I. kolo kategorie Z5
|
|
- Hynek Horák
- před 9 lety
- Počet zobrazení:
Transkript
1 Z5 I ročník Matematické olympiády I. kolo kategorie Z5 Tři kamarádi Pankrác, Servác a Bonifác šli o prázdninách na noční procházku přírodním labyrintem. U vstupu dostal každý svíčku a vydali se různými směry. Všichni labyrintem úspěšně prošli, ale každý šel jinou cestou. V následující čtvercové síti jsou vyznačenyjejichcesty.víme,žepankrácnikdynešelnajihažeservácnikdynešelna západ. Kolik metrů ušel v labyrintu Bonifác, když Pankrác ušel přesně 500 m? S Východ Vchod Z5 I 2 (M. Petrová) Dokaždéhonevyplněnéhočtverečkudoplňtečíslo1,2,nebo3tak,abyvkaždém sloupciařádkubylokaždéztěchtočíselprávějednouaabybylysplněnydodatečné požadavky v každé vyznačené oblasti. Podíl 3 Rozdíl 1 2 Součin 6 Součet 4 11.dubna2011,ver.5
2 (Požadujeme-li ve vyznačené oblasti určitý podíl, máme na mysli podíl, který získáme vydělením většího čísla menším. Podobně pracujeme i s rozdílem.) (S. Bednářová) Z5 I 3 Jolana připravuje pro své kamarádky občerstvení chlebíčky. Namaže je bramborovým salátem a navrch chce dát ještě další přísady: šunku, tvrdý sýr, plátek vajíčka a proužek nakládané papričky. Jenže nechce, aby některé dva její chlebíčky obsahovaly úplně stejnou kombinaci přísad. Jaký největší počet navzájem různých chlebíčků může vytvořit,jestližežádnýznichnemámítvšechnyčtyřipřísadyažádnýznichnenípouze se salátem(tj. bez dalších přísad)? (M. Petrová) Z5 I 4 Na obrázku je stavba slepená ze stejných kostiček. Jedná se o krychli s několika dírami,kterýmijevidětskrzakterémajívšudestejnýprůřez.zkolikakostičekje stavba slepena? (M. Krejčová) Z5 I 5 V pohádce o sedmero krkavcích bylo sedm bratrů, z nichž každý se narodil přesně rok a půl po předchozím. Když byl nejstarší z bratrů právě čtyřikrát starší než nejmladší, matka všechny zaklela. Kolik let bylo sedmero bratrům krkavcům, když je jejich matka zaklela? (M. Volfová) Z5 I 6 Janka a Hanka si rády hrají s modely zvířátek. Hanka pro své kravičky sestavila z uzávěrů od PET lahví obdélníkovou ohrádku, viz obrázek. Janka ze všech svých uzávěrů složila pro ovečky ohrádku tvaru rovnostranného trojúhelníku. Poté ji rozebrala a postavila pro ně ohradu čtvercovou, rovněž ze všech svých uzávěrů. Kolik mohla mít Janka uzávěrů? Najděte aspoň 2 řešení. (M. Volfová)
3 61. ročník Matematické olympiády I. kolo kategorie Z6 Z6 I 1 Na obrázku jsou tři stejně velké kruhy. Společné části sousedních kruhů jsme šedě vybarvili. Bílé části mají v obrázku zapsány své obsahy, a to v centimetrech čtverečních. Vypočítejte obsahy obou šedých částí Z6 I 2 (L. Šimůnek) Do hračkářství přivezli nová plyšová zvířátka: vážky, pštrosy a kraby. Každá vážka má6nohoua4křídla,každýpštrosmá2nohya2křídlaakaždýkrabmá8nohou a2klepeta.dohromadymajítytopřivezenéhračky118nohou,22křídela22klepet. Kolik mají dohromady hlav? (M. Petrová) Z6 I 3 Na obrázku je stavba slepená ze stejných kostiček. Jedná se o krychli s několika dírami, kterými je vidět skrz a které mají všude stejný průřez. Hotovou stavbu jsme celou ponořili do barvy. Kolik kostiček má obarvenu aspoň jednu stěnu? Z6 I 4 (M. Krejčová) Dokaždéhonevyplněnéhočtverečkudoplňtečíslo1,2,3,nebo4tak,abyvkaždém sloupciařádkubylokaždéztěchtočíselprávějednouaabybylysplněnydodatečné požadavky v každé vyznačené oblasti.
