s Warringtonem [9], např. zachované opakování vyžadující aktivní sémantické zpracování, avšak s poruchou pasivní repetice. Existuje tedy zřejmě jednak přímá arkuátní cesta umožňující rychlé opakování a nepřímá cesta s úrovní sémantického/fonologického vstupu mezi verbálním vstupem a artikulačním výstupem. Frontoparietální část nepřímé cesty zajišťuje tedy vokalizaci sémantické (významové) složky řeči, je popsána jako dorzální fonologická cesta, deficitem je fonologická (zvuková) apraxie. Temporoparietální část zajišťuje porozumění slyšené významové složce řeči. Tento komplexní model podporují Catani et al [10], kteří pomocí DTI rekonstrukcí zobrazují také nepřímou laterální cestu přes dolní parietální lobulus. Fernandez-Miranda et al tyto kortikální spoje potvrzují přímou anatomickou disekcí vláken během laboratorní práce [4]. Fasciculus fronto-occipitalis inferior je lokalizován ve ventrální části capsula extrema a externa, spojuje prefrontální oblast se středním a dolním temporálním gyrem a okcipitálním lalokem. Je popisován jako ventrální sémantická cesta, Duffau et al při jeho stimulaci během resekcí gliomů popsali poruchy opakování a parafázické chyby [11]. Schmahmann a Pandya [12] této dráze připisují význam pro neartikulační aspekty řeči (gramatika, skladba), může mít také podobnou funkci jako fasciculus longitudinalis inferior při rozpoznávání objektů. Fasciculus frontooccipitalis superior je klasickými anatomickými pracemi založenými na jednotlivých řezech mozkem lokalizován mezi corpus callosum a nucleus caudatus. Jeho existenci však zpochybnili Türe et al ve své pečlivé mikrodisekční práci zabývající se distální projekcí těchto vláken. Tuto anatomickou strukturu považují spíše za projekční vlákna horního thalamického pedunklu [13]. Fasciculus longitudinalis inferior přikládající se laterálně k optické radiaci ve stratum saggitale, spojuje extrastriatální oblasti laterální části okcipitálního laloku i prestriatální asociační kůru cuneus, gyrus lingualis a fusiformis s meziotemporálními a temporálními gyri. Zajišťuje vizuální identifikaci objektů, rozlišení a rozpoznávání, jeho léze způsobuje vizuální agnózii a vzhledem k zapojení s limbickými paměťovými a emočními strukjednotlivých drah laterálního aspektu hemisféry. Fasciculus longitudinalis superior představuje multifunkční asociační systém propojující jednotlivé vstupy vyžadované vyššími funkcemi lidského mozku. V nedominantní hemisféře hraje roli při uvědomování si prostoru. Jeho frontoparietální segment spojuje prefrontální oblasti regulující zrakovou pozornost vůči jednotlivým částem prostoru s lobulus parietalis inferior, tedy vysoce specializovanou asociační kůrou. Zajišťuje zpracování zrakových informací vzhledem k prostoru, deficitem je levostranný postorový hemineglekt. Temporoparietální segment spojuje lobulus parietalis inferior a gyrus temporalis superior, zpracovávající sluchové informace, zajišťuje analogicky sluchově prostorové informace. Frontotemporální arkuátní segment propojuje audiovizuální zpracování informací bez spojení s asociační parietální kůrou. V dominantní hemisféře má tento svazek vztah k zajištění komplexity lidské řeči. Dle klasického Burdachova a Dejerinova konceptu byla jeho léze charakterizována normální fluencí řeči a normálním porozuměním, ale poruchou opakování právě slyšeného. Takto definovaná kondukční afázie však může Cesk Slov Ne urol N 2012; 75/ 108(1):
7 integruje informace z různých neokortikálních oblastí, což je esenciální faktor pro přítomnost vědomí. Duffau et al však při operacích inzulárních gliomů dokumentovali unilaterální lézi klaustra jako zcela asymptomatickou [20]. Naopak zásadní význam klaustra pro vědomí podporuje práce dokumentující jeho oboustranou selektivní lézi při herpetické encefalitidě, která vedla k těžké poruše vědomí [21]. Commissura anterior se skládá ze dvou složek, přední olfaktorní je menší a obsahuje vlákna mající vztah k čichovým centrům. Zadní část spojuje amygdaly, temporální póly, inferotemporální a okcipitální kůru. Kromě komisurální funkce pro limbický systém má zřejmě také komplementární roli ke corpus callosum ve sdílení zrakové informace oběma hemisférami [4]. Zatímco anatomická laboratorní disekce přináší detailní poznatky o struktuře bílé hmoty na kadaverickém materiálu, pomocí DTI je možné zkoumat anatomii mozkových drah také u živých subjektů v anatomických i patologických souvislostech. Když pomineme užití u patologických stavů a při výzkumu anatomie, DTI přináší též možnost kvantifikace difuzních parametrů bílé hmoty u zdravých dobrovolníků a dovozování funkčních souvislostí na základě porovnávání s výsledky testů kognitivních schopností např. u dyslexie [22]. To pak vede k dalšímu rozšiřování našich znalostí o funkčně-anatomických souvislostech vyšších nervových funkcí. Největší nevýhodou je prozatím velmi nízké rozlišení i u špičkových klinických MR přístrojů, pohybující se okolo mm. Snadno nahlédneme, že menší dráhy jsou již pod rozlišovací schopností takovéto techniky, navíc budou výsledky významně ovlivněny efektem částečného objemu. Pro nemožnost zobrazení takovýchto menších spojů v bílé hmotě mozkové konvenční deterministickou traktografií FACT (Fiber Asignment by Continuous Tracking), jež vytváří obraz dráhy prostým