4 Součin 6 1 Rozdíl 1 Součet 9 Součet 5 Součin 48 Podíl 2 (Požadujeme-li ve vyznačené oblasti určitý podíl, máme na mysli podíl, který získáme vydělením většího čísla menším. Podobně pracujeme i s rozdílem.) (S. Bednářová) Z6 I 5 Ondra, Matěj a Kuba dostali k Vánocům od prarodičů každý jednu z následujících hraček: velké hasičské auto, vrtulník na dálkové ovládání a stavebnici Merkur. Bratranec Petr doma vyprávěl: Ondradostaltovelkéhasičskéauto.PřálsihosiceKuba,aletenhonedostal. Matějnemávobliběstavebnice,takžeMerkurnebylproněj. Ukázalose,ževesdělení,jakýdárekkdodostalčinedostal,sePetrdvakrátmýlil a jen jednou vypovídal správně. Jak to tedy s dárky bylo? (M. Volfová) Z6 I 6 Marta, Libuše a Marie si vymyslely hru, kterou chtějí hrát na obdélníkovém hřišti složeném z 18 stejných čtverců, viz obrázek. Ke hře potřebují hřiště rozdělit dvěma rovnými čárami na tři stejně velké části. Navíc tyto čáry musejí obě procházet tím rohem hřiště, který je na obrázku vlevo dole. Poraďte děvčatům, jak mají dokreslit čáry,abysimohlazačíthrát. (E. Trojáková)
5 Z7 I ročník Matematické olympiády I. kolo kategorie Z7 Trpaslíci si chodí k potoku pro vodu. Džbánek každého z trpaslíků je jinak velký: majíobjemy3,4,5,6,7,8a9litrů.trpaslícisidžbánkymezisebounepůjčujíavždy je přinesou plné vody. Kejchal přinese ve svém džbánku víc vody než Štístko. Dřímal by musel jít pro vodu třikrát, aby přinesl právě tolik vody jako Stydlín v jednom svém džbánku. Prófůvdžbánekjejeno2litryvětšínežŠtístkův. Sám Šmudla přinese tolik vody jako Dřímal a Štístko dohromady. Když jdou pro vodu Prófa a Šmudla, přinesou stejně vody jako Rejpal, Kejchal aštístko. Z7 I 2 Kolik vody přinesou dohromady Kejchal a Šmudla? (M. Petrová) Na obrázku je čtverec ABCD, ve kterém jsou umístěny čtyři shodné rovnoramenné trojúhelníky ABE, BCF, CDG a DAH, všechny šedě vybarvené. Strany čtverce ABCD jsou základnami těchto rovnoramenných trojúhelníků. Víme, že šedé plochy čtverce ABCD mají dohromady stejný obsah jako jeho bílá plocha. Dále víme, že HF =12cm.Určetevelikoststranyčtverce ABCD. D C G H F E A B Z7 I 3 (L. Šimůnek) Sedm bezprostředně po sobě jdoucích celých čísel stálo v řadě, seřazeno od nejmenšíhoponejvětší.pochvílisečíslazačalanudit,ataksenejdřívprvnívyměnilosposledním, potom se prostřední posunulo úplně na začátek řady a nakonec si největší z čísel stouplo doprostřed. Ke své veliké radosti se tak ocitlo vedle čísla se stejnou absolutní hodnotou. Kterých sedm čísel mohlo stát v řadě? (S. Bednářová)
6 Z7 I 4 Učitelka Smolná připravovala prověrku pro svou třídu ve třech verzích, aby žáci nemohli opisovat. V každé verzi zadala tři hrany kvádru a dala za úkol vypočítat jeho objem. Úlohy si ale dopředu nevyřešila, a tak netušila, že výsledek je ve všech třech verzíchstejný.dozadánížákůmzapsalatytodélkyhran:12,18,20,24,30,33a70, všechny v centimetrech. Z devíti délek hran, které učitelka Smolná zadala, jsme vám tedy prozradili pouze sedm a ani jsme nesdělili, které délky patří do téhož zadání. Určete zbylé dvě délky hran. (L. Šimůnek) Z7 I 5 Jedenvnitřníúhelvtrojúhelníkuměří50.Jakvelkýúhelsvírajíosyzbývajících dvou vnitřních úhlů? (L. Hozová) Z7 I 6 Hledáme šestimístný číselný kód, o němž víme, že: žádná číslice v něm není vícekrát, obsahuje i 0, ta však není na předposledním místě, vesvémzápisunemánikdyvedlesebedvělichéanidvěsudéčíslice, sousední jednomístná čísla se liší aspoň o 3, čísla, která získáme přečtením prvního a druhého dvojčíslí, jsou obě násobkem čísla vzniklého přečtením třetího, tedy posledního dvojčíslí. Určete hledaný kód. (M. Volfová)
7 61. ročník Matematické olympiády I. kolo kategorie Z8 Z8 I 1 Korespondenční matematická soutěž probíhá ve třech kolech, jejichž náročnost se stupňuje. Do druhého kola postupují jen ti řešitelé, kteří byli úspěšní v prvním kole, do třetího kola postupují jen úspěšní řešitelé druhého kola. Vítězem je každý, kdo je úspěšným řešitelem posledního, tedy třetího kola. V posledním ročníku této soutěže bylopřesně14%řešitelůúspěšnýchvprvnímkole,přesně25%řešitelůdruhéhokola postoupilo do třetího kola a přesně 8% řešitelů třetího kola zvítězilo. Jaký je nejmenší počet soutěžících, kteří se mohli zúčastnit prvního kola? Kolik by v takovém případě bylo vítězů? (M. Petrová) Z8 I 2 Je dán rovnoramenný trojúhelník ABC se základnou AB dlouhou 10 cm a rameny dlouhými 20 cm. Bod S je střed základny AB. Rozdělte trojúhelník ABC čtyřmi přímkami procházejícími bodem S na pět částí se stejným obsahem. Zjistěte, jak dlouhé úsečky vytnou tyto přímky na ramenech trojúhelníku ABC. (E. Trojáková) Z8 I 3 Hledáme pětimístné číslo s následujícími vlastnostmi: je to palindrom(tj. čte se pozpátku stejně jako zepředu), je dělitelné dvanácti a ve svém zápisu obsahuje číslici 2 bezprostředně za číslicí 4. Určete všechna možná čísla, která vyhovují zadaným podmínkám. (M. Mach) Z8 I 4 Na střed hrnčířského kruhu jsme položili krychli, která měla na každé své stěně napsáno jedno přirozené číslo. Těsně předtím, než jsme kruh roztočili, jsme ze svého stanoviště viděli tři stěny krychle a tedy pouze tři čísla. Jejich součet byl 42. Po otočení hrnčířskéhokruhuo90 jsmezestejnéhomístapozorovalitřistěnysčíslydávajícími součet34apootočeníodalších90 jsmestáleztéhožmístavidělitřičíslaosoučtu Určetesoučettříčísel,kteráznašehomístauvidíme,ažsekruhotočíještěodalších Krychlepoceloudobuleželanastěněsčíslem6.Určetemaximálnímožnýsoučet všech šesti čísel na krychli. (L. Šimůnek) Z8 I 5 Pankrác,ServácaBonifácjsoubratři,kteřímají P, Sa Blet.Víme,že P, Sa B jsou přirozená čísla menší než 16, pro něž platí: P= 5 (B S), 2 S=2(B P), B=8(S P). Určete stáří všech tří bratrů. (L. Hozová)
8 Z8 I 6 Janka si narýsovala obdélník s obvodem 22 cm a délkami stran vyjádřenými v centimetrech celými čísly. Potom obdélník rozdělila beze zbytku na tři obdélníky, z nichž jedenmělrozměry2cm 6cm.Součetobvodůvšechtříobdélníkůbylo18cmvětší než obvod původního obdélníku. Jaké rozměry mohl mít původní obdélník? Najděte všechna řešení. (M. Dillingerová)