spojováním bodů na základě zjištěného směru difuze, byly vyvinuty i metody probabilistické, založené na určení pravděpodobnosti existence určitého spojení nejen na základě informací z daného voxelu, ale beroucí v úvahu i informace získané například v jeho blízkém okolí. Dalším úskalím metody trasování je možná přítomnost křížících se vláken v daném voxelu. To představuje například rozhraní corpus callosum (lateturami i prozopagnózii, vizuální amnézii (neschopnost ukládat vizuální informace do krátkodobé paměti, ostatní smyslové modality ukládány jsou) a vizuální hypoemocionalitu. Nelze opomenout, že zapojení je obousměrné (feed-back) a můžeme předpokládat také význam dráhy pro přednostní zrakové zaměření emočně důležitých vizuálních stimulů. Disekce pouze této dráhy je vzhledem k blízkosti ke zrakové dráze velice obtížná, např. Tusa a Ungerleider její existenci zpochybňovali [14]. Naopak DTI v jejím případě vykazuje lepší možnosti zobrazení, Catani et al popisují úspěšné přímé trasování spojů extrastriatální okcipitální kůry s temporálními oblastmi, definovali i nepřímou vícestupňovou cestu pomocí U-vláken [15], jeho výsledky jsou v dobré shodě se elektrofyziologickou latencí dvou vln (2 a 200 ms) při aktivaci parahippokampálních buněk vizuálními stimuly [16]. Fasciculus uncinatus spojuje orbitofrontální i frontopolární oblasti, regulující chování, emoce, rozhodování a sebekontrolu s temporálním pólem. Temporální pól dle jeho jednotlivých částí zpracovává sluchové (rostrální gyrus temporalis superior), zrakové (rostrální gyrus temporalis inferior), somatosenzorické a chuťové (rostrální inzulární kůra), paměťové (parahippokampální gyrus) a emoční (amygdala) informace. Spojení s frontálním lalokem je tedy důležité pro zpracování nových informací a emocionalitu zvukových i vizuálních podnětů. Jedná se o ventrální limbickou cestu spojující emoční složku s kognitivní. Dorzální limbickou cestu tvoří cingulum, spojující hippokampus a parahippokampální gyrus s prefrontálními oblastmi, manipulujícími s paměťovými informacemi i s rostrálním gyrus cinguli, důležitým pro motivaci. Klaustro-kortikální projekční spoje do jiných asociačních korových oblastí jsou dominantně lokalizovány v capsula externa a jsou topograficky organizovány [17]. Nutno vyzdvihnout práci českého anatoma Drugy, prokazující neokortikální zapojení klaustra u koček a krys [18]. Význam klaustra pro člověka je nejasný, u ostatních savců se předpokládá integrační funkce motorických, somatosenzorických a vizuálních vstupů. Zajímavostí je, že klaustrem se intenzivně zabýval Francis Crick [19] objevitel DNA, a jeho závěry podporují i PET či fmr studie. Dle těchto prací klaustrum v rychlém časovém sledu rolaterálně běžící vlákna) a gyrus cinguli (vlákna běžící po obvodu kolmo na vlákna corpus callosum). Voxel z takovéto oblasti pak bude obsahovat informace o vyšší intenzitě difuze ve dvou směrech, což je již stav, ve kterém standardní model difuzního tenzoru selhává (tenzor má pak tvar disku nevyjadřující reálné směry difuze v dané oblasti). Existují pak další matematické metody, založené zejména na měření difuze ve větším množství směrů (HARDI, High Angular Resolution Diffusion Imaging), které umožňují tento stav vyřešit implementací jiného matematického modelu, jako je např. Q-ball imaging. Závěr Laboratorní disekce vláken bílé hmoty má pro neurochirurga praktický edukativní význam a dle naší zkušenosti výrazně posílí znalost anatomie lidského mozku. Zlepšuje třídimenzionální představivost operatéra o poloze jednotlivých drah vůči sobě i ostatním strukturám mozku, např. bazálním gangliím a komorovému systému. Má přínos pro lepší porozumění snímkům magnetické rezonance, plánování operací, pochopení, a tím i předejití pooperačním deficitům. Znalost anatomie drah také zlepší interpretaci nyní stále více používané traktografie (DTI). Považujeme ji za důležitou během přípravy neurochirurgického rezidenta na operativu mozkových gliomů, u nichž je nutno strategii operace přizpůsobit proliferačnímu či difuznímu způsobu růstu nádoru. Nelze opomíjet ani výzkumný aspekt této metody umožnující lepší pochopení anatomie a propojení cílových struktur některých spojů, přinášející i v dnešní době nové poznatky, mnohdy modifikující již desetiletí uváděná fakta, často přepisovaná z klasických učebnic. Literatura 1. Klingler J. Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 1935; 36: Türe U, Yaşargil MG, Al-Mefty O, Yaşargil DC. Topographic anatomy of the insular region. J Neurosurg 1999; 90(4): Türe U, Yaşargil MG, Al-Mefty O, Yaşargil DC. Arteries of the insula. J Neurosurg 2000; 92(4): Fernández-Miranda JC, Rhoton AL, Alvarez-Linera J, Kakizawa Y, Choi Ch, de Oliviera EP. Three-dimensional Microsurgical and Tractographic Anatomy of the White Matter of the Human Brain. Neurosurgery 2008; 62 (6 Suppl 3): Cesk Slov Ne urol N 2012; 75/ 108(1): 30 37