9 61. ročník Matematické olympiády I. kolo kategorie Z9 Z9 I 1 Pokladní v galerii prodává návštěvníkům vstupenky s číslem podle toho, kolikátí ten den přišli. První návštěvník dostane vstupenku s číslem 1, druhý s číslem 2, atd. Během dne však došel žlutý papír, na který se vstupenky tiskly, proto musela pokladní pokračovat tisknutím na papír červený. Za celý den prodala stejně žlutých vstupenek jako červených. Zjistila, že součet čísel na žlutých vstupenkách byl o menší než součet čísel na červených vstupenkách. Kolik toho dne prodala vstupenek? (M. Mach) Z9 I 2 Filoména má mobil s následujícím rozmístěním tlačítek: Devítimístné telefonní číslo její nejlepší kamarádky Kunhuty má tyto vlastnosti: všechny číslice Kunhutina telefonního čísla jsou různé, první čtyři číslice jsou seřazeny podle velikosti od nejmenší po největší a středy jejich tlačítek tvoří čtverec, středy tlačítek posledních čtyř číslic také tvoří čtverec, telefonní číslo je dělitelné třemi a pěti. Z9 I 3 Kolik různých devítimístných čísel by mohlo být Kunhutiným telefonním číslem? (K. Pazourek) Amálka pozorovala veverky na zahrádce hájenky, kde rostly tyto tři stromy: smrk, bukajedle.veverkysedělyvklidunastromech,takžejemohlaspočítat bylojich 34.Kdyžpřeskákalo7veverekzesmrkunabuk,bylojichnabukustejnějakonaobou dvou jehličnanech dohromady. Poté ještě přeskákalo 5 veverek z jedle na buk, v tu chvíli bylonajedlistejněveverekjakonasmrku.nabukujichpotébylodvakráttolik,cona jedli ze začátku. Kolik veverek původně sedělo na každém ze stromů? (M. Mach) Z9 I 4 V pravidelném dvanáctiúhelníku ABCDEF GHIJKL vepsaném do kružnice o poloměru 6 cm určete obvod pětiúhelníku ACF HK.
10 I H G F J E K D L A B C (K. Pazourek) Z9 I 5 Před vánočním koncertem nabízeli žáci k prodeji 60 výrobků z hodin výtvarné výchovy. Cenu si mohl každý zákazník určit sám a celý výtěžek šel na dobročinné účely. Na začátku koncertu žáci spočítali, kolik korun v průměru utržili za jeden prodaný výrobek, a vyšlo jim přesně celé číslo. Protože stále neprodali všech 60 výrobků, nabízeli jeipokoncertě.tosilidékoupiliještědalšíchsedm,zakterédalicelkem2505kč.tím se průměrná tržba za jeden prodaný výrobek zvýšila na rovných 130 Kč. Kolik výrobků pak zůstalo neprodaných? (L. Šimůnek) Z9 I 6 V obdélníkové zahradě roste broskvoň. Tento strom je od dvou sousedních rohů zahradyvzdálen5metrůa12metrůavzdálenostmezizmíněnýmidvěmarohyje13 metrů. Dále víme, že broskvoň stojí na úhlopříčce zahrady. Jak velká může být plocha zahrady? (M. Mach)
61.ročník Matematické olympiády. I.kolo kategorie Z5
61.ročník Matematické olympiády I.kolo kategorie Z5 Z5 I 1 Tři kamarádi Pankrác, Servác a Bonifác šli o prázdninách na noční procházku přírodním labyrintem. U vstupu dostal každý svíčku a vydali se různými
I. kolo kategorie Z5
61. ročník Matematické olympiády I. kolo kategorie Z5 Z5 I 1 Tři kamarádi Pankrác, Servác a Bonifác šli o prázdninách na noční procházku přírodním labyrintem. U vstupu dostal každý svíčku a vydali se různými
MATEMATICKÁ OLYMPIÁDA
MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 61. ROČNÍK, 2011/2012 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste
61.ročník Matematické olympiády. I.kolo kategorie Z6
61.ročník Matematické olympiády I.kolo kategorie Z6 Z6 I 1 Naobrázkujsoutřistejněvelkékruhy.Společnéčástisousedníchkruhůjsmešedě vybarvili.bíléčástimajívobrázkuzapsánysvéobsahy,atovcentimetrechčtverečních.
Matematický KLOKAN : ( ) = (A) 1 (B) 9 (C) 214 (D) 223 (E) 2 007
Matematický KLOKN 007 kategorie enjamín Úlohy za 3 body. Které číslo patří do prázdného rámečku? 007 : ( + 0 + 0 + 7) 0 0 7 = () () 9 (C) 4 (D) 3 (E) 007. Který z dílů stavebnice musíš přiložit k dílu
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry
I. kolo kategorie Z7
67. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Petr řekl Pavlovi: Napiš dvojmístné přirozené číslo, které má tu vlastnost, že když od něj odečteš totéž dvojmístné přirozené číslo akorát napsané
I. kolo kategorie Z5
I. kolo kategorie Z5 Z5 I 1 Housenka Leona spadla doprostřed čtvercové sítě. Rozhodla se, že poleze do spirály tak,jakjenaznačenonaobrázku;nažádnémčtverečkunebudedvakrátažádný čtvereček nevynechá. 5 4
Matematická olympiáda ročník (1999/2000) Úlohy domácího kola pro kategorie Z5 až Z9
1 of 8 20. 1. 2014 12:10 Matematická olympiáda - 49. ročník (1999/2000) Úlohy domácího kola pro kategorie Z5 až Z9 Z5 I 1 V příkladech nahraďte hvězdičky číslicemi tak, aby jeden výsledek byl o 15 764
Příklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
Matematický KLOKAN kategorie Junior
Matematický KLOKN 2008 kategorie Junior Úlohy za 3 body 1. Vkrabicích byly uloženy některé z karet označených,, I, O, U, jak ukazuje obrázek. Petr odebíral z každé krabice karty tak, aby na konci zbyla
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
I. kolo kategorie Z7
60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin
I. kolo kategorie Z7
66. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Čtverec se stranou 4 cm je rozdělen na čtverečky se stranou 1 cm jako na obrázku. Rozdělte čtverec podél vyznačených čar na dva útvary s obvodem
I. kolo kategorie Z7
68. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné
I. kolo kategorie Z5
68. ročník Matematické olympiády I. kolo kategorie Z5 Z5 I 1 Míšamápětpastelek.VojtajichmáméněnežMíša.Vendelínjichmátolik,kolik Míša a Vojta dohromady. Všichni tři dohromady mají sedmkrát více pastelek,
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
Základní škola, Příbram II, Jiráskovy sady Příbram II
Výběr tematicky zaměřených matematických úloh pro posouzení dovedností žáků 5. ročníku při jejich zařazování do tříd se skupinami s rozšířenou výukou matematiky a informatiky 1) Pokračuj v řadách čísel:
II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých
II. kolo kategorie Z5 Z5 II 1 Z čísel 959 362 a 192 075 vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých čísel odečteme číslo menší. Jaký nejmenší rozdíl můžeme dostat? Řešení. Z jednoho čísla
Obecné informace: Typy úloh a hodnocení:
Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
STEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
Příklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3
1 of 6 20. 1. 2014 12:14 Matematická olympiáda - 49. ročník (1999-2000) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Jirka půjčil Mirkovi předevčírem přibližně 230 Kč, tj. 225
I. kolo kategorie Z5
62. ročník Matematické olympiády I. kolo kategorie Z5 Z5 I 1 Maminka zaplatila v knihkupectví 2 700 Kč. Platila dvěma druhy bankovek, dvousetkorunovými a pětisetkorunovými, a přesně. Kolik kterých bankovek
Matematický KLOKAN 2006 kategorie Junior
Matematický KLOKAN 006 kategorie Junior Vážení přátelé, v následujících 7 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet
( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1
Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
Příklady pro 8. ročník
Příklady pro 8. ročník Procenta: 1.A Vyjádřete v procentech: a) desetina litru je % b) polovina žáků je % c) pětina výměry je % d) padesátina délky je % e) tři čtvrtiny objemu je % f) dvacetina tuny je
10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny dva
MATEMATICKÁ OLYMPIÁDA
MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste
PŘIJÍMACÍ ZKOUŠKY II.termín
MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítejte na Gymnáziu v Omské u přijímacích zkoušek z matematiky. Dnes budete řešit úlohy čtverečkové a kostičkové. Úlohy můžete řešit v libovolném
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
II. kolo kategorie Z6
Z6 II 1 Pat napsal na tabuli příklad: 62. ročník Matematické olympiády II. kolo kategorie Z6 589+544+80=2013. Mat chtěl příklad opravit, aby se obě strany skutečně rovnaly, a pátral po neznámém čísle,
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila
MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5
MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
MATEMATIKA. 5. třída. Čemu se rovná uvedený součet v metrech? (A) 1,65015 m (B) 16,515 m (C) 16,0515 m (D) 16,5 m
MATEMATIKA 5. třída 1. Jaké číslo je o 12 stovek, 4 desítky a 9 jednotek menší než 2000? (A) 751 (B) 861 (C) 1249 (D) 1831 2. Které z následujících tvrzení o pravoúhlém trojúhelníku je správné? (A) Dvě
} Vyzkoušej všechny povolené možnosti.