8 5. Türe U, Yaşargil MG, Friedman AH, Al-Mefty O. Fiber dissection technique: lateral aspect of the brain. Neurosurgery 2000; 47(2): Borovanský L et al. Soustavná anatomie člověka. 2. díl. Praha: Avicenum Petrovický P et al. Klinická neuroanatomie CNS s aplikovanou neurologií a neurochirurgií. Praha/Kroměříž: Triton 2008: Lichtheim L. On aphasia. Brain 1884; 7: McCarthy R, Warrington E. A teo-route model of speech production. Brain 1984; 107(2): Catani M, Jones DK, Ffytche DH. Perisylvian language networks of the human brain. Ann Neurol 2005; 57(1): Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 2005; 128(4): Schmahmann JD, Pandya DN. Fiber Pathways of the Brain. New York: Oxford University Press Türe U, Yaşargil MG, Pait T, Glenn MD. Is there a superior occipitofrontal fasciculus? A microsurgical anatomic study. Neurosurgery 1997; 40(6): Tusa RJ, Ungerleider LG. The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol 1985; 18(5): Catani M, Jones DK, Donato R, Ffytche DH. Occipito-temporal connections in the human brain. Brain 2003; 126(9): Wilson CL, Babb TL, Halgren E, Crandall PH. Visual receptive fields and response properties of neurons in human temporal lobe and visual pathways. Brain 1983; 106(2): Fernández-Miranda JC, Rhoton AL, Kakizawa Y, Choi C, Alvarez-Linera J. The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg 2008; 108(4): Druga R. Claustro-cortical connections in the cat and rat demonstrated by HRP tracking technique. J Hirnforsch 1982; 23(2): Crick FC, Koch C. What is the function of the claustrum? Philos Trans R Soc Lond B Biol Sci 2005; 360(1458): Duffau H, Mandonnet E, Gatignol P, Vapelle L. Functional compensation of the claustrum: lessons from the low-grade glioma surgery. J Neuroncol 2007; 81(3): Kimura S, Nezu A, Osaka H, Saito K. Symmetrical external capsule lesions in a patient with herpes simplex encephalitis. Neuropediatrics 1994; 25(3): Rimrodt SL, Peterson DJ, Denckla MB, Kaufmann WE, Cutting LE. White matter microstructural differences linked to left perisylvian language network in children with dyslexia. Cortex 2010; 46(6): ZPRÁVA Z AKCE XIV. European Congress of Neurosurgery Řím Ve dnech října 2011 proběhl v Římě XIV. evropský neurochirurgický kongres. Historie evropských sjezdů začala v roce 1959 v Curychu. K významným mezníkům patřil IV. evropský kongres v Praze v roce 1971, na kterém byla založena Evropská asociace neurochirurgických společností (EANS). Na tento kongres dodnes vzpomínají pamětníci jako na mimořádnou událost, zcela se vymykající počínající normalizaci společnosti. Kongres byl tehdy logickou odměnou zakladatelům oboru za jejich práci, kterou dokázali prodat na mezinárodním poli. Letošní sjezd se konal v kongresovém centru na půli cesty mezi letištěm a centrem věčného města. Zastoupení z České republiky bylo bohaté včetně reprezentantů firem přesahoval počet 30 účastníků. Struktura kongresu je v současnosti velmi podobná americkým kongresům AANS a CNS. Ranní placené hodinové semináře se podrobně věnují vybraným té- matům a dávají jejich účastníkům podrobný vhled do dané problematiky. Dopolední plenární sekce je vysoce prestižní záležitost, při které se vybraní řečníci věnují jednotlivým kontroverzním tématům z různých úhlů pohledu v dostatečném časovém prostoru. V tomto bloku se na pódium dostanou pouze opinion lídři oboru. Pro mne osobně šlo o klíčový blok, při kterém jsem si často utřídil názory na kontroverzní problematiku. Odpolední program představovaly paralelní sekce přednášek na definovaná témata. Prezentace v délce 10 minut byly v závěru jednotlivých bloků následovány krátkými ústními sděleními v podobě oral e-posterů. Velká část sdělení byla uvedena mimo jednotlivé bloky v podobě elektronických posterů. Z hlediska aktivní účasti nevyšla česká neurochirurgie vůbec špatně. Aniž hodnotíme přínos jednotlivých pracovišť, je celkový počet příspěvků následující: postery (včetně oral e-pos- terů) 17, přednášky 8, přednášky v plenární sekci, resp. state-of art prezentace 2, a presidential lecture 1. Kromě odborné vědecké části plní evropský kongres i funkci politicko-diplomatickou. Z tohoto pohledu byl kongres pro naši neurochirurgickou obec mimořádně úspěšný. Nejprve byl profesor Beneš zvolen prezidentem EANS a následně byla Praha potvrzena jako organizátor EANS kongresu v roce Oba tyto momenty je třeba vnímat jako osobní úspěch profesora Beneše, ale zároveň též jako mimořádnou prezentaci a závazek celé české neurochirurgické obce. Kongres v roce 2014 v Praze zcela jistě přinese spoustu práce všech členů neurochirurgické společnosti. Nepochybuji, že naše aktivity vůči kongresu EANS v Praze 2014 vyústí ve stejný úspěch, jaký jsme zažili v Římě. MUDr. Vladimír Přibáň, Ph.D. Neurochirurgie České Budějovice Cesk Slov Ne urol N 2012; 75/ 108(1):
BAZÁLNÍ GANGLIA STRIATUM PALLIDUM
BAZÁLNÍ GANGLIA K základním strukturám bazálních ganglií je řazeno striatum, pallidum a ncl. subthalamicus (viz základní kurz neuroanatomie). Z funkčního hlediska je však nutno klasifikaci struktur bazálních
Korová centra. Anatomie pro antropology III
Korová centra Anatomie pro antropology III FUNKČNÍ TOPOGRAFIE MOZKOVÉ KŮRY V mozkové kůře rozlišujeme senzitivní a senzorické korové oblasti - korová pole (všeobecná senzitivita, oblast chuťová, zraková
LIMBICKÝ PŘEDNÍ MOZEK A AMYGDALÁRNÍ JÁDRA
LIMBICKÝ PŘEDNÍ MOZEK A AMYGDALÁRNÍ JÁDRA Účast ve vytváření nejrudimentálnějších a nejzákladnějších lidských emocí zahrnujících strach,sexuální touhu, záchvat zuřivosti, náboženskou extázi nebo bazální
Výtvrarné umění a demence. As. MUDr. Irena Rektorová, Ph.D. Centrum pro kognitivní poruchy 1.neurologická klinika LF MU FN u sv.