VZOROVÉ ŘEŠENÍ 1 2 2, 5 = 0, 5 2, 5 = 1, 25 1 2 = 0, 5 } 1, 25 0, 5 = 0, 75 256: 2 100 0, 029 = 128 2, 9 = 125, 1 1,44 (0,1)2 0,01 10 = 120 1 1,2 3600 = 0,01 3600 = 0,01 10 0, 001 3600 = 120 3, 6 = 116,
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.
Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Matematický KLOKAN 2005 kategorie Junior
Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet
Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)
Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září
V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí, žádná židle nezbyla prázdná. Kolik dětí sedělo u každého stolu?
Úloha 1 Ke každé z jednoduchých úloh přiřaď, jaký výpočet určuje správný výsledek úlohy. 18 : 3 = 18 + 3 = 18. 3 = 18-3 = V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí,
Jak by mohl vypadat test z matematiky
Jak by mohl vypadat test z matematiky 1 Zapište zlomkem trojnásobek rozdílu, 2 Vypočtěte: 2.1 0,05: 0,001 0,7 0,3 = 2.2 : = 3 Vypočtěte a výsledek zapište zlomkem v základním tvaru: 36 3 3 16 + 1 6 = 4
Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.
MATEMATIKA 5 M5PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Časový limit pro řešení didaktického testu
Úlohy krajského kola kategorie C
67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =
Matematický KLOKAN kategorie Kadet
Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Kadet Úlohy za body. Hodnota kterého z výrazů je sudé číslo? (A) 2009 (B) 2 + 0 + 0 + 9 (C) 200 9 (D) 200 9 (E) 200 + 9 2. Hvězda na obrázku
I. kolo kategorie Z6
68. ročník atematické olympiády I. kolo kategorie Z6 Z6 I Ivan a irka se dělili o hrušky na míse. Ivan si vždy bere dvě hrušky a irka polovinu toho, co na míse zbývá. Takto postupně odebírali Ivan, irka,
Do výtvarné výchovy se nakupují čtvrtky za cenu 5 Kč za kus. Kolik čtvrtek se nakoupí za 95 korun?
MATEMATIKA Součet bodů: Obor: 79-41-K/81 Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Úlohy můžete řešit v libovolném pořadí. 1.
M08-01 Přijímačky nanečisto osmileté studium matematika
M08-01 Přijímačky nanečisto osmileté studium matematika Řešení 1) Bratři Martin a Tomáš dostali stolní hru, ve které se hrálo o papírové peníze - dolary. Martin rozdělil peníze před začátkem hry tak, že
II. kolo kategorie Z9
6. ročník Matematické olympiády II. kolo kategorie Z9 Z9 II Je dán kosodélník jako na obrázku. Po straně se pohybuje bod a po straně se pohybuje bod tak, že úsečka je rovnoběžná s. Když byl průsečík úseček
Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444
ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní
Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1
1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8
MATEMATICKÁ OLYMPIÁDA
MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 62. ROČNÍK, 2012/2013 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
Rovina, polorovina 1. Určete, které věci mají, nebo nemají rovný povrch. Doplňte ano, ne.
Rovina, polorovina 1. Určete, které věci mají, nebo nemají rovný povrch. Doplňte ano, ne. 2. Narýsujte přímku AF. Každý bod přímky AF je bodem roviny určené stěnou kvádru ABCDEFGH. Bod K je bodem roviny
Řešení najdete na konci ukázky
Řešení najdete na konci ukázky. Posloupnost ( 3n + ) n je totožná s posloupností: = (A) a =, an+ = 3 a a =, a n+ an = 3 3 a =, an+ = a a = 3, an+ = an + an+ a = 3, = a n n n. David hraje každý všední den
Základní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
Návody k domácí části I. kola kategorie C
61. ročník Matematické olympiády Návody k domácí části I. kola kategorie C 1. Najděte všechny trojčleny p(x) = ax 2 + bx + c, které dávají při dělení dvojčlenem x + 1 zbytek 2 a při dělení dvojčlenem x
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Neotvírej, dokud nedostaneš pokyn od zadávajícího!