Výtvrarné umění a demence As. MUDr. Irena Rektorová, Ph.D. Centrum pro kognitivní poruchy 1.neurologická klinika LF MU FN u sv. Anny, Brno Vizuální kreativita u demence Nedominantní hemisféra dominantní
Mozková kůra. (stavba, funkce, korové analyzátory, nervové dráhy, cévní zásobení mozku) Markéta Vojtová VOŠZ a SZŠ Hradec Králové
Mozková kůra (stavba, funkce, korové analyzátory, nervové dráhy, cévní zásobení mozku) Markéta Vojtová VOŠZ a SZŠ Hradec Králové Cortex cerebri Allokortex = nejstarší vrstva šedé hmoty Pouze 3 vrstvy Zaujímá
KONCOVÝ MOZEK (telencephalon)
KONCOVÝ MOZEK (telencephalon) KONCOVÝ MOZEK (telencephalon) jedná se o vývojově pokročilejší část předního mozku a o nejpokročilejší část mozku vůbec uloženy (přemístěny) nejvyšší řídící funkce v těle
Fyziologický vývoj mozku v dětském věku
Fyziologický vývoj mozku v dětském věku MUDr. Zuzana Ludvíková Konference Mensa ČR 19.11.2014 Lidský mozek Obsahuje přes 1000 miliard nervových buněk Pokud pracuje naplno odčerpávají neurony 20% z celkové
LIMBICKÝ SYSTÉM David Kachlík 30.9.2015
LIMBICKÝ SYSTÉM Limbický systém viscerální mozek řízení hoemostázy emoční reakce paměť a motivace sexuální chování sociální chování péče o potomstvo nadřazen mnoha autonomním funkcím Dělení korové zóny
LOKALIZOVANÉ PORUCHY. Přednáška č.3
LOKALIZOVANÉ PORUCHY Přednáška č.3 OBSAH 1. Afázie 2. Aprozódie 3. Agnózie 4. Alexie 5. Agrafie 6. Akalkulie 7. Apraxie AFÁZIE Porucha řeči (fatických funkcí) Dříve dělení na motorickou a senzorickou Možné
Apraxie. Dělení apraxií. Ideomotorická (motorická) apraxie. Ideativní apraxie
Poruchy gnose, praxe a dalších kortikálních funkcí. Poruchy chování, prefrontální syndromy Jan Laczó, Neurologická klinika UK 2. LF a FN Motol Kortikální (symbolické) funkce = kognitivní funkce: Paměť
Vliv konopných drog na kognitivní funkce
Vliv konopných drog na kognitivní funkce Lenka Miovská Michal Miovský Centrum adiktologie Psychiatrické kliniky 1.LF UK a VFN v Praze Obsah prezentace Aktuální situace Mechanismus působení Výsledky výzkumů
Mícha. Anatomický ústav 1. LF UK Neurochirurgická klinika MNUL a UJEP
Mícha Anatomický ústav 1. LF UK Neurochirurgická klinika MNUL a UJEP Anatomie mikropohled Anatomie celkový pohled CC TH CI Pu Cau V V Ins CA FO MCA T ponticuli striatici Anatomie zobrazovací metody Anatomie
Morfologie a funkce prodloužené míchy, mozečku, bazálních ganglií, mozkové kůry. Jaromír Gumulec
Morfologie a funkce prodloužené míchy, mozečku, bazálních ganglií, mozkové kůry. Jaromír Gumulec Prodloužená mícha pokračováním hřbetní míchy ve směru rostrálním a patří již, jakožto jeho nejdorsálnější
Braakova stadia vývoje ACH
Jednoduché škály pro klinické hodnocení MRI mozku u pacientů s demencí Doc. MUDr. Jakub Hort, PhD. Neurologická klinika UK, 2.LF a FN Motol Mezinárodní centrum klinického výzkumu, Brno Zapůjčeno A. Bartos
Fyziologie středního mozku, bazálních ganglií a thalamu. doc. MUDr. Miloslav Franěk, Ph.D. Ústav normální, patologické a klinické fyziologie
Fyziologie středního mozku, bazálních ganglií a thalamu doc. MUDr. Miloslav Franěk, Ph.D. Ústav normální, patologické a klinické fyziologie Střední mozek 2 cm úsek kmene mezi pontem a diencefalon tektum,
Organismus je řízen dvojím způsobem, hormonálně a nervově. Nervový systém se dělí na centrální a periferní.
Otázka: Centrální nervový systém Předmět: Biologie Přidal(a): wewerka68 Dělení nervové soustavy, nervová tkáň, koncový mozek, kůra, korové analyzátory, mozkové laloky a dutiny, mozkomíšní mok, obaly mozku,
CORTEX CEREBRI. Ústav anatomie 2. lékařské fakulty UK R. Druga
CORTEX CEREBRI Ústav anatomie 2. lékařské fakulty UK R. Druga CORTEX CEREBRI Vývoj Členění strukturální, funkční Struktura Spoje Funkce Vývoj hemisféry Členění na kůru (pallium) a podkorové struktury Vývoj
CNS. NEUROANATOMIE I. - Struktury centrálního nervového systému
CNS NEUROANATOMIE I. - Struktury centrálního nervového systému Opakování - organizace nervstva Centrální nervová soustava Chráněno kostí, integrační funkce Mozek mícha Periferní nervová soustava Efektorová
Spasticita jako projev maladaptivní plasticity CNS po ischemické cévní mozkové příhodě a její ovlivnění botulotoxinem. MUDr.
Spasticita jako projev maladaptivní plasticity CNS po ischemické cévní mozkové příhodě a její ovlivnění botulotoxinem MUDr. Tomáš Veverka Neurologická klinika Lékařské fakulty Univerzity Palackého a Fakultní
KONCOVÝ MOZEK (telencephalon)
KONCOVÝ MOZEK (telencephalon) KONCOVÝ MOZEK (telencephalon) jedná se o vývojově pokročilejší část předního mozku a o nejpokročilejší část mozku vůbec uloženy (přemístěny) nejvyšší řídící funkce v těle
Základní buněčné a fyziologické mechanismy paměti. MUDr. Jakub Hort, PhD. Neurologická klinika UK, 2.LF a FN Motol
Základní buněčné a fyziologické mechanismy paměti MUDr. Jakub Hort, PhD. Neurologická klinika UK, 2.LF a FN Motol Poradna pro poruchy paměti FN Motol SYNDROM DEMENCE poškození paměti + jeden další příznak:
Nervový systém přehled funkcí
Nervový systém přehled funkcí 2 základní typy regulací: nervová - humorální Centrální nervový systém významně ovlivňuje všechny typy regulací Udržovat homeostázu stálost vnitřního prostředí ve smyslu jeho
V mediolaterálním směru je mozeček členěn na mediánní, paramediánní a laterální zónu. Každá zóna obsahuje kortex, odpovídající bílou hmotu a jádra.
SPOJE MOZEČKU Mozeček a okolní struktury mozkového kmene. Základní členění mozečku: lobus flocculonodularis, vermis a dvě hemisféry. V mozečku je šedá hmota uložena ve formě jader a povrchového kortexu.
strukturu krátkou máloneuronovou cestou. Jsou vývojově mladé.. interoreceptorů dráhy sensorické vedou do CNS čití od smyslových receptorů
TRACTUS NERVOSI - DRÁHY NERVOVÉ Tractus - nervová dráha (zkratka tr.) Homogenní skupina neuronů, která propojuje 2 šedé struktury CNS a vede nervové vzruchy stejné povahy. V ryze anatomickém pojetí jsou
Stavba mozku. Pracovní list. VY_32_INOVACE_Bi3r0112. Olga Gardašová
Stavba mozku Pracovní list Olga Gardašová VY_32_INOVACE_Bi3r0112 Hlavní oddíly mozku Prodloužená mícha Její funkcí je přepojování signálů do vyšších center mozku. Řídí základní reflexy - dýchání, činnost
Obsah. 1. FUNKČNí SYSTÉMY LIDSKÉHO MOZKU... 13. 2. ZRAKOVÉ POZNÁVÁNí... 29 PŘEDMLUVA... 11
Obsah PŘEDMLUVA... 11 1. FUNKČNí SYSTÉMY LIDSKÉHO MOZKU... 13 1.1. Makroskopická architektura mozku... 13»Konektom«- příklad současného studia neuronálních sítí lidského mozku....14 1.2. Mikroskopická
Okruh D: Centrální nervová soustava a smysly žlutá
Okruh D: Centrální nervová soustava a smysly žlutá Centrální nervová soustava 1. Obecná stavba nervové soustavy (neuron, glie, synapse, mediátory, receptory) Hlavní body: základní typy neuronů, glií, synapsí,
Deficit sémantického systému v kategorii čísel. Milena Košťálová Neurologická klinika LFMU a FN Brno
Deficit sémantického systému v kategorii čísel Milena Košťálová Neurologická klinika LFMU a FN Brno Deficit sémantického systému v kategorii čísel Uvedení do problematiky terminologie Teoretické modely
VLIV POUŽITÉ ANESTEZIE NA INCIDENCI POOPERAČNÍ KOGNITIVNÍ DYSFUNKCE. MUDr. Jakub Kletečka KARIM, FN a LF UK Plzeň
VLIV POUŽITÉ ANESTEZIE NA INCIDENCI POOPERAČNÍ KOGNITIVNÍ DYSFUNKCE MUDr. Jakub Kletečka KARIM, FN a LF UK Plzeň Spoluautoři I. Holečková 2, P. Brenkus 3, P. Honzíková 1, S. Žídek 2, J. Beneš 1 a I. Chytra
Funkce prodloužené míchy
Funkce prodloužené míchy Centrum kardiomotorické (pro regulaci srdeční činnosti) Rami cardiaci n. vagi x nn. cardiaci Kardioinhibiční centrum: prodloužená mícha (ncl.dorsalis, ncl. ambiguus) parasympatická
Použití DTI traktografie v neuronavigaci při operacích mozkových nádorů: kazuistiky
KAZUISTIKA Použití DTI traktografie v neuronavigaci při operacích mozkových nádorů: kazuistiky The Use of Diffusion Tensor Imaging in Neuronavigation during Brain Tumor Surgery: Case Reports Souhrn Cíl:
Pomalu rostoucí benigní nádor, je dobře ohraničený Jsou pevně spojené s dura mater, utlačují mozkovou tkáń, aniž by do ni prorůstaly Meningeomy tvoří
Pomalu rostoucí benigní nádor, je dobře ohraničený Jsou pevně spojené s dura mater, utlačují mozkovou tkáń, aniž by do ni prorůstaly Meningeomy tvoří přibližně 25% všech intrakraniálních nádorů 50% menigeomů
Využití MRI v diagnostice demencí. ¹Klinika zobrazovacích metod FN Plzeň ²Neurologická klinika FN Plzeň ³Psychiatrická klinika FN Plzeň
Využití MRI v diagnostice demencí J.Kastner¹, J.Ferda¹,B. Kreuzberg¹, V. Matoušek², T. Božovský², T. Petráňová³ ¹Klinika zobrazovacích metod FN Plzeň ²Neurologická klinika FN Plzeň ³Psychiatrická klinika
Název školy: Střední odborná škola stavební Karlovy Vary náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_19_NERVOVÁ SOUSTAVA ČLOVĚKA1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální
10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální iktální periodické Evokované potenciály sluchové (AEP) zrakové
Senzorická fyziologie
Senzorická fyziologie Čití - proces přenosu informace o aktuálním stavu vnitřního prostředí a zevního okolí do formy signálů v CNS Vnímání (percepce) - subjektivní vědomá interpretace těchto signálů na
Nervová soustava. Funkce: řízení organismu. - Centrální nervová soustava - mozek - mícha - Periferní nervy. Biologie dítěte
Funkce: řízení organismu - Centrální nervová soustava - mozek - mícha - Periferní nervy Nervová buňka - neuron Neuron zákl. stavební a funkční jednotka Složení neuronu: tělo a nervové výběžky - axon =
Marek Baláž I. neurologická klinika LF MU FN u sv. Anny Brno
Hluboká mozková stimulace v indikaci kognitivních poruch Marek Baláž I. neurologická klinika LF MU FN u sv. Anny Brno Hluboká mozková stimulace (DBS) Klinická metoda v terapii neurologických (extrapyramidových,
Ukázka knihy z internetového knihkupectví www.kosmas.cz
Upozornění Všechna práva vyhrazena. Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena v papírové, elektronické či jiné podobě bez předchozího písemného souhlasu nakladatele.
Perikarya v pořadí druhých neuronů leží v nucleus cochlearis ventralis a dorsalis.
SLUCHOVÁ DRÁHA Sluchová dráha představuje řetězec neuronů, které převádějí sluchové informace z vláskových buněk Cortiho orgánu vnitřního ucha do sluchové kůry. Pro sluchovou dráhu je charakteristické,
Kosti splanchnokrania
ANATOMIE Kosti splanchnokrania Kosti splanchnocrania Frankfurtská horizontála Maxilla Corpus Facies: anterior, nasalis, orbitalis, infratemporalis (tuber maxillae) Processus: frontalis,zygomaticus, alveolaris,
Spánek, anestézie, paměťové stopy.
Spánek, anestézie, paměťové stopy. Radomir Čumlivski Orthopaedic Hospital Vienna, Austria Dept. of Anaesthesia 9. Křivánkovy dny Pardubice 2015 Je praktické představovat si účinek celkových anestetik na
7 Somatosenzitivita, viscerosenzitivita, propriocepce a bolest II
7 Somatosenzitivita, viscerosenzitivita, propriocepce a bolest II Viscerosenzitivita Přenos informací z viscerální oblasti a kardiovaskulárního systému Vázána na autonomní nervový systém Většina informací
Nervový systém lidského mozku
Nervový systém lidského mozku pět hlavních úseků hemisféry mezimozek střední mozek malý mozek = mozeček prodloužená mícha Pozn. Většina obrázků a fotografií v této prezentaci je převzata z Atlas of Functional
Tüdös Z, Hok P, Hluštík P. Vyšetření verbální pracovní paměti metodou funkční MR
Vyšetření verbální pracovní paměti metodou funkční MR Verbal working memory investigation using functional MRI původní práce Zbyněk Tüdös 1 Petr Hluštík 2 Pavel Hok 2 1 Radiologická klinika UP a FN, Olomouc
SEMINÁŘ O MOZKU 28. března 2009
EURAG EUROPEAN FEDERATION OF OLDER PERSONS EURAG Centrum pro trénování paměti Česká společnost pro trénování paměti a mozkový jogging a Kulturní dům Vltavská, Bubenská 1, Praha 7 pořádají SEMINÁŘ O MOZKU
PROGRAM IV. ČESKÝ NEURORADIOLOGICKÝ KONGRES. 13. 14. října 2011 Ústí nad Labem, Clarion Congress Hotel
PROGRAM IV. ČESKÝ NEURORADIOLOGICKÝ KONGRES 13. 14. října 2011 Ústí nad Labem, Clarion Congress Hotel Česká neuroradiologická společnost ČLS JEP ve spolupráci s KZ, a.s. - Masarykova nemocnice v Ústí nad
SonoWand Invite 3D ultrazvukový systém s integrovanou neuronavigací
SonoWand Invite 3D ultrazvukový systém s integrovanou neuronavigací Martin Zaoral Konference radiologických fyziků 2012 20.6. 22.6.2012 Základní potřeba neurochirurgů - bez ohledu na posun mozku, musí
Pozitronová emisní tomografie.
Pozitronová emisní tomografie. Pozitronová emisní tomografie (PET) s využitím 18F-2-D-fluor-2- deoxy-glukózy (FDG), je jedna z metod nukleární medicíny, která umožňuje funkční zobrazení tkání organismu,
Neurofyziologie a pohybový systém v ontogenezi X. POMOCNÁ VYŠETŘENÍ V NEUROLOGII
Neurofyziologie a pohybový systém v ontogenezi X. POMOCNÁ VYŠETŘENÍ V NEUROLOGII Paraklinické vyšetřovací metody také tzv. pomocná vyšetření v neurologii nejmodernější vyšetřovací metody = specializovaný
Minimalistický přístup k anestézii horní končetiny. D. Mach
Minimalistický přístup k anestézii horní končetiny D. Mach Přístup k existenci a jejímu zachování jen nezbytně nutnými úkony, bez nichž by se patrně rozplynula Pokud by měl minimalismus emoji, byl by
Neubauer, K. a kol. NEUROGENNÍ PORUCHY KOMUNIKACE U DOSPĚLÝCH (Praha, Portál, r. vydání 2007).
Neubauer, K. a kol. NEUROGENNÍ PORUCHY KOMUNIKACE U DOSPĚLÝCH (Praha, Portál, r. vydání 2007). Získané neurogenní poruchy komunikace u dospělých osob Terminologie poruchy, které mají svou lingvistickou,
Mícha a mozkový kmen. Anatomický ústav 1. LF UK Neurochirurgická klinika MNUL a UJEP
Mícha a mozkový kmen Anatomický ústav 1. LF UK Neurochirurgická klinika MNUL a UJEP Anatomie mikropohled Anatomie celkový pohled CC TH CI Pu Cau V V Ins CA FO MCA T ponticuli striatici DR Nuñez Maximiliano
TELENCEPHALON. Koncový mozek. konec dobrý..všechno dobré (rozuměj celé CNS)
TELENCEPHALON Koncový mozek. konec dobrý..všechno dobré (rozuměj celé CNS) Telencephalon = Cerebrum střední část (= telencephalon medium) rostrální úsek III. komory před foramen interventriculare ukončený
Funkce prodloužené míchy
Funkce prodloužené míchy Centrum kardiomotorické (pro regulaci srdeční činnosti) Rami cardiaci n. vagi x nn. cardiaci Kardioinhibiční centrum: prodloužená mícha (ncl.dorsalis, ncl. ambiguus) parasympatická
PROCES MYELINIZACE MOZKU V MR OBRAZE U DĚTÍ VYŠETŘOVACÍ POSTUPY, NORMÁLNÍ NÁLEZY A INTERPRETACE NÁLEZŮ V DENNÍ PRAXI
PROCES MYELINIZACE MOZKU V MR OBRAZE U DĚTÍ VYŠETŘOVACÍ POSTUPY, NORMÁLNÍ NÁLEZY A INTERPRETACE NÁLEZŮ V DENNÍ PRAXI MAGNETIC RESONANCE IMAGING OF THE BRAIN MYELINIATION PROCESS IN CHILDHOOD EXAMINATION
Mícha - Medulla spinalis
Mícha - Medulla spinalis Vývoj neurální trubice v oblasti míchy MÍCHA - Medulla spinalis délka 40 50 cm, tloušťka 1cm váha asi 30g uložena v páteřním kanále sleduje zakřivení páteře Kraniálně: pokračuje
Projekci obrazu na sítnici udržují níže uvedené hlavní okulomotorické systémy:
OKULOMOTORIKA Vzhledem k tomu, že nejostřejší místo vidění se nachází na fovea centralis musí existovat velmi přesné motorické řízení, které zabezpečuje koordinované pohyby očí a hlavy tak, aby docházelo
Elektrofyziologická vyšetření u radikulopatií. Blanka Mičánková Adamová Neurologická klinika FN Brno
Elektrofyziologická vyšetření u radikulopatií Blanka Mičánková Adamová Neurologická klinika FN Brno Definice Radikulopatie postižení míšního kořene Míšní kořeny 8 krčních kořenů, 12 hrudních kořenů, 5
Kmenové syndromy. Martin Srp
Martin Srp Neurologická klinika a Centrum klinických neurověd Universita Karlova v Praze, 1. lékařská fakulta a Všeobecná fakultní nemocnice v Praze Mozkový kmen Jednotlivé syndromy vyplývají z topografické
OBSAH. 1. ÚVOD il 3. MOZEK JAKO ORGÁNOVÝ ZÁKLAD PSYCHIKY POZORNOST 43
OBSAH 1. ÚVOD il 1.1 VYMEZENÍ OBECNÉ PSYCHOLOGIE 11 1.2 METODY POUŽÍVANÉ K HODNOCENÍ PSYCHICKÝCH PROCESŮ A FUNKCÍ 12 1.3 DÍLČÍ OBLASTI, NA NĚŽ JE ZAMĚŘENA OBECNÁ PSYCHOLOGIE 14 1.3.1 Psychologie poznávacích
Doc. MUDr. Aleš Bartoš, PhD. AD Centrum, Národní ústav duševního zdraví &Neurologická klinika, UK 3. LF a FNKV, Praha
Doc. MUDr. Aleš Bartoš, PhD AD Centrum, Národní ústav duševního zdraví &Neurologická klinika, UK 3. LF a FNKV, Praha Národní ústav duševního zdraví, Oddělení kognitivních poruch, Klecany u Prahy Kde nové
Trénink kognitivních funkcí v domácím prostředí
Trénink kognitivních funkcí v domácím prostředí Mgr. Kateřina Svěcená ergoterapeut Klinika rehabilitačního lékařství 1. lékařské fakulty Univerzity Karlovy a Všeobecné fakultní nemocnice Co jsou kognitivní
TOPOGRAFICKÁ ANATOMIE KRKU
TOPOGRAFICKÁ ANATOMIE KRKU Václav Báča, David Kachlík Tereza Smržová, Martin Holek, Katarína Hubčíková, Radek Jakša Ústav anatomie 3. LF UK, Praha podpořeno grantem FRVŠ 1101/2008/F3 REGIO CERVICALIS ANTERIOR
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Nervová soustava Společná pro celou sadu oblast
ZRAK A ZRAKOVÁ DRÁHA SÍTNICE (RETINA)
ZRAK A ZRAKOVÁ DRÁHA Zrak je u člověka dominantní smysl. Zrakový systém je tvořen i/ sítnicí (retinou), ii/ zrakovými dráhami, které přenáší zrakové informace z retiny do mozkového kmene a kortexu, a iii/
Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM)
Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM) MUDr. Ondřej Volný 1 MUDr. Petra Cimflová 2 prof. MUDr. Martin Bareš PhD 1 1 I. neurologická klinika FN u sv. Anny a LF Masarykovy univerzity
Ferda J, Kastner J, Mírka H. Zobrazení myeloarchitektury mozkové kůry T2 váženými
Zobrazení myeloarchitektury mozkové kůry T2 váženými obrazy s vysokým kontrastním a prostorovým rozlišením na 3T MRI High contrast and spatial resolution T2 weighted images using 3T MRI: imaging of the
6. PŘÍLOHY 6.1 Seznam příloh
6. PŘÍLOHY 6.1 Seznam příloh Příloha č.1 Příloha č.2 Příloha č.3 Příloha č.4 Příloha č.5 Příloha č.6 Žádost o vyjádření etické komise UK FTVS Informovaného souhlasu pacienta, vzor Seznam použitých zkratek
Marek Mechl, Miloš Keřkovský. Radiologická klinika LF MU a FN Brno - Bohunice
Marek Mechl, Miloš Keřkovský Radiologická klinika LF MU a FN Brno - Bohunice Anatomie CT, MR - Mozek metodika vyšetření baze lební obaly mozku likvorové prostory mozková kůra bazální ganglia kmen, mozeček
Telencephalon. Veronika Němcová
Telencephalon Veronika Němcová Telencephalon koncový mozek 1) Kůra (cortex) Kůra šestivrstevná neocortex - 95% Kůra trojvrstevná paleocortex čichová archicortex hippokampální formace Přechody mesocortex
Vlastnosti neuronových sítí. Zdeněk Šteffek 2. ročník 2. LF UK v Praze
Vlastnosti neuronových sítí Zdeněk Šteffek 2. ročník 2. LF UK v Praze 7. 3. 2011 Obsah Neuronální pooly Divergence Konvergence Prolongace signálu, kontinuální a rytmický signál Nestabilita a stabilita
Elektrofyziologické metody a studium chování a paměti
Elektrofyziologické metody a studium chování a paměti EEG - elektroencefalogram Skalpové EEG Intrakraniální EEG > 1 cm < 1 cm Lokální potenciály Extracelulární akční potenciály ~ 1 mm ~ 1 um EEG - elektroencefalogram
ČETNOST METASTÁZ V PÁTEŘI PODLE LOKALIZACE
1 ČETNOST METASTÁZ V PÁTEŘI PODLE LOKALIZACE C 15% Th 70% L a S 15% 2 POKROKY V LÉČBĚ PÁTEŘNÍCH METASTÁZ Meta ca tlustého střeva v těle L3 a L4 3 POKROKY V LÉČBĚ PÁTEŘNÍCH METASTÁZ Exstirpace metastázy
Nervový systém. CNS analyzátor. Efektor příčně pruhovaná svalovina hladká svalovina srdeční svalovina žlázy. Receptor nervová zakončení
Nervový systém Funkce nervového systému řízení organismu: shromažďuje informace vyhodnocuje zajišťuje odpověď organismu na podněty Receptor nervová zakončení CNS analyzátor Efektor příčně pruhovaná svalovina
Centrální nervový systém 3
Publikováno z 2. lékařská fakulta Univerzity Karlovy (http://www.lf2.cuni.cz) LF2 > Centrální nervový systém 3 Centrální nervový systém 3 Průběh zkoušení Zkoušení z Centrálního nervového systému 3 bude
Chuťová a čichová dráha napojení na limbický systém. Veronika Němcová
Chuťová a čichová dráha napojení na limbický systém Veronika Němcová Čich Reakce na chemické podněty Různé vůně aktivují různé čichové buňky Širokou škálu vůní můžeme rozpoznávat díky široké škále receptorů
Analýzy intrakraniálního EEG signálu
BSG 2018 Analýzy intrakraniálního EEG signálu Ing. Radek Janča, Ph.D. jancarad@fel.cvut.cz Fakulta elektrotechnická České vysoké učení technické v Praze Česká republika Analýzy ieeg signálu 2/38 Epilepsie
Variace Nervová soustava
Variace 1 Nervová soustava 21.7.2014 15:59:34 Powered by EduBase BIOLOGIE ČLOVĚKA NERVOVÁ SOUSTAVA CNS MOZEK, PRODLOUŽENÁ MÍCHA, HŘBETNÍ MÍCHA PNS PERIFERNÍ NERVY (OBVODOVÉ) VYSTUPUJÍCÍ Z HŘBETNÍ MÍCHY
Výukový materiál. zpracovaný v rámci projektu
Výukový materiál zpracovaný v rámci projektu Základní škola Sokolov,Běžecká 2055 pracoviště Boženy Němcové 1784 Název a číslo projektu: Moderní škola, CZ.1.07/1.4.00/21.3331 Šablona: III/2 Inovace a zkvalitnění
Centrální nervový systém. Markéta Vojtová VOŠZ a SZŠ Hradec Králové
Centrální nervový systém Markéta Vojtová VOŠZ a SZŠ Hradec Králové Medulla spinalis (hřbetní mícha) Hřbetní mícha V páteřním kanálu U dospělého do výše L1 L2 (páteř roste od 4. měsíce nitroděložního vývoje
Scintigrafie mozku přehled využití u nemocných s demencí
Scintigrafie mozku přehled využití u nemocných s demencí Kateřina Táborská 1, Monika Hartmanová 1, Jan Laczó 2,3 KNME UK 2.LF a FN Motol Praha 1 Kognitivní centrum - Neurologická klinika UK 2.LF a FN Motol
Neinvazivní mozková stimulace pro modulaci nemotorických symptomů Parkinsonovy a Alzheimerovy nemoci Irena Rektorová
Neinvazivní mozková stimulace pro modulaci nemotorických symptomů Parkinsonovy a Alzheimerovy nemoci Irena Rektorová 1.Neurologická klinika LF MU, FN u sv. Anny Aplikované Neurovědy, CEITEC MU Barker,
Mediální krční blok je lepší než povrchní krční blok
Mediální krční blok je lepší než povrchní krční blok Pro con debata Michal Horáček KARIM FN v Motole Praha Pro con debata Krční blok je dobrý. Mediální krční blok je lepší než povrchní krční blok. Povrchní
Návrh koncepce neurorehabilitačního centra
SBORNÍK PRACÍ FILOZOFICKÉ FAKULTY BRNĚNSKÉ UNIVERZITY STUDIA MINORA FACULTATIS PHILOSOPHICAE UNIVERSITATIS BRUNENSIS P 10, 2006 Michal Černík, Petra Navrátilová, Lubomír Vašina Návrh koncepce neurorehabilitačního
Cortex Veronika Němcová
Cortex 2018 Veronika Němcová NEOCORTEX Laminární uspořádání 6 vrstev 10 20 miliard neuronů 95 % povrchu hemisféry Trochu čísel aneb záleží na velikosti? Mozková kůra 1233g 16 miliard neuronů Mozeček 154g
Dieťa s poruchou sluchu: diagnostika a liečba POSTGRADUÁLNY KURZ November 2016 Horný Smokovec
Možnosti vyšetření sluchu nejmenších dětí pomocí ABR Limity BERA Dieťa s poruchou sluchu: diagnostika a liečba POSTGRADUÁLNY KURZ 3.-4. November 2016 Horný Smokovec Možnosti vyšetření sluchu nejmenších
Evokované potenciály. Principy, možnosti a meze, indikace. Doc. MUDr. Pavel Urban, CSc.
Evokované potenciály Principy, možnosti a meze, indikace Doc. MUDr. Pavel Urban, CSc. Rozdělení evokovaných potenciálů Podle typu podnětu Podle doby vzniku Podle lokalizace generátorů Near-field x far-field
Centrální nervový systém 1
Publikováno z 2. lékařská fakulta Univerzity Karlovy (https://www.lf2.cuni.cz) Centrální nervový systém 1 Test Centrální nervový systém 1 probíhá písemnou formou dle obecných pravidel písemných testů (viz
SIMULTÁNNÍ EEG-fMRI. EEG-fMRI. Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ. EEG-fMRI. pozorování jevu z různých úhlú lepší pochopení
SIMULTÁNNÍ Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ pozorování jevu z různých úhlú lepší pochopení některé jevy jsou lépe pozorovány pomocí jedné modality, pozorovatele však zajímá informace obsažená
Aleš BARTOŠ. AD Centrum Neurologická klinika, UK 3. LF a FNKV, Praha & Psychiatrické centrum Praha
Aleš BARTOŠ AD Centrum Neurologická klinika, UK 3. LF a FNKV, Praha & Psychiatrické centrum Praha Psychiatrické centrum Praha, Bohnice Poradna pro poruchy paměti, Neurologická klinika UK 3. LF, FN Královské
Aleš BARTOŠ. AD Centrum Psychiatrické centrum Praha & Neurologická klinika, UK 3. LF a FNKV, Praha
Aleš BARTOŠ AD Centrum Psychiatrické centrum Praha & Neurologická klinika, UK 3. LF a FNKV, Praha Psychiatrické centrum Praha, Bohnice Poradna pro poruchy paměti, Neurologická klinika UK 3. LF, FN Královské
Úvod do CNS. David Kachlík
Úvod do CNS David Kachlík CNS oproti PNS PNS = periferní nervový systém CNS = centrální nervový systém shluk těl nervových buněk v PNS = ganglion, v CNS = jádro (nucleus) axony a dendrity v PNS = nerv
Biela hmota mozgu. Frontálny lalok. Mozgová kôra Mozgová kôra. Mozgové laloky
Mozgová kôra Vrstva sivej hmoty na povrchu hemisfér Gyri, sulci Fissurae - ohraničujú lobi cerebri Mozgové laloky Biela hmota mozgu Projekčné vlákna Eferentné Aferentné Asociačné vlákna Komisurálne vlákna
6 Přílohy Seznam příloh
6 Přílohy Seznam příloh Příloha č. 1 Žádost o vyjádření etické komise UK FTVS Příloha č. 2 Návrh informovaného souhlasu pacienta Příloha č. 3 Seznam použitých zkratek Příloha č. 4 Seznam vložených obrázků
ÚVOD: Specifika výuky Faktory omezující rozvoj e-learningu Výuka se skládá z Memorování množství informací Praxe Nutnost kontaktu s pacienty Práce s o
Multimediální podpora výuky na Lékařské fakultě MU - Stav k 02/2005 B. Regner, L. Dušek ÚVOD: Specifika výuky Faktory omezující rozvoj e-learningu Výuka se skládá z Memorování množství informací Praxe
ZDRAVÝ SPÁNEK Ing. Vladimír Jelínek
ZDRAVÝ SPÁNEK Ing. Vladimír Jelínek ZDRAVÝ SPÁNEK Spánek byl po celá tisíciletí považován za pasivní jev blízký bezesné smrti. Shakespeare ve svém Hamletovi považuje smrt za sestru spánku 2 ZDRAVÝ SPÁNEK
Vzdělávání sester v elektrodiagnostice nervového systému. Bc.. Miluše Vacušková Katedra ošetřovatelství NCO NZO Brno
Vzdělávání sester v elektrodiagnostice nervového systému Bc.. Miluše Vacušková Katedra ošetřovatelství NCO NZO Brno Historie 1973 speciální příprava v úsecích EEG, EMG dlouhodobá příprava v úsecích EEG,
Svaly a osteofasciální prostory DK, hlavní kmeny cév a nervů
Svaly a osteofasciální prostory DK, hlavní kmeny cév a nervů Svaly dolní končetiny - musculi membri inferioris 1. Svaly kyčelní - musculi coxae 2. Svaly stehna - musculi femoris 3. Svaly bérce - musculi
Elektroencefalografie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů
Elektroencefalografie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektroencefalografie diagnostická metoda, umožňující snímání a záznam elektrické aktivity mozku invazivní