9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz
Matematický KLOKAN kategorie Benjamín
Matematický KLOKAN 2011 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Motocyklista ujel vzdálenost 28 km za 30 minut. Jakou průměrnou rychlostí jel? (A) 28 km/h (B) 36 km/h (C) 56 km/h
MATEMATICKÁ OLYMPIÁDA
MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 63. ROČNÍK, 2013/2014 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
I. kolo kategorie Z5
68. ročník Matematické olympiády I. kolo kategorie Z5 Z5 I 1 Míša má pět pastelek. Vojta jich má méně než Míša. Vendelín jich má tolik, kolik Míša a Vojta dohromady. Všichni tři dohromady mají sedmkrát
MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.
MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N
Matematika 9. ročník
Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: SVFMFRIH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
Matematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
ČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50
1. Rada pro televizní vysílání prováděla průzkum sledovanosti českých televizních stanic. Průzkumu se zúčastnilo 500 tzv. respondentů. Sledovanost stanic ČT1, ČT2, Nova a Prima je uvedena v diagramu. Kolik
MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída
MATEMATIKA 7. třída 1. Pavel musí vypracovat slohovou práci o rozsahu 4000 slov. Za půl hodiny napíše v průměru 100 slov. Kolik hodin Pavel potřebuje pro vytvoření slohové práce, pokud se chce po dopsání
OBVODY A OBSAHY GEOMETRICKÝCH ÚTVARŮ!Text je pracovní obrázky je potřeba spravit a doplnit!!!
ZS1MP_PDM2 Didaktika matematiky 2 Katedra matematiky PedF MU v Brně Růžena Blažková, Milena Vaňurová OBVODY A OBSAHY GEOMETRICKÝCH ÚTVARŮ!Text je pracovní obrázky je potřeba spravit a doplnit!!! Text vychází
Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku
Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,
Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
Úlohy klauzurní části školního kola kategorie B
65. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie B 1. Kolika způsoby je možno vyplnit čtvercovou tabulku 3 3 čísly,, 3, 3, 3, 4, 4, 4, 4 tak, aby součet čísel v každém čtverci
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
I. kolo kategorie Z5
66. ročník Matematické olympiády I. kolo kategorie Z5 Z5 I 1 Zvonkohra na nádvoří hraje v každou celou hodinu krátkou skladbu, a to počínaje 8. a konče 22. hodinou. Skladeb je celkem osmnáct, v celou hodinu
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Brlohovská úloha za 2 body
Brlohovská úloha za 2 body Určete, kolika nejméně barvami můžeme obarvit naše logo tak, aby žádné dvě sousední oblasti neměly stejnou barvu. Za sousední se považují oblasti, které mají společný více než
Obsahy. Trojúhelník = + + 2
Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
Úlohy k procvičení kapitoly Obsahy rovinných obrazců
Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených
I. kolo kategorie Z8
66. ročník Matematické olympiády I. kolo kategorie Z8 Z8 I 1 Tři kamarádky veverky spolu vyrazily na sběr lískových oříšků. Zrzečka jich našla dvakrát víc než Pizizubka a Ouška dokonce třikrát víc než
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka
MATEMATIKA 9 Přijímací zkoušky na nečisto
787 Střední průmyslová škola stavební, Hradec Králové, Pospíšilova tř. MATEMATIKA 9 Přijímací zkoušky na nečisto 12.1.2017 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50
Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.
Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky
II. kolo kategorie Z9
68. ročník Matematické olympiády II. kolo kategorie Z9 Z9 II 1 Maruška napsala na tabuli dvě různá přirozená čísla. Marta si vzala kartičku, na jejíž jednu stranu napsala součet Maruščiných čísel a na
Matematický KLOKAN 2006 kategorie Kadet (A) 15. (B) 16. (C) 17. (D) 13. (E) 14. (A) 5 (B) 3 (C) 4 (D) 2 (E) 6
Matematický KLOKAN 2006 kategorie Kadet Úlohy za 3 body 1. Soutěž Klokan se koná každoročně od roku 1991. Kolikátý ročník soutěže probíhá v roce 2006? (A) 15. (B) 16. (C) 17. (D) 13. (E) 14. 2. Bod O je
Rozhledy matematicko-fyzikální
Rozhledy matematicko-fyzikální Úlohy domácího kola 55. ročníku Matematické olympiády pro žáky základních škol Rozhledy matematicko-fyzikální, Vol. 80 (2005), No. 2, 39 45 Persistent URL: http://dml.cz/dmlcz/146102
Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.
MATEMATIKA 5 M5PZD16C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60
1. Opakování učiva 6. ročníku
. Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.
MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný
Úlohy domácí části I. kola kategorie C
6